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ABSTRACT

All quasars vary in their optical flux on a timescale of years, and it has been proposed that these variations
are principally due to gravitational lensing by a cosmologically distributed population of planetary-mass
objects. This interpretation has implications for the observable properties of gamma-ray bursts (GRBs)—as
a source expands across the nanoarcsecond caustic network, variability is expected—and data on GRBs can
be used to test the proposed model of quasar variability. Here we employ an ultrarelativistic blast wave model
of the source, with no intrinsic variations, to study the effects of nanolensing on GRBs. Taken in isolation,
the light curves of the caustic crossings are predictable, and we find that a subset of the predicted light curves
(the image-annihilating fold crossings) resembles the “pulses” that are commonly seen in long GRBs.
Furthermore, for sources at high redshift, the expected time between caustic crossings is of the order of
seconds, comparable to the observed time between pulses. These points suggest that it might be possible to
model some of the observed variations of GRBs in terms of nanolensing; however, our simulated light curves
exhibit a small depth of modulation compared to what is observed. This means that the GRB data do not
significantly constrain the quasar nanolensing model; it also means that the simplest nanolensing model can-
not explain the observed GRB pulses. Viable nanolensing models for pulses probably require a large external
beam shear. If a viable model can be constructed, it would effect a considerable simplification in source
modeling and, ironically, it would explain why no macrolensed GR Bs have been identified to date. Independ-
ent of the particular theoretical model, we can test for the presence of nanolensing in GRB data because any
variability due to nanolensing should manifest parallax: the timing of caustic crossings, and hence the
temporal substructure of bursts, should be different as seen by separated observers. Parallax therefore shifts
triangulated burst locations away from their true positions; this displacement is typically expected to be at
the few-arcminute level, and existing astrometry is not good enough to reveal the predicted effects. Useful
constraints can, however, be obtained by comparing the relative timing of individual peaks in the light curves
recorded by spacecraft in the Interplanetary Network; published data show hints of the predicted temporal
shifts, but the photon counting statistics are not good enough to categorically decide the matter. There is no
plausible alternative interpretation for this phenomenon, and if it is confirmed as a real effect then it compels

acceptance of a cosmology that is very different from the currently popular model.
Subject headings: dark matter — gamma-ray bursts — gravitational lensing

1. INTRODUCTION

At present we do not know what constitutes the bulk of
the material universe, i.e., the dark matter. Many dark
matter candidates have been proposed, ranging from ele-
mentary particles to macroscopic objects such as black
holes—see, e.g., Trimble (1987), Ashman (1992), and Carr
(1994). To date it has been possible to eliminate some sug-
gestions (e.g., brown dwarfs; Tinney 1999) by virtue of a
clear conflict between models and data, but a positive identi-
fication has not been achieved. One proposal whose implica-
tions have not yet been thoroughly explored is that of
Hawkins (1993, 1996), who argued, on the basis of photo-
metric monitoring of quasars, that the universe contains a
near-critical density of planetary-mass objects (see Press &
Gunn 1973). Gravitational lensing by such a population is
capable of explaining much of the observed variability (see
also Schneider & Weiss 1987; Schneider 1993), although this
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should not be taken to imply that intrinsic variations are
absent. This suggestion is a radical departure from the now-
standard picture of a universe dominated by elementary
particles (i.e., cold dark matter; see, e.g., Peebles 1993;
Blumenthal et al. 1984; Davis et al. 1985) and has received
little theoretical attention. Building on earlier work
(Schneider & Wagoner 1987; Rauch 1991; Seljak & Holz
1999; Metcalf & Silk 1999), Minty, Heavens, & Hawkins
(2001) described a statistical test of the model based on the
light curves of distant supernovae, but existing data do not
allow these ideas to be usefully implemented. A test based
on surface brightness variability in low-redshift galaxies has
been described by Lewis & Ibata (2001), but this idea also
requires data that are not yet available, as does the test
based on monitoring quasars seen through low-redshift
clusters of galaxies (Walker & Ireland 1995; Tadros, War-
ren, & Hewett 1998). Data from the MACHO and EROS
experiments exclude planetary-mass compact objects as a
significant contributor to the Galactic dark matter (Alcock
et al. 1998). However, objects that are sufficiently compact
that they qualify as strong gravitational lenses at cosmologi-
cal distances are not necessarily strong gravitational lenses
when they are located in the Galactic halo (Walker 1999; see
also Draine 1998; Rafikov & Draine 2001). The Galactic
microlensing experiments therefore do not directly test the
quasar nanolensing hypothesis.
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It is obvious that one could attempt to devise further,
more sophisticated tests of the nanolensing interpretation
based on existing quasar data, but it is a priori unlikely that
any such test will yield a definitive result. The main reason
for this is source size: the low amplitude of variations seen in
quasar optical light curves means that these sources are nec-
essarily larger than the scale size of the hypothesized caustic
structure, thus smoothing the magnification pattern, and in
the process destroying the high spatial frequency informa-
tion. (This would be less of a barrier to progress if we had a
reliable model for the physical structure of quasars, so that
detailed predictions for their lensed appearance could be
given with some confidence.) For example, the approach of
Dalcanton et al. (1994; see also Canizares 1982), based on
the statistics of equivalent widths of quasar emission lines, is
quite insensitive in this regime in which the continuum
source is resolved by the lenses. To make progress, we there-
fore require a numerous population of small, highly lumi-
nous sources at large distances; gamma-ray bursters
constitute such a population. Gravitational lensing of
gamma-ray bursts (GRBs) has previously been considered
by a number of authors (e.g., Paczynski 1986b; McBreen &
Metcalfe 1988; Mao 1992; Gould 1992; Blaes & Webster
1992; Nemiroff & Gould 1995), but their considerations are
relevant to lenses that are either much more massive or
much less massive than the planetary-mass range that we
consider here. The present work also differs substantively
from previous investigations in that the evolution (expan-
sion) of the source structure plays a critical role in our
analysis.

Following the launch of the Compton Gamma-Ray
Observatory, BATSE (the Burst And Transient Source
Experiment) soon discovered that GRBs are isotropically
distributed on the sky and that they depart from Euclidean
source counts at low flux levels (Fishman et al. 1994). These
discoveries immediately shifted attention away from inter-
pretations based on Galactic neutron stars, which had pre-
viously been popular, toward a variety of models in which
energies amounting to a significant fraction of M., ¢ are
rapidly released by sources at cosmological distances (see
Paczynski 1995). Discovery of X-ray afterglows from these
transient events (Costa et al. 1997) by BeppoSAX allowed
the sources to be accurately positioned and thus led to the
discovery of optical and radio afterglows (van Paradijs et al.
1997; Djorgovski et al. 1997; Frail et al. 1997). Spectroscopy
of these optical transients has in some cases revealed
absorption lines from gas at redshifts z;>1, thus firmly
establishing the distance scale of the bursters to be cosmo-
logical (Metzger et al. 1997; van Paradijs, Kouveliotou, &
Wijers 2000).

Although we still do not know what process injects the
burst energy, it is broadly agreed that the radiation observed
from GRBs arises from a relativistically expanding source.
Relativistic expansion is required in order that we should
see gamma rays at all—at least at energies > MeV—other-
wise the inferred source size is so small, and the photon
energy density so high, that two-photon pair production
converts essentially all the gammas into material particles
(Cavallo & Rees 1978; Fenimore, Epstein, & Ho 1993;
Baring & Harding 1997). These considerations require
expansion with Lorentz factors of at least ' ~ 102,

At an early stage in the modeling of GRBs in a cosmo-
logical context, it was pointed out that gamma-ray emis-
sion should arise as the ambient medium undergoes

shock compression by the expanding material (Rees &
Mészaros 1992). This picture—the “blast wave” or
“external shock” model-—now provides the accepted
context for modeling the broadband (X-ray, optical, and
radio) afterglows of bursts (Paczynski & Rhoads 1993;
Mészaros & Rees 1997; Granot, Piran, & Sari 1999) but
has fallen into disfavor as an interpretation of the
prompt GRB. The reason for the demise of this model is
simply that it cannot, in itself, accommodate the rapid,
large-amplitude variability that is manifest in the gamma-
ray data (Fenimore, Madras, & Nayashkin 1996; Sari &
Piran 1997; see also Dermer & Mitman 1999; Fenimore,
Ramirez-Ruiz, & Wu 1999). This point has promoted the
idea that the gamma rays arise from internal shocks
within the relativistic outflow, so that the temporal varia-
tions of the burst reflect the input power variations of
the source (see, e.g., Rees & Mészaros 1994; Kobayashi,
Piran, & Sari 1997).

Because we are investigating an hypothesis in which
apparent variability arises external to the source, as a result
of gravitational lensing, arguments that assume that the
observed variations are intrinsic immediately lose most, if
not all, of their force. Given this, there are at least three
motivations to return to the blast wave interpretation of the
prompt gamma-ray emission: first, this picture allows the
initial deposition of energy to be impulsive and is therefore
suitable for a broad range of source models (independent of
the specific physics of the energy input) with no fine-tuning
required; second, the low radiative efficiency of internal
shocks (Spada, Panaitescu, & Mészaros 2000) appears to be
inconsistent with the event energetics in at least some cases
(Paczynski 2001); and third, gamma-ray emission from an
external shock ought to be present at some level. This emis-
sion can be sensibly described by a self-similar, decelerating
blast wave model, similar to those developed for the after-
glow emission (see, e.g., Granot et al. 1999), but radiative
rather than adiabatic. Such a description leads us to expect
a circular source with very strong limb brightening, and con-
sequently, we anticipate significant flux variations if the
limb crosses a caustic. This thin, bright, and rapidly expand-
ing ring is a near-perfect instrument for revealing any caus-
tic structure that might be present along the line of sight to
the source—see also Loeb & Perna (1998) and Mao & Loeb
(2001), who considered microlensing of optical afterglows
by stellar-mass objects in the low optical depth limit.

