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Parametrized field theory (PFT) is free field theory on flat spacetime in a diffeomorphism invariant
disguise. It describes field evolution on arbitrary (and in general, curved) foliations of the flat spacetime
instead of only the usual flat foliations, by treating the ‘‘embedding variables’’ which describe the
foliation as dynamical variables to be varied in the action in addition to the scalar field. A formal Dirac
quantization turns the constraints of PFT into functional Schrödinger equations which describe evolution
of quantum states from an arbitrary Cauchy slice to an infinitesimally nearby one. This formal
Schrödinger picture-based quantization is unitarily equivalent to the standard Heisenberg picture-based
Fock quantization of the free scalar field if scalar field evolution along arbitrary foliations is unitarily
implemented on the Fock space. Torre and Varadarajan (TV) showed that for generic foliations emanating
from a flat initial slice in spacetimes of dimension greater than 2, evolution is not unitarily implemented,
thus implying an obstruction to Dirac quantization. We construct a Dirac quantization of PFT, unitarily
equivalent to the standard Fock quantization, using techniques from loop quantum gravity (LQG) which
are powerful enough to supercede the no-go implications of the TV results. The key features of our
quantization include an LQG type representation for the embedding variables, embedding-dependent Fock
spaces for the scalar field, an anomaly free representation of (a generalization of) the finite trans-
formations generated by the constraints, and group averaging techniques. The difference between the
1� 1-dimensional case and the case of higher spacetime dimensions is that for the latter, only finite gauge
transformations are defined in quantum theory, not the infinitesimal ones.
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I. INTRODUCTION

The usual description of quantum field theory on flat
spacetime employs inertial coordinates. Such a description
leads, naturally, to a study of quantum dynamics from one
instant of inertial time to another. Each such instant corre-
sponds to a flat spacelike Cauchy slice of the spacetime and
the quantum dynamics evolves quantum fields between
two such inertial slices. In contrast, in this work, we study
aspects of quantum evolution of a free scalar field between
two arbitrary (and in general, curved) Cauchy slices of the
flat spacetime.

An elegant way to describe classical evolution of a free
scalar field along arbitrary foliations of flat spacetime is
through a formulation known as parametrized field theory
(PFT). PFT is a free field theory on flat spacetime in a
diffeomorphism invariant disguise [1]. Because of its gen-
eral covariance and solvability, Kuchař pioneered the use
of PFT as a toy model to study various issues which arise in
canonical quantum gravity (see [1–3] and references
therein). Our interest in PFT is, likewise, in its use as a
toy model for quantum gravity.

PFT describes field evolution along arbitrary foliations
of the flat spacetime by treating the ‘‘embedding varia-
bles’’ which describe the foliation as dynamical variables
to be varied in the action in addition to the scalar field. Let
XA :� �T; X1; . . . ; Xn� denote inertial coordinates on an
n� 1-dimensional flat spacetime. In PFT, XA are parame-

trized by a new set of arbitrary coordinates x� �
�t; x1; . . . ; xn� such that for fixed t, the embedding variables
XA�t; x1; . . . ; xn� define a spacelike Cauchy slice of the flat
spacetime. General covariance of PFT ensues from the
arbitrary choice of x� and implies that in its canonical
description, evolution from one slice of an arbitrary folia-
tion to another is generated by constraints.

The constraints of PFT in its Hamiltonian formulation
take the form

 CA�x� :� PA�x� � hA��;�; X
B��x� � 0; (1.1)

where PA and � are the momenta conjugate to XA and �,
and hA is related to the stress-energy of the scalar field. If
we formally define X̂A to act by multiplication and P̂A by
functional differentiation, we may attempt to construct a
Dirac quantization in which the formal operator version of
CA acting on a physical state j�i of the theory is given by

 

�
1

i
�

�XA
� ĥA

�
j�i � 0: (1.2)

Equation (1.2) takes the form of a functional Schrödinger
equation which represents infinitesimal evolution of the
quantum state j�i from one Cauchy slice to another. The
question of interest in this paper is whether a Dirac quan-
tization of PFT yields a theory which is unitarily equivalent
to the standard Fock quantization of the free scalar field on
flat spacetime.

Note that the standard Fock representation is in the
Heisenberg picture because the field operators are time
dependent and the states are time independent. In contrast,*Electronic address: madhavan@rri.res.in
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the representation used in (1.2) is one in which the opera-
tors �̂, �̂ commute with X̂A, P̂A (in accordance with their
classical Poisson brackets) and hence are embedding inde-
pendent, whereas the states