In this paper we use the source model just described to
explore the hypothesis that the universe contains a high
density of planetary-mass objects, with an optical depth
to gravitational lensing of the order of unity. Often the
characteristic angular scale of the lenses (in arcseconds) is
indicated in the nomenclature given to associated phe-
nomena (e.g., microlensing), and, following this conven-
tion, dictates the name ‘ nanolensing” for the effects
discussed herein. Although gravitational lensing is the
main focus of our attention here, in studying the varia-
tions that might be introduced by this process, we are
also implicitly addressing the physics of the sources them-
selves. We start by presenting our source model in § 2,
and in § 3 we turn to aspects of the gravitational lensing;
light curves that result from the marriage of these ele-
ments are presented and compared with data in § 4. The
role of parallax is explored in § 5, followed by a discus-
sion of related issues concerning both the lenses and the
sources (§ 6), and our conclusions are given in § 7.
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2. SOURCE MODEL

Following Rees & Mészaros (1992), we adopt a spheri-
cally symmetric, ultrarelativistic blast wave model of the
GRB phenomenon, in which a total energy of 1052 Es, ergs
resides in ejecta that expand with an initial Lorentz factor
v = 10313 >10% into a homogeneous medium of density
n cm~3. At first the ejecta coast (v ~ constant), but this
lasts only for a brief period, ~0.173_8/3(E52/n)1/3 s, and
subsequently the ejecta decelerate, with some fraction of the
thermalized power appearing as radiation. We will treat
these as distinct, self-similar phases of evolution,
characterized by the index m, where

R m
r2=r3(=) 1
() )

at radius R and T’ = /2~ is the Lorentz factor of the shock
wave that precedes the ejecta (Blandford & McKee 1976).
In the coasting phase we evidently have m = 0, while m = 3
for adiabatic evolution and m = 12 for a fully radiative blast
wave—i.e., one in which all of the thermalized energy is
promptly radiated away (Cohen, Piran, & Sari 1998). The
adiabatic approximation is appropriate for the afterglow,
when the radiation timescale is much longer than the expan-
sion timescale; for the GRB itself, we adopt the fully radia-
tive solution, m = 12. In this circumstance the gamma rays
arise from a thin shell immediately behind the shock front.

It is convenient to take R as the radius at which the tran-
sition between coasting and semiradiative solutions takes
place and to model the evolution of the blast wave as if there
were an instantaneous transition between these solutions, as
the shock crosses this radius. We can estimate the value of
Ry by noting that the shock will start to decelerate when a
significant fraction of the initial energy of the blast has been
thermalized (Rees & Mészaros 1992):

1/3
Ry~ 1.2 x 1016(E—5§> cm . ()
nl’s

Where numerical estimates are required we adopt the values
Es; =T'5 = n =1 throughout. For some estimates, we need
to know, in addition, the Hubble constant, which we take to
be Hy = 70 km s~! Mpc~—1.

In this paper we consider only bolometric radiation
properties, so that it is not necessary to specify the radiation
mechanism.

2.1. Kinematics

Because the expansion is spherically symmetric, the
observed source structure is axisymmetric, and at any given
time it can be expressed as a function of a single variable,
such as the apparent radius r, as measured by a distant
observer, relative to the line of sight to R = 0. Because the
expansion is relativistic, it is essential to incorporate light-
travel time in any computation of the appearance of the
source. In terms of the time ¢, measured by a distant
observer at the same redshift (with t = 0 corresponding to
the start of the expansion), there is a maximum apparent
radius rp.c from which photons can be received by the

observer,
. 2m4+2 m+2
A -nry | (2 @
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and this defines the limb of the source at any time. In gen-
eral, we expect the source to be at nonzero redshift z,, and
to allow for this, one simply makes the replacement
t — t/(1 + z,), both here and in subsequent formulae. In
cases in which a numerical estimate is required, we adopt
the value z; = 5 throughout this paper; this corresponds to
the median redshift in the GRB source population model of
Bromm & Loeb (2002). The radius at r = ryuy is given by
Ruax:

m+ 1
Rig! = 23y () @
and if we define ¢ = R/Rpa.x, then for any point on the
emitting surface, at any given time, we have

=2 q

= il [(m +2) - QMH} ) (5)

where 7 = r/rmax. Notice that there are two values of ¢ that
correspond to each value of 7 (other than 7 = 1); one of these
values lies in the range 0 < ¢ < 1, while the other lies in the
range | < ¢ < Q, with Q"1 =m + 2.

Knowing the apparent size of the source as a function of
time, we can easily find the apparent expansion speed 3, (in
units of ¢) just by differentiating equation (3):

(m+ 2)R0] "

2m+2 _ 12
Pap T= {(27}1 +2)ct (6)

2.2. Intensity Profile

By virtue of being almost coincident with the shock front,
the emitting surface exhibits the geometry of a shell moving
with Lorentz factor I', as described in § 2.1. However, the
emitting particles are part of the postshock flow, so their
bulk Lorentz factor is v = I'/+/2, and in consequence the
limb of the source (¥ = 1) does not correspond to the peak
of the observed intensity. This point does not appear to have
been recognized previously (cf. Granot & Loeb 2001;
Gaudi, Granot, & Loeb 2001). For a thin emitting shell, the
peak surface brightness corresponds to polar angle ¢ = /2
(as measured in the comoving frame) relative to the surface
normal. For an emitting shell of fractional radial thickness
A< 1, the bolometric surface brightness can be described by

a8
Vcos2i+ AJ4
with .# being the bolometric intensity emitted normal to the
surface, as measured in the rest frame of the emitting shell,
and 2 the Doppler factor. [Recall that ¢(7) is double-
valued, so that there are implicitly two contributions to the

right-hand side of eq. (7).] It is easy to show that rays
reaching the observer at a given instant satisfy

(2m + 3)qm+1 _ (m + 2)
2m 4+ 1)g™ + (m + 2)

I(r, 1) = (7)

cosyp =

(8)
and that the ratio of observed to emitted photon energies is

4 1 (m+2)/2
2m+ D¢+ + (m+2)
where YmaxV'2 := To(Ro/Rmax)™>. Now the total energy
density in the postshock gas is just 4v%nm,c? (Blandford &
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McKee 1976), and in the frame of this material the shock
itself moves at speed ¢/3, so if all of this power is promptly
radiated, the emergent normal intensity (i.e., at ¢ = 0) is

1
I~ g’yznmp@ . (10)

The above set of equations provides a complete prescription
for calculation of the bolometric intensity profile; the fully
radiative case, corresponding to m =12, is shown in
Figure 1 for a fractional shell thickness of A =4 x 1073,
This choice for A is appropriate to, for example, synchro-
tron emission at ~200 keV if the magnetic field energy den-
sity is 10% of the equipartition value. The essential feature
of this profile is that it is very strongly limb-brightened, with
a sharp peak at r=>~0.99295r,,x [corresponding to
g™t = (m+2)/(2m+ 3), i.e., ¥ = m/2]. Source intensity
profiles for any index 3 <m < 12 exhibit this limb-
brightening effect, but as m increases the limb-to-center
intensity ratio grows according to (32/27)(m + 2)>™/"*+1),
and the cak-to-center  intensity ratio  equals
(2m + 3)*™/" D /8\/A; the peak also shifts to larger radii
with increasing m.
The received flux is computed in the usual way, i.c.,

1
F:/dmocszm/ di vl . (11)
0

Using equation (5) it is straightforward to rewrite the inte-
gral over F as an integral over ¢ such that 0 < ¢ < Q. In this
way we find that the observed flux should vary as
F o< t@=m)/m+1) " 5o that F grows as t* during the early,
coasting phase (m = 0) and then declines as +~1%/13 during
the self-similar radiative (m = 12) evolution. A simple
model light curve can thus be constructed by applying these
two solutions in their appropriate regimes (small and large
t, respectively) and switching between the two at the point
where they cross. That is the procedure we shall follow
here—our calculations are intended to be illustrative, and
high precision is not needed. One important point to note is
that the luminosity in the self-similar deceleration phase
declines too slowly to yield a finite radiated energy at late

2.0x10
1.5x10%f

1.0x10" F

Intensity

O : 1 1 1 1
0.90 0.92 0.94 0.96 0.98 1.00
Radius

FiG. 1.—Radial distribution of bolometric intensity for a blast wave in
self-similar, fully radiative (m = 12) evolution. The emitting shell is
assumed to have a fractional radial thickness A = 4 x 10~3. The intensity is
normalized to the central intensity and declines monotonically beyond the
left-hand edge of the plot. The location of the peak (7 ~ 0.993) corresponds
toty = 7w/2,1.e., tangent to the emitting shell.
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times, and so the model clearly has a limited range of
applicability.

3. LENS MODEL

If the universe contains a mean mass density in lenses
Qens (in units of the critical density), then the optical
depth to gravitational lensing is 7 ~ 0.11€,s for a source
at redshift z;, =1 and 7~ 0.62Q.,s for a source at red-
shift z; = 5 (Turner, Ostriker, & Gott 1984). These results
are for a universe with a mean total density of Q =1 (the
cosmological constant, A =0), and for a given redshift,
the ratio 7/, increases as 2 decreases. The study by
Schneider (1993) demonstrated that Qns ~ 0.5 is required
(see his Fig. 6b) if the variability reported by Hawkins
(1993) is attributed to gravitational lensing. The nano-
lensing interpretation of quasar variability is also consis-
tent with the currently favored combination of
cosmological model parameters (A ~ 0.7, 2 ~0.3), pro-
vided that essentially all of the matter is in the form of
lenses, i.e., Qeps >~ 0.3 (Minty 2001). The details of the
cosmological model are unimportant here; for simplicity
of calculation, we have therefore adopted a model uni-
verse with Qpeps = Q2 = 1.

The magnification pattern that is introduced by the lenses
takes the form of a caustic network in which the appearance
of any source is influenced by a large number of lenses
(Paczynski 1986a); an example of such a network is shown
in Figure 2. In this figure we see a large number of fold caus-
tics—a fold is the lowest order catastrophe at which two
images merge—joined by cusps (catastrophes where three
images merge). In the present paper we illustrate the effects
of GRB nanolensing through analytic and numerical calcu-
lations of a source crossing a single fold caustic (this sec-
tion). We then (§ 4) simulate the global light curves expected
for a source expanding across a caustic network such as that
shown in Figure 2.

In the immediate vicinity of a fold caustic the mapping
between rectangular source coordinates (x, y) and image
coordinates (X, Y) is well approximated by a quadratic
form (see Schneider, Ehlers, & Falco 1992):

x:%aXz, y=2Y, (12)
with the x-axis oriented perpendicular to the caustic and the
curvature a being a positive constant. Here the factor % in
the x < X mapping is arbitrary (because ¢ remains unspeci-
fied), but the factor of 2 in the y <+ Y mapping is required in
order that the fold be convergence-free—a pure shear lens
mapping—as all empty-beam lens mappings must be in gen-
eral relativity. There are two solutions (images) to these
equations for any source located at x > 0, and it is straight-
forward to determine their magnifications:

1
=4 .
Hae 2V 2ax

In addition to this image pair, there will typically be a large
number of other images present, but the observed flux varia-
tions around the time of caustic crossing are completely
dominated by the two very bright images that are described
by equations (12) and (13). If a burst occurs at any location
x < 0, then neither of these two images will be present until
the source expands so as to touch the caustic, at which point
the observed flux will rise abruptly. On the other hand, if a

(13)
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F1G. 2.—One realization of a magnification pattern appropriate to a source at redshift z; = 5, in a universe populated with point mass lenses such that
Qiens = 2 = 1. This pattern is derived from a simulation in which the locations of the lenses are chosen randomly within a single plane, having a total optical
depth of 0.6. The rays are chosen to have a uniform density across the image plane; this figure shows their density across the source plane; regions of high ray
density in this figure are therefore areas of high magnification, and most of these regions correspond to fold caustics. Our simulations utilized code from

Wambsganss et al. (1990).

burst occurs at x > 0, then both images will be present at all
times.

There are two separate cases that we must consider,
depending on which side of the caustic the burst occurs. For
a point source at x < 0, there are 2n + 1 images, whereas for
x > 0, there are 2n + 3; we therefore denote these two
regions as the one-image and three-image regions, respec-
tively, with the understanding that there are many more
images present, but only the pair created/annihilated at
X =0 is of interest here. If the source takes the form of a
thin ring, as is approximately the case for the model we have
adopted (§ 2; see Fig. 1), then the lensed images appear as
shown in Figure 3. In our subsequent development we
denote the x-coordinate of the origin of the burst by s, so
that the sign of s determines whether one or three images are
initially present.

3.1. Burst in Single-Image Region (s < 0)

Because the source intensity distribution is axisymmetric,
it is useful to consider the properties of an infinitesimally
thin ring, radius r, of uniform surface brightness, under the
mapping given by equation (12). If the burst occurs at s < 0,
then images of the source first appear when the source
reaches a radius r = |s|, and for r > |s|, the total magnifica-

tion of the ring (summed over both images) is given by

=t e ol (14)

where # denotes the incomplete elliptic integral of the first
kind: cos2¢ := —s/r and u = 2r/(r + 5). Here “ magnifica-
tion” means the total area occupied by the two images of
the annulus, divided by the area of the annulus itself. Simple
approximations to this exact result are available:
=~ (1 —3¢/8)/2(als|)" for 0 < e< 1, where e = r/|s| — 1,
and i, — #°(1/2) /7 (ar)"* for r — oo, where 4" is the com-
plete elliptic integral of the first kind and #"(1/2) ~ 1.8541.
The exact form of the magnification, given by equation (14),
is graphed in Figure 4 for the case s = —1/a.

3.2. Burst in Three-Image Region (s > 0)

For a burst that occurs in the three-image region (s > 0),
the total magnification of an annulus is given by

My === H (u) (15)

for r < s. On the other hand, for r > s, we have (as with
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FiG. 3.—Images (solid lines) of two thin (10% fractional width), annular
sources (dashed curves), on either side of a fold caustic (dotted line). For
convenience, the critical curve (X = 0) has been superimposed on the
caustic (x = 0). The upper half of this figure is the three-image region, and
the lower half'is the single-image region. In each case the inner boundary of
the annulus just touches the caustic, and the center of each source is
assumed to lie at a distance of s = £1/a from the fold.

=27 6l (16)

Simple approximations can be found for these expressions
in the following regimes: 5~ 1/(2as)"/? for r<.s;
usy =~ In(32/|e|)/2n(as)/2, where |e[/< 1 (and € =r/s — 1);
and y; ~ #°(1/2) /m(ar)"’? for r — co. The exact results are
shown in Figure 4, for the case in which s = 1/a, alongside

eq. [14])

— N
(@) o

Magnification
o

0.0t | |

W
~

2
r/ Isl

FiG. 4.—Magnification of an infinitesimally thin, annular source, of
radius r, centered on x = s, under the mapping given in eq. (12); this map-
ping describes a pure shear fold caustic at x = 0. Here we have assumed that
the curvature of the lens mapping near the fold is a := 1/|s|. The upper
curve corresponds to s > 0 (burst occurs in three-image region), and the
lower curve corresponds to s < 0 (burst in single-image region).
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the corresponding magnification curve for a burst occurring
in the single-image region.

3.3. The Median Lens

For some purposes (e.g., estimating a characteristic
length scale in the source plane), it is important to know
whereabouts on the line of sight the typical lens is located.
This need is most sensibly addressed by determining the red-
shift at which the optical depth to gravitational lensing is
one-half of the total optical depth for the source under con-
sideration. Using equation (2.13b) of Turner et al. (1984),
this can be quite straightforwardly achieved, and the result
is that for a source at redshift z,, the median lens is located
at redshift (z):

(I4+z)=+v1+z. (17)

Thus, for a source at redshift z; = 3, the median lens redshift
is unity, and at low redshift (z;< 1) the median lens is
located half-way to the source.

One application of the foregoing is the relationship
between transverse dimensions measured in the source
plane and in the observer’s plane. Appropriate angular
diameter distances for our circumstance are evidently
“empty-beam ” distances (for 2 = 1), and these are given in
Table 1 of Turner et al. (1984). Denoting observer-lens and
lens-source angular diameter distances by D; and Dy,
respectively, we introduce the “lever arm,” w = Dy /Dy. It
is this ratio that, for any given lens, determines the relation-
ship of a transverse distance in the source plane to the corre-
sponding distance in the observer’s plane. It is
straightforward to show that the median lever arm (i.e., the
lever arm of the median lens) is

(@) = (1+2,)7*, (18)
and we will make use of this resultin § 5.

3.4. Variability Timescale

In combination with our kinematic model of the source
structure (§ 2.1), the statistical properties of the caustic net-
work determine the predicted variability timescale of GRBs
as a function of source redshift and lens mass. At each occa-
sion when the limb of the source crosses a caustic, a peak is
introduced into the light curve, so the characteristic time-
scale between peaks is just the time taken by the source to
expand in area by 1/, where ¥ is the number of caustics
per unit area in the source plane. In the low optical depth
regime there are four folds in each projected Einstein ring.
At high optical depth, where a caustic network develops, the
caustic density is higher by a factor equal to the mean mag-
nification, (1 — 7)~2, and we therefore estimate the caustic
density by ¥ ~ 47/(1 — T)Z per unit Einstein ring area in the
source plane. The circumstance 7 =1 corresponds to
zy >~ 10.7 in our model universe, and the caustic density
becomes very large, and the variability timescale corre-
spondingly short, for sources around this redshift.

Using our self-similar (m = 12) source model, we can
now estimate the expected variability timescale ¢,,, via

Z\Talr ~ E%Wﬁnax . (19)

It is worth noting that 12,y oc t(7+2)/(m+1) (see eq. [3]), so
that the apparent area of the source increases nearly linearly



850 WALKER & LEWIS

_ZE 1 1 1 1 1

-8 -7 -6 -5 -4 -3 -2
Log10 [ M / Msun ]

Fig. 5.—Nanolensing variability timescale, in a universe with
Qiens = 2 = 1, as a function of lens mass. The source is assumed to be in
self-similar, fully radiative (m = 12) evolution with initial Lorentz factor
Ty = 103; other parameters characterizing the expansion have been fixed at
Es; = land n = 1. The solid line corresponds to a source at redshift z; = 1,
while the dashed line corresponds to a source at redshift z; = 5.

with time, and the variability timescale is thus not expected
to evolve significantly during a burst. The results are shown
in Figure 5 as a function of lens mass, for two different val-
ues of the source redshift (z; = 1, 5), and an initial Lorentz
factor I'g = 103. Considering that bursts may last up to
several hundred seconds and that the available temporal
resolution is below 100 ms in existing data, almost the entire
temporal range in Figure 5 is open to study. We thus recog-
nize that a cosmological population of planetary-mass lenses
should introduce variability to GRB profiles, suggesting a
powerful test of the nanolensing interpretation of quasar
variability.

The model does not make a precise prediction for the time
interval between caustic crossings because the appropriate
lens mass is not tightly constrained (nor indeed are the
parameters of the source, such as I'j). Hawkins (1993) ini-
tially gave an estimate of 10~3 M., but Schneider’s (1993)
analysis clearly favors 10~* M. or even smaller values.
Using three-dimensional ray-shooting simulations, Minty
(2001) finds that these data suggest lens masses of 107> to
10~* M. Schild (1996) also suggests lens masses of 10-5M,
in a relaxed context, namely, the variability of the individual
images of a multiply imaged, macrolensed quasar. Referring
to Figure 5, if we adopt I'g = 10° and lens masses of the
order of 107> M, then the variability timescale is expected
to be ~60 s for a source at redshift zy ~ 1 and ~4 s for a
source at z; ~ 5.

4. LIGHT CURVES

We have taken two distinct approaches to the study of
lensed light curves: detailed calculation of the behavior
around the time of a fold caustic crossing event, exhibiting
the type of profiles that are expected for individual
“pulses” ( Norris et al. 1996, hereafter N96), and simula-
tion of light curves for GRBs seen through a caustic net-
work. For any given burst, the latter reflects the random
structure of the caustic network in the vicinity of the source.
We note here that the propagation times for the various
images in our model differ only by amounts <1 ns, and this
is negligible for our purposes.
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4.1. Individual ** Pulses”™

Making use of the source intensity profile computed in § 2
and the magnification curves derived in the previous section,
it is now a straightforward exercise to compute the flux
history F(¢) from

F(1) x /dr 2rrl(ry t)u (20)

where the total magnification y can be written as the sum of
the “unlensed ”” images (actually, a large number of lensed
images whose total flux is roughly constant over the time-
scale of the caustic crossing) plus the bright pair of images
associated with the fold caustic under consideration:
=1+ p; 5. (The choice of unity for the constant term in
this relation is somewhat arbitrary.) As with equation (11),
this formula can easily be rewritten as an integral over the
variable ¢. After substituting for I(r, f) (eqs. [7]-[10]) and
113 (eqgs. [14]-{16]) it is straightforward to evaluate equation
(20) numerically; to do this, we used the Mathematica soft-
ware package. The results are shown in Figure 6, for bursts
occurring in both one- and three-image regions. For these
calculations, we have assumed |s| = 1/a, and we have taken
the fractional radial thickness of the emitting shell to be
A =4 x 1073, For each light curve, the limb of the source
first touches the caustic at # = 1.5 s (an arbitrary choice).
Some aspects of Figure 6 require immediate comment.
The difference in overall normalization of the two curves at
early times simply reflects the ratio of total magnifications
at the onset of the burst—see Figure 4—roughly
(1 +1/v2)/(1 +0) ~ 1.7. This property is a direct result of
the simple lens model we have adopted (i.e., the quadratic
relationship between source and image coordinates), and it
should be remembered that this approximation is accurate
only in the immediate vicinity of the caustic. Consequently,
it is the behavior seen in the light curves around 1 = 1.5 s
that is of prime interest rather than the global properties.
The essential features to note are, therefore, that (1) the
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F1G. 6.—Bolometric gamma-ray light curves for a relativistic, fully radia-
tive (m = 12), self-similar blast wave seen expanding across a fold caustic.
The thickness of the radiating shell is taken to be A =4 x 103, and the
center of expansion of the burst is assumed to be a distance 1/a from the
fold, where a is the curvature of the lens mapping. The upper curve corre-
sponds to a burst in the three-image region, while the lower curve is for an
event in the single-image region; caustic crossing occursatz ~ 1.5s.
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presence of a fold caustic introduces a significant peak into
the light curve, close to the time at which the limb of the
source first touches the caustic, and (2) this peak can be
either cuspy, and approximately time-symmetric, or
rounded and asymmetric. These features could, in fact, have
been anticipated simply by examining the magnification
profiles shown in Figure 4, bearing in mind that the source
structure is basically just a thin ring (Fig. 1).

4.2. Simulated Light Curves

Although the circumstance we are considering is one in
which a population of gravitational lenses is distributed
along the entire line of sight, we have made use of simula-
tions that are two-dimensional, with all of the lenses located
in a single plane. This is partly because three-dimensional
ray-tracing simulations are much slower than their two-
dimensional counterparts, but mainly because a well-tested
two-dimensional code was available to us (Wambsganss,
Paczynski, & Katz 1990). Two extensions of this code were
required for our purposes: convolution of the magnification
map with our model source intensity profile (§ 2) and a pro-
gressive “zoom’ that recomputes the magnification map
on larger scales as the source expands. The latter feature
was implemented with an incremental zoom factor of 1.2,
and our computational grid was 2048 pixels on a side, so
that our source radius was in the range 800-1000 pixels.
Despite this, our resolution is only just adequate for the
task, as the reader can easily verify by examining the radial
width of the source intensity distribution (Fig. 1). An esti-
mate of the FWHM of the source intensity peak can be
obtained from

m4+2 (m+2)/(m+1) 2 f*'sA
FWHM ~ —_— 21
<2m ¥ 3) m+3

and for m =12 and A =4 x 1073, this yields (coinciden-
tally) FWHM =~ 4 x 10-3. With a source radius of 800
pixels the intensity profile is thus 1.5 times oversampled.

To illustrate the type of light curve that might be
expected, we have undertaken simulations for sources at
redshift z; = 1 and 5, corresponding to optical depths to
gravitational nanolensing of 7 = 0.11 and 0.62, respectively.
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The results of these simulations are shown in Figures 7 and
8, for lenses of mass 10~% and 10~ M., respectively.
Because the source evolves in a self-similar (scale-free) man-
ner, it is not necessary to recompute magnification curves
when the adopted lens mass is changed: different lens masses
simply require a rescaling of the time axis in panel « of these
figures, thus changing the characteristic timescale of any
variability, but not its amplitude. The choice of lens mass
was made, for each of the two redshifts, so as to maximize
the variability within each of the synthetic bursts.

All of our simulations follow the same basic pattern:
starting from an initial magnification that is below unity,
the mean magnification (i.e., average magnification over the
whole source) exhibits rapid variability, the amplitude of
which decreases as the source expands. These features are
readily understood. Initially, the source is likely to be
demagnified because most of the area of the source plane is
occupied by regions with magnification below unity. Subse-
quently, as the source expands across the caustics, variabil-
ity is seen. However, accompanying the increase in source
radius is an increase in the thickness of the high-intensity
ring, and the modulation of the mean magnification of the
source is consequently reduced. Simultaneously, the time-
averaged magnification trends toward its large-scale
average value as the source covers an increasing area.

There are two important points that are evident on exam-
ining Figures 7 and 8. First, the timescale of the variations
in the simulated light curves is in broad agreement with the
rough estimates given in § 3.4 (see Fig. 5). Second, the depth
of modulation seen in our simulated magnification curves is
quite small, being typically of the order of 10%, and in the
light curves themselves, where the secular evolution is
strong, it is not always apparent that the flux is varying on
short timescales.

4.3. Comparison with Observations

Many high-quality GRB light curves were acquired by
BATSE on the Compton Gamma-Ray Observatory (see, e.g.,
Fishman et al. 1994), and the substructure within these light
curves has been analyzed by N96, in the case of long, bright
bursts. The principal conclusion of this analysis was that

1.0 ' ' ' ' ]
(b) :

0.6F .

0.8

Flux

0.4} .
0.2} .

0.01 . . | |

0 2 4 6 8 10
Time (s)

Fi6. 7.—Simulations of (a) the mean magnification and (b) the resulting light curve for a GRB occurring at redshift z; = 1, in a universe full of nanolenses
(2 = Qjens = 1); each lens is assumed to have a mass of 10~8 M. The apparent timescale of the transition between coasting and radiative phases is given by
(14 z5)Ro/ cl“%7 and for our adopted burst parameters (Es; = n = I's = 1), this corresponds to 0.39(1 + z,)s. This timescale defines the location of the peak of
the burst in (b). Note that the magnification is in units of the theoretical average, (1) = (1 — 7) °, which, for this case, is 1.26.
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Fic. 8.—Same as Fig. 7, but for a source redshift of z; = 5 (corresponding to the burst peak at = 2.3 s) and lenses of mass 10~> M. Again, the

magnification is in units of the theoretical average, (u;,) = 6.9.

these bursts can be regarded as being made up of a number
of “pulses”” having a typical separation of the order of 1 s
(but which are not periodic). N96 found that the typical
pulse shape is cuspy, similar to the peak near r ~ 1.5 s in the
top curve in Figure 6.

Comparing these findings to the results of §§ 3 and 4,
we can identify three key points. First, the observed time-
scale of the order of 1 s between pulses is comparable to
the predicted timescale (§§ 3.4 and 4), but only if the
lenses have low mass (~10=5 M) or the sources are at
high redshift. Second, the typical ““pulse” shape observed
by NO96 is similar to the 3 — 1, i.e., image-annihilating,
caustic crossing discussed in § 3.2 and shown in Figures
4 and 6. However, the theory presented earlier in this
paper gave no reason to suppose that 3 — 1 crossings
should be preferred over 1 — 3 crossings, and in fact,
one does expect both to be present. Both are present in
the simulated light curves shown in Figures 7 and 8. One
could appeal to an observational bias that favors 3 — 1
caustic crossings over their 1 — 3 counterparts because
the high and cuspy peaks of the former render them
more visible in the light curves (see, particularly, Fig. 4).
However, this does not seem to us to be a strong argu-
ment. Finally, although the single fold-crossing events
modelled in § 3 are obvious in the light curves, it is plain
that the simulations in § 4 do not yield sufficient modula-
tion to be able to explain the profound variations seen in
the data.

On the last of the above points we note that there is no
discrepancy between the calculations undertaken in § 3 and
the simulations of § 4. The difference between the computed
modulation depth in the two cases simply reflects the fact
that the caustics present in the simulations exhibit more
curvature in the lens mapping than was assumed in § 3.

5. PARALLAX

A key aspect of the lensing model we are investigating
here is that of parallax. The importance of parallax phe-
nomena depends on the spatial separation of the detectors
that are employed, in comparison with the spatial scale on
which the magnification pattern changes. In the low optical

depth regime, the latter scale is given by

GM DD\ "?
(4— : d) ~ 60\/M_4 AU , (22)

& D ds

where D is the angular diameter distance of the source from
the observer and to arrive at the numerical result we have
assumed z; = 3 and considered the median lens. Hence, for
detectors separated by a few astronomical units, parallax
might be expected to show up only for lenses of mass
M <1077 M., (Nemiroff & Gould 1995). However, in the
model we are considering the expanding source crosses
caustics, and in the vicinity of caustics the magnification
pattern varies significantly on spatial scales much smaller
than given by equation (22). Indeed, at caustic crossings the
transverse flux gradient is limited only by the source struc-
ture, and parallax may be observable even over very modest
baselines. Specifically, if the width of the high-intensity ring
of the source is taken to be 4 x 103 of the apparent radius
(see § 4.2) and the latter is approximately 6 AU at# =10 s
(Esp =n=T3=1), then parallax may be evident over
transverse length scales as small as 4 x 10!! cm. In this cir-
cumstance the main instrumental requirement is for good
temporal resolution in the detectors and high signal-to-
noise ratio, so that the times at which caustic crossings occur
can be precisely determined (Grieger, Kayser, & Refsdal
1986; Hardy & Walker 1996). GRBs are typically recorded
with temporal resolution of tens of milliseconds, or better,
often at high signal-to-noise ratios, so that the available tim-
ing precision is generally rather good. Moreover, we wish to
emphasize that, provided that there are significant increases
in flux associated with a caustic crossing, the ability to pre-
cisely time such an event is essentially independent of lens
mass, and this parameter does not influence the detectability
of the two parallax phenomena we describe.

5.1. Displaced Burst Locations

Suppose we observe a burst with a pair of identical detec-
tors whose spatial separation is small in comparison with
the scale on which the lens magnification pattern changes.
The caustic network will appear very similar as seen from
the two different locations, but with a slight shift on the sky
in a direction parallel to the sky projection of the vector
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separation between the detectors, b, = x| — x», and by an
amount proportional to by,. Consequently, the two light
curves are almost identical in structure, but the caustic
crossings are seen to occur at slightly different times at the
two detectors. Thus, if burst time of arrival is used to deter-
mine which direction the wave front has arrived from, then
the present model predicts that the inferred location of the
source is shifted from the true location (see also the model
of McBreen & Metcalfe 1988).

In the absence of any lensing phenomena, under the
assumption of a source at infinity (plane wave front), a mea-
sured difference in arrival time, At = t, — t;, between
detectors tells us that the burst came from a direction
defined by the unit vector a, such that - b, = cAty,. Thus,
the source is constrained to lie on a circle of angular radius
a = cos~!(cAt12/b12), centered on the direction by,. If a
timing offset 67y, is introduced, then the corresponding
angular offset d« is given by sin wba = —c(6t12/b12). The
timing difference that is expected as a result of parallax, in
our model, is roughly 671> <wsin a(by2/Bapc) for any given
caustic crossing. (The precise value of 671, depends, of
course, on the orientation of by, relative to the orientation
of the caustic.) Thus, for a burst that exhibits only a single
caustic crossing event, the expected angular offset is

6l < gﬂz | 23)

Some caution should be exercised in applying this result
because in our case, in which a network of caustics is
present, the folds cannot be readily associated with individ-
ual lenses, and because the lenses are distributed along the
whole line of sight, it is not clear how the effective value of w
should be estimated. We shall nevertheless employ
equation (23) as if the values of o were in one-to-one corre-
spondence with lenses and use the median value of w as
given in equation (18). For a source at redshift z; = 3, at an
observed time 7 ~ 10 s after the start of the burst, equation
(6) leads us to expect an apparent expansion speed of
Bap ~ 320, and projecting this into the observer’s plane
yields the result |da| <4'. This estimate is valid for a burst
that exhibits only a single caustic crossing; if the burst has
temporal substructure with N, peaks in the light curve, then
we expect |6c| to be smaller by a factor of the order of N,i
We now turn to the question of whether such systematic
errors are either evident in existing data or are significantly
constrained by them.

Comparing burst arrival times between three spacecraft
localizes any source to one of two possible intersections
between three separate loci (one locus derived from each
spacecraft pair). Because the observable quantity is the
burst arrival time and each locus reflects the difference
between a pair of arrival times, only two of these loci pro-
vide independent information on the burst location; in other
words, the location is not determined with any redundancy
if only three spacecraft are employed. If four or more inter-
planetary spacecraft are available for burst triangulation,
then redundant positioning is possible, and systematic
errors can therefore be revealed using only the triangulation
data. Many bursts were redundantly positioned using the
first generation of interplanetary GRB detectors (Atteia et
al. 1987), and in two of these cases there were highly signifi-
cant discrepancies (10 o) between the localizations. How-
ever, in at least one of these two cases (GRB 790329) the
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cause of the discrepancy appears to be understood (Laros et
al. 1985), and we adopt the conservative assumption that
the other discrepant burst (GRB 790116) is also attributable
to effects other than the parallax phenomenon under discus-
sion here. The typical level of agreement between redun-
dantly determined burst locations excludes errors at the
level |6l 2 1° (Laros et al. 1985), but this result does not
strongly constrain the model we have presented because off-
sets as large as this are expected only in exceptional circum-
stances. Specifically, offsets larger than 1° can only occur if
the apparent expansion speed is 3,, < 60 and the source is
at low redshift (z; < 1) and a caustic crossing event occurs.

There are no four-spacecraft triangulations available
from the modern (BATSE and post-BATSE) era of GRB
studies, and we have therefore searched the literature for
bursts that have been accurately located by both triangula-
tion and an independent method. The best sample of this
type that we found is comprised of nine GRBs that were
observed by BATSE, Ulysses, and ecither the Pioneer Venus
Orbiter (Laros et al. 1998) or the Mars Observer (Laros et al.
1997)—for which triangulated positions are therefore avail-
able—all of which were independently positioned by the
rotation modulation collimator of the WATCH experiment
(Sazonov et al. 1998). The smallest error associated with the
triangulated positions (1 o statistical plus systematic) for
these bursts is 20”, while the median error is close to 3'.
Moreover, the WATCH error circles all have radii exceed-
ing 14’ (1 o statistical plus systematic). Considering that we
expect deviations of the order of an arcminute, the WATCH
error circle, in particular, is so large that at first sight it
seems hopeless to attempt to constrain the model via astr-
ometry. The situation is not quite as bad as it first appears
because pairs of Interplanetary Network (IPN) loci some-
times intersect at a very acute angle, in which case the loca-
tion of the intersection point is very sensitive to any errors
in «, thus allowing us to gauge the magnitude of the IPN
errors. There are four examples of this type of configuration
among our sample of bursts. However, none of the implied
errors are highly significant when compared to the esti-
mated measurement error, nor do these results provide any
powerful constraints on the theoretical model. We have
therefore relegated the details of our astrometric analysis of
this sample to the Appendix, and in the present section we
confine ourselves to a brief discussion of the outcome.

For the four bursts for which we could gauge the actual
error in «, the mean error value is only 1.2 times the esti-
mated error (1 o statistical plus systematic) and is thus con-
sistent with expectations. It is therefore appropriate to
quote the results of our analysis in the form of upper limits.
To do this, we take an upper limit of 3 ¢ in each of the four
cases; in order to compare with our theoretical prediction
(eq. [23]) we then convert to an upper limit on the typical
parallax error on each caustic crossing by multiplying the 3
o, limit by N,}/ %, The values of N, for BATSE 451 and
BATSE 1698 were taken from N96: N, = 4 and 7, respec-
tively. For BATSE 2387 and BATSE 907, examination of
the archival light curves® reveals that N, = 1 and N, ~ 5,
respectively. The resulting limits on parallax for a single
caustic crossing are thus deduced to be |6a| < 2!7, 37/, 2!6,
and 37’ from BATSE 451, 907, 1698, and 2387, respectively.
Even the lowest of these limits is only comparable to the

5 See http://cossc.gsfc.nasa.gov.
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predicted value (<4’ for a caustic crossing occurring at
t = 10 s and a source at redshift z; = 3), and so we conclude
that existing GRB astrometry does not significantly
constrain the model we have presented.

5.2. Burst Profiles

For bursts lasting a few seconds or more, it is usually the
case that the light curves contain several peaks. In a nano-
lensing model these would be identified with caustic cross-
ings, with each peak marking the time at which the limb of
the expanding source first touches the caustic. Now the rela-
tive timing offsets introduced by parallax are, of course,
different for different caustics, so we expect that parallax
should alter the time interval between the peaks of a given
burst, as measured by physically separated (but otherwise
identical) detectors. The effect is evident in Figure 9, which
shows two simulations of an expanding source, as described
in § 4.2, having slightly different initial burst locations. (In
respect to the actual calculations undertaken, this is equiva-
lent to displacing the observer and thus simulates the effect
of parallax.) One of the caustic crossings visible in Figure 9
is seen at almost the same time (z ~ 0.013) in both light
curves, whereas the other is seen at different times in the two
simulations. The expected timing difference is simply the
quantity 0t1,, estimated in § 5.1, and this evaluates to
|6212] ~ 1's for zg ~ 3, by sina ~ 3 AU, and ¢ ~ 10 s. This
value is much larger than the limiting time resolution of the
Ulysses and BATSE instruments (Hurley et al. 1992;
Fishman et al. 1994) and should therefore be detectable if
the signal-to-noise ratio of the data is sufficiently high. Such
measurements offer a very powerful test of the model we are
proposing because both the anticipated size of the effect
should render it measurable and no other model mimics this
behavior. In particular, the test is more powerful than one
based on apparent burst locations (§ 5.1) because there is no
requirement for absolute timing information; only relative
timing is important, and essentially all spacecraft yield
relative timing information with high accuracy.
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FiG. 9.—Effect of parallax on the nanolensing magnification curve of an
expanding, self-similar (m = 12) blast wave (A = 4 x 10~3). Time is shown
here in units of the time taken for the source to expand to an apparent
radius equal to the Einstein ring radius. The two curves differ in respect of
the apparent source location, which is shifted by 1.4% of the Einstein ring
radius (and the upper curve has been displaced by 0.1 in magnification for
clarity). This is equivalent to shifting the observer’s location by an amount
1 AU, transverse to the line of sight, if the lens mass is 10~* M, and the
source redshiftisz; = 5.
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To emphasize the clarity of this test, let us review what
should be seen in the absence of any parallax effects. Two
detectors observing in the same energy band should record
source flux variations that, once the light curves have been
shifted so as to align the times of burst onset, are in direct
proportion to each other. Detector efficiency and spacecraft
geometry ordinarily do not change significantly on time-
scales <100 s, so a single constant of proportionality should
hold throughout each burst. In the case of spacecraft in low
Earth orbit, such as the Compton Gamma-Ray Observatory,
some fraction of the sky is occulted by the Earth, and it is
possible for ingress/egress to occur during a burst. But this
is a rare phenomenon; moreover it is easily recognized and
therefore not a concern in the present context. Particle back-
grounds, and their trends with time, inevitably differ
between any two detectors, but in normal circumstances
they also change relatively little on the timescale of a GRB,
and a linear trend in the background over the duration of
the burst is a suitable model for most purposes. Electron
precipitation events constitute a variable particle back-
ground in low Earth orbit that in some respects can mimic a
GRB (Horack et al. 1992); however, these events are readily
distinguished from GRBs by comparing count rates among
the BATSE detectors. Finally, detector dead time introdu-
ces nonlinearity (different for different detectors) that can
significantly affect the recorded light curve, causing the
count rate to saturate if the burst is bright. Saturation will
not affect the peak location because the recorded count rate
is a monotonic function of the flux, but will displace the
burst centroid; however, saturation can be recognized trivi-
ally, from the count rate, and affected bursts can be excluded
from consideration. In summary, none of the effects
described above should be confused with the parallax signal
we have discussed.

In practice, testing for parallax effects will not be done
with a pair of matched detectors, but with whatever instru-
mentation is available in the IPN, so we will be comparing
data from detectors with different energy responses. This
presents us with a potential problem in that many of the
pulses that are seen in GRB light curves exhibit spectral evo-
lution (N96) and therefore have different shapes in different
energy bands. Consequently, with imperfect knowledge of
the (evolving) burst spectrum or the energy response of
either of the detectors, the pulse will appear to be slightly
shifted in time, and this effect can mimic a parallactic timing
offset. Fortunately, not all pulses are of this type (N96); a
good fraction of pulses are narrow, time-symmetric events,
whose peak and centroid locations are insensitive to photon
energy (N96). This subset of pulses allows parallax searches
to be attempted even with detectors that are not closely
matched in their energy response.

A large number of GRB light curves are freely available
at the BATSE archive® with 64 ms resolution in each of four
energy bands. For comparison with these data, we have
searched the literature for published GRB light curves from
the Ulysses spacecraft (Hurley et al. 1992). This comparison
offers very large baselines (up to 6.3 AU), for which the tim-
ing offsets should be correspondingly large. Although
Ulysses has detected a large number of GRBs, including
hundreds that were also detected by BATSE (Hurley et al.
1999a, 1999b), we were able to find only three published

6 See http://cossc.gsfc.nasa.gov/batse.
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Ulysses light curves for GRBs in the BATSE catalog. Two
of these—BATSE 2151 (GRB 930131, the “ Super Bowl
Burst ’; Hurley et al. 1994) and BATSE 143 (GRB 910503;
Hurley 1992)—have very modest projected separations
between the spacecraft (1.4 and 1.6 AU, respectively). We
have therefore focussed our attention on BATSE 1663
(GRB 920622), for which the Ulysses-BATSE projected sep-
aration (i.c., transverse to the line of sight to the burst) was
3.8 AU. This burst has been analyzed in detail by Greiner et
al. (1995).

We digitized the Ulysses light curve directly from Figure 1
of Greiner et al. (1995), and this light curve is reproduced in
Figure 10, together with the BATSE light curve for the same
interval. The BATSE data we plot here are the sum of the
two lowest energy channels only, corresponding to the pho-
ton energy range 25-100 keV; this range is similar to the sen-
sitive range of the Ulysses detector (15-150 keV; Hurley et
al. 1992). The BATSE data have had a linear background
subtracted from them; the background model was deter-
mined by taking the median values of 1 minute intervals
starting 3 minutes before and 4 minutes after burst onset.
(This procedure could not be used for the Ulysses data
because the published light curve does not span a large
enough time interval.) The two light curves were then
aligned in time such that their cross-correlation is maxi-
mized, and an estimate of the Ulysses detector background
was made by maximizing the cross-correlation as a function
of assumed background, at constant temporal offset. (We
note that varying the assumed background yielded insignifi-
cant changes in the temporal alignment.) The estimated
Ulysses background was in this way found to be 107 counts
bin~!; the peak value of the normalized cross-correlation
between light curves is 0.974.

Although the temporal alignment between the two space-
craft was determined to a precision of 10 ms, the accuracy of
the procedure is poorer than this. We estimated the uncer-
tainties associated with our method by cross-correlating the
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FiG. 10.—Ulysses data for GRB 920622 (BATSE 1663; Greiner et al.
1995), together with the light curve derived from the sum of count rates
from BATSE channels 1 and 2. The BATSE data have been background
subtracted, then aligned and scaled appropriately by cross-correlating with
the Ulysses data, as described in § 5.2. The BATSE data have been rebinned
to match the binning of the Ulysses data and have been offset by —100
counts bin~! for clarity of presentation. The signal-to-noise ratio of the
BATSE data is very high, and all of the features visible in the BATSE light
curve are real. The flux scale is appropriate to the Ulysses data.
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Ulysses data with the two highest energy BATSE channels.
These data are for the same burst, but represent photons of
energies higher than those to which Ulysses is sensitive. This
procedure yielded an alignment that differed by 70 ms and a
background rate that differed by 2 counts bin~—!, when
referred to the results of the cross-correlation with the low-
est energy BATSE data. Our method can be reasonably
expected to be in error by less than the shifts exhibited here.
The flux scale in Figure 10 is chosen to be that of the
Ulysses data, and the BATSE count rates have been rescaled
accordingly (and we have then added a constant back-
ground of 107 counts bin~! to the scaled BATSE data). This
choice is appropriate because the BATSE data are of much
higher signal-to-noise ratio than the Ulysses data, and the
Ulysses flux scale is thus germane to the statistical signifi-
cance of any comparison between the two. We have also
rebinned the BATSE data from the original value of 64 to
the 250 ms of the Ulysses data, and for clarity we have offset
the BATSE data by —100 counts bin~!. It can be seen from
Figure 10 that the BATSE and Ulysses light curves are very
similar, as expected, although there are some evident differ-
ences in the 1 = 16-19 s region, and the Ulysses light curve
seems to manifest more fluctuations in the region ¢ > 20 s
than would be expected on the basis of the BATSE light
curve. Quantitatively, we can say that the BATSE data form
an acceptable model of the Ulysses data, with a x? statistic
of 76 for the difference between the two, over the first 19 s of
the burst, with (19/0.25) — 3 = 73 degrees of freedom.
However, the key question for us here is not the overall
similarity of the two light curves but whether or not the tem-
poral substructure occurs at different times at the two space-
craft. In Figure 11 we concentrate our attention on the
central region of the burst, where the BATSE light curve
manifests obvious substructure. In particular, the regions
t = 7.5-12 and 14.5-19 s show a number of peaks that one
can use to test the model. We can compute the combined 2
of these intervals: it is x2 = 48.5, with 36 degrees of free-
dom. Clearly, the BATSE-derived model does not perform
as well in these intervals with temporal substructure as it
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Fig. 11.—Portion of the two light curves shown in Fig. 10. Here the
BATSE high-energy channels are shown (bottom curve) in addition to the
low-energy data (middle curve) and the Ulysses data (top curve); both
BATSE light curves are shown at their original resolution (64 ms). The low-
energy and high-energy light curves have been offset by —70 and —130
counts bin~!, relative to their modelled location, for clarity of presentation.
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does elsewhere; however, the model is still acceptable, with
this value of 2 being realized by chance in 8% of trials.
Moreover, a simple x> test does not reveal whether the
model is performing poorly because the temporal substruc-
ture is shifted in time or for some other reason such as the
different energy response of the Ulysses detector compared
to the combination of BATSE channels 1 and 2.

Examination of Figure 11 suggests that both of these
effects may play a role. In particular, we note that the fea-
ture in the low-energy BATSE light curve just after r = 18 s
is clearly chromatic, with a centroid that occurs ecarlier at
higher energies, and we must therefore allow that in the
Ulysses data this feature may exhibit a profile different from
the BATSE model. By contrast, at t =15 s, the BATSE
model shows a well-defined event, for which we can tenta-
tively identify a counterpart peak in the Ulysses light curve,
but this counterpart occurs 0.4 s later. Although there is
some difference in the profiles of this event between high-
and low-energy BATSE light curves, it does not seem rea-
sonable to attribute the BATSE-Ulysses shift to chromatic
effects because the differences are modest, whereas the shift
is comparable to the width of the feature. Another case in
which the data suggest a temporal offset occurs around
t = 11 s. Here we find two narrow, approximately time-sym-
metric peaks in the BATSE model. In the Ulysses data there
is no question about which peaks to identify as their coun-
terparts—the two unresolved peaks either side of t = 11 s—
but the second peak appears earlier in the Ulysses data than
in the BATSE model. It does not seem reasonable to attrib-
ute this to chromatic effects because the profiles of the low-
and high-energy BATSE data are quite similar. However,
we still cannot be confident of having found an example of
the effect we are looking for because (1) the peak is so nar-
row that it is undersampled in the Ulysses light curve and (2)
the modest signal-to-noise ratio of these peaks in the Ulysses
data means that any comparison cannot yield highly
statistically significant results.

In summary, we have compared published Ulysses data
with archival BATSE data for a single burst having a large
projected separation between spacecraft. This comparison
yielded some hints of parallax, but the evidence is of low
statistical significance and therefore not compelling. By
reprocessing the raw Ulysses data—which have a temporal
resolution 8 times finer than the published light curve—it
should be possible to make a more meaningful comparison
between the two data sets. In particular, the higher temporal
resolution would be valuable in studying the peaks close to
t = 11 s, which are unresolved in the published Ulysses light
curve. A further improvement on our analysis would be to
derive a model light curve using the point-by-point spectral
data (“colors”) derived from BATSE, together with the
spectral response matrices of the two spacecraft.

6. DISCUSSION

Although the burst (BATSE 1663) studied in § 5.2 was
chosen for its relatively large projected separation between
the spacecraft, it is not extreme in this respect, and there are
~80 instances (Hurley et al. 1999a, 1999b) of larger pro-
jected separations among the bursts detected by both
BATSE and Ulysses. Indeed, the principal criterion for
using the BATSE 1663 data was that the data are published.
This burst merited detailed study, and hence publication of
the light curve, because it happened to occur within the
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COMPTEL field of view (Greiner et al. 1995). Among the
many other bursts in which one might consider searching
for parallax, how is one to choose? The expected temporal
offset is large (see § 5.1) if (1) the projected baseline b1, sin
between spacecraft is large, (2) the source redshift is low
(hence w ~ 1), and (3) the apparent expansion speed of the
source (B,p) is low. Unfortunately only the first of these cri-
teria can be securely determined directly from the data at
hand. However, if all other parameters are held fixed, then
we expect that high expansion speed and high source red-
shift would both lead to large numbers of caustic crossing
events, so it makes sense to select bursts that exhibit a small
number of peaks in their light curves. Ideally, the overlap
among these peaks should be small, so that the properties of
each peak can be characterized more-or-less independently
of the others. These criteria also help to avoid the potential
problem of peak confusion: if parallax displaces a burst
peak by an amount comparable to the separation between
peaks in one of the light curves, then it becomes difficult to
identify counterparts between the light curves from the dif-
ferent spacecraft. Finally, and most obviously, a significant
detection absolutely requires high signal-to-noise ratio, so
bright bursts are strongly preferred.

If we could increase the baseline between the two detec-
tors beyond the few astronomical units that characterize
interplanetary spacecraft, our model predicts that the
amplitude and location of the substructure peaks would dif-
fer more and more as the baseline increased, and it would
eventually become difficult to identify counterpart peaks
between the two proﬁles Ultlmately, if the separation were
to reach values >6()M > AU, the entire caustic pattern
would differ as seen from the two locations, and there would
consequently be little resemblance between the recorded
burst profiles. Although there seems to be no immediate
prospect of separating a pair of detectors by such a large dis-
tance, it is nevertheless possible to reach this regime, and
thus to observe completely different profiles, if a GRB is

“macroscopically ” gravitationally lensed. More specifi-
cally, if a gravitational lens forms multiple images that are
split by an angle very much greater than 15M /4 nas,
then the caustic crossings seen in each image will bear little
resemblance to one another. This, of course, would be true
even for micro- (arcsecond) lensing due to stars at cosmo-
logical distances. Thus, in the case of lensing by galaxies,
and aggregates of larger mass, any lensed “echo’ should
exhibit a different temporal profile to that of the counterpart
signal that arrives first (see also Williams & Wijers 1997,
Paczynski 1986b; Blaes & Webster 1992). It is expected that
gravitational lensing by galaxies should yield echoes of
roughly 0.1% of bursts (Paczynski 1986b; Mao 1992), but
this effect has never been clearly detected. The null results to
date (Nemiroff et al. 1994; Marani et al. 1999) are not highly
statistically significant, nor is it trivial to recognize echoes
even if they are simply scaled copies of the * original "—see
Wambsganss (1993) and Nowak & Grossman (1994). This
means that the lack of any identified echoes, while consis-
tent with the present model, is not a decisive argument in its
favor. On the other hand, if examples were found with com-
plex temporal substructure faithfully reproduced in an echo,
then it follows that the observed substructure is not due to
gravitational nanolensing.

It has previously been noted that if the universe is popu-
lated with low-mass lenses, then interference phenomena
may manifest themselves in GRB data (Gould 1992; Stanek,
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Paczynski, & Goodman 1993; see also Deguchi & Watson
1986). The lens masses for which this effect is relevant are
usually thought to be many orders of magnitude smaller
than the planetary-mass bodies considered here. In the case
of lensing by a fold, where the angular splitting of the
images vanishes for a source located precisely on the caustic,
interference fringes can be realized for larger masses than in
the case of isolated gravitational lenses. However, strong
interference fringes also require that the source be at most
comparable in size to the Fresnel scale—(DS)\)l/ ? for wave-
length A—otherwise the fringe patterns from different
regions of the source manifest their maxima at quite differ-
ent locations, and the fringe visibility (contrast) is much
reduced. We have already estimated (§ 5) the thickness of
the high-intensity limb of the source to be ~4 x 101 ¢m, so
with Dy ~ 4 Gpc we can expect interference phenomena to
be important only for A > 10-3 cm, i.e., longward of the far-
ultraviolet region, for the source model we have employed.

It is worth noting that the presence of a caustic network
on nanoarcsecond scales has no immediate implications for
the observable properties of the GRB afterglow because at
this late stage in its evolution the observable emission from
the blast wave extends over angular scales that are so large
that the net magnification is very close to the mean magnifi-
cation. Microlensing of the afterglow is, however, possible
(Loeb & Perna 1998; Mao & Loeb 2001) because the charac-
teristic angular scale of the magnification pattern is much
larger in this case.

The two main discrepancies, which we noted in § 4,
between the modelled nanolensing variations and the
observed temporal structure in GRB light curves are the
small amplitude and long timescale of the nanolensing fluc-
tuations. Given that the model parameters appropriate to
real sources are typically not known with any accuracy, one
could try to evade the second of these discrepancies by con-
sidering sources at high redshift. Specifically, as the source
redshift approaches z; = 10.6, corresponding to nanolens-
ing optical depth 7 = 1, the caustic density becomes very
large indeed, and the variability timescale correspondingly
decreases (§ 3.4). Thus, the observed characteristic timescale
of the order of 1 s between ““pulses” (N96) matches the
nanolensing variability timescale only for very low mass
lenses (~10~% M) at z; = 1, but for sources at z,; ~ 10, the
implied lens mass would correspond to that (~10=% M)
deduced from the data on quasars (Schneider 1993; Minty
2001). This idea is, however, quickly disposed of because as
the angular scale of the caustic network shrinks, so does the
width of the high-magnification regions close to the caus-
tics. In turn this means that a source of given size will exhibit
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smaller variations as it crosses the caustics, exacerbating the
other notable discrepancy between the nanolensing simula-
tions and the observed variability. This aspect of gravita-
tional lensing at high optical depth, where the depth of
modulation vanishes for nonpointlike sources as 7 — 1, is
well known (Deguchi & Watson 1987).

We wish to draw attention to the fact that all of the results
reported in the present paper are for shear-free environ-
ments, and if a large external beam shear is present, then the
properties of any nanolensing can be quite different. High
shear is expected if, for example, nanolensing occurs close
to a microlensing caustic. Calculations appropriate to this
circumstance will be reported elsewhere (M. A. Walker &
G. F. Lewis 2003, in preparation).

7. CONCLUSIONS

Motivated by an existing interpretation of quasar varia-
bility in terms of gravitational nanolensing, we have exam-
ined the implications of this model for the observed
properties of GRBs. Using a self-similar blast wave model
to represent the source (no intrinsic variability), we find that
the light curves of some of the caustic crossings resemble
those of the “pulses” commonly seen in GRBs, and for
high-redshift sources, the timescale of the predicted nano-
lensing variations is consistent with the GRB data. How-
ever, the predicted depth of nanolensing modulation is far
too small to explain the deep variations observed in GRBs,
and this problem is exacerbated if the GRBs are at high red-
shift. These results mean that the GRB data do not exclude
the nanolensing interpretation of quasar variability; con-
versely, the simplest (shear free) nanolensing model cannot
explain the observed GRB variability. Despite this failure,
there are weak indications in the published IPN data that
nanolensing may actually be responsible for some of the
observed variations of GRBs: the light curves for one GRB
show hints of parallax. This effect is uniquely associated
with lens-induced variations and thus motivates a careful
examination of existing IPN data.
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APPENDIX

GAMMA-RAY BURST ASTROMETRY

In this Appendix we give details of the astrometric analysis of the sample of bursts referred to in § 5.1. The sample was drawn
from the nine bursts observed by BATSE, Ulysses, and the Mars Observer spacecraft (Laros et al. 1997), plus the 37 bursts
observed by BATSE, Ulysses, and the Pioneer Venus Orbiter (Laros et al. 1998). BATSE was capable of localizing sources in
its own right, by comparing the count rates recorded in different detectors, each pointing in a different direction. This was not,
however, a simple facility to implement in practice (Pendleton et al. 1999), and the resulting localizations are only accurate to
a few degrees—this point has been directly verified by comparing the positions of solar flares, as located by BATSE, with the
position of the Sun (Brock et al. 1992). Consequently, although BATSE localizations are useful in lifting the degeneracy
between the two intersection points of the IPN loci, they are not accurate enough to reveal systematic errors in the
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TABLE 1
ASTROMETRY OF GAMMA-RAY BURST SOURCES

IPN Loct WATCH
BATSE R.A. (J2000.0) Decl. (J2000.0) @ 30, R.A.(J2000.0) Decl. (J2000.0) oy SQmin |6ctminl
TRIGGER (deg) (deg) (deg) (deg) (deg) (deg) (deg) 11, Iin (0,) (arcmin)

1) (2 (3) “) (5) (6) (7 (®) ) (10)  AD (12)

451% 134.8255 18.4232 66.8162 0.0119
133.5243 18.7903 68.0884  0.0226 199.60 —02.60 0.41 44 1.56 1.07 0.48

907* i 342.4405 —08.6911 44.1528 0.0641 . . . ... ... ... ...

342.9264 —08.8461 44.5370  0.2785 297.37 —04.71 0.56 944 3.03 1.09 6.0

1141 o 168.0347 06.4847 30.0358 0.0472 . . . ... ... ... ...

160.4516 09.2822 34.6366  0.2360 171.97 —22.59 0.57 2.74 239 -0.50 2.3

1473 155.1400 10.0896 51.2649  0.0096
157.1525 08.8837 51.0046 0.0100 132.25 -36.39 0.22 0.09 0.08 —0.07 0.01

1538 i 332.4865 —09.1834 32.9477 0.0137 . . . ... ... ... ...
338.9289 —07.6437 33.7998 0.0189 323.07 22.53 0.29 1.01  1.00 0.10 0.04

1698* .............. 152.2635 05.1023 74.4660  0.0099 . . . ... ... ... ...
161.6670 —00.9283 63.3050 0.0164 221.43 -30.75 0.26 7.14  4.19 0.32 0.11

1712 152.9064 04.6545 17.1004  0.2556

130.6922 19.5520 33.6130 0.3669 145.67 —11.20 0.41 145 1.34 0.31 2.3

2387% i 143.9743 —11.1837 63.9320  0.0520 . . . ... ... ... ...

141.8929 —23.8803 51.5670 0.6170 109.24 —71.20 0.30 1195 575 =224 28

2431 oo 326.3289 11.8938 54.6810  0.0060

317.3416 23.2362 55.8180 0.0120 281.42 —20.18 0.24 0.58 0.58 0.04 0.01

Note.—Cols. (2) and (3) give the right ascension and declination of the center of the IPN loci, with the corresponding dimensions of the annulus being
prescribed by the angular radius, « (col. [4]) and its associated error, o, (col. [5]). Columns (6) and (7) give the right ascension and declination for the
WATCH localization, with the radius of the error circle, o, in col. (8). Cols. (9)—(12) give properties of the penalty function, IT (eq. [A1]), as deduced for
each burst. Asterisks indicate that the actual error in o can be gauged for this burst because Ty — T, > 1.

triangulation procedure at the arcminute level we are interested in.” To constrain any such errors, we therefore employed the
localizations that were obtained by the WATCH experiment, quite independently of the triangulated positions. This
experiment employed a rotation modulation collimator to locate sources, typically with accuracies better than half a degree
(at the 1 o level; Sazonov et al. 1998). The additional requirement that each burst have been observed by WATCH necessarily
decreases the sample size, and we are left with only nine bursts in our final sample; these bursts and the corresponding
astrometric information are listed in Table 1, while the localizations themselves are presented graphically in Figure 12.

It is immediately apparent from Table 1 that the WATCH error circles are too large to determine positional errors at the
level of a few arcminutes (which is the upper end of the range expected for é« in the blast wave model—see § 5.1). However, as
can be seen from Figure 12, there are a number of instances in this sample in which the loci derived from burst timing intersect
at a very acute angle, and in these cases the intersection point of the loci is displaced on the sky by an amount > d«, so that
errors of the anticipated size might possibly be revealed by comparison with the WATCH localizations. To test this possibility,
we have employed a penalty, [1(6«a), which is a function of the offset d« in the radius « of one of the loci:

I(6r) = (i—j)z+ (5)2 , (A1)

where £ = £(6«) is the angular separation between the intersection of the IPN loci and the WATCH location, o,, is the
estimated error in the WATCH location (one-third of the 3 o statistical error, plus the systematic error, as quoted by Sazonov
etal. 1998), and o, is the estimated error in the determination of « (one-third of the 3 o statistical-plus-systematic error quoted
by Laros et al. 1997, 1998). The location (6cvy;,) of the minimum value IT,,;, of this penalty function can, in some cases, give us
an estimate of the value of 6a. One point to note is that the WATCH error distribution is ellipsoidal, but we are approximating
it by a circular distribution.

Generally speaking, of the three loci derived from burst timing, one (corresponding to the BATSE-Ulysses baseline) has by
far the smallest errors, and our adopted procedure is therefore to treat this locus as an absolute constraint on the burst
location. We then discard the annulus with the largest estimated error and use the remaining locus to determine the

7 At this point we should draw attention to the anomalous case of BATSE 2475, reported by Laros et al. (1997), which apparently displayed an IPN intersec-
tion that was significantly discrepant even with respect to the rather crude BATSE localization. Having no way of understanding this result, Laros et al. (1997)
were obliged to conclude that the Mars Observer had not detected the GRB detected by the other spacecraft and had in addition responded to another
(unspecified) event, which in turn was not detected by the other spacecraft in the network, despite having the characteristics of a GRB. This coincidence seems
rather contrived. An alternative explanation for the timing/position anomaly of this burst can be found in terms of parallax (§ 5 of the present paper), provided
that BATSE 2475 exhibited a low expansion speed, with 3,, <40. (This conclusion assumes a low-redshift burst, which nevertheless manifests a caustic
crossing event, and makes use of the BATSE localization given by Meegan et al. 1996.) However, we note that the reported discrepancy between BATSE and
Mars Observer count rates for BATSE 2475 cannot be so readily explained.
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FiG. 12.—Positions for a sample of nine bursts that were located by both the WATCH instrument—crosses, with 1 o (statistical plus systematic) error
circles—and the IPN (Ulysses plus BATSE and either PVO or MO). IPN loci are shown (solid line), with £1 o errors (statistical plus systematic: dashed line). A
diamond marks the intersection of the IPN loci in each case.

intersection point. The radius of this second locus is then allowed to vary by an amount é«, over a range +5 o, and for each
value of v we compute the separation £ and thus the value of the penalty I1(6«). In general, the value of II; = I1(0) will not
coincide with the minimum value of the function, I, = IT(daumin ), and if Ty — T, > 1, then it is clear from the definition of
IT that this means davy;, is distinguishable from zero. The ratio danyi, /o, tells us whether the actual error that we have detected
is significantly larger than the expected error in «.. The results of this procedure are given in Table 1, where it can be seen that
there are four bursts (BATSE 451, 907, 1698, and 2387) for which IT is significantly greater than IT;,. With the possible
exception of BATSE 2387, the errors that we measure in these cases (i.e., dapin) are only as large as one would expect, given
the estimated error o, in each case. Of course, it remains possible that the systematic error we are looking for is in fact a major
contribution to the estimated value of o,,, and we are unable to exclude this possibility with the information at hand.
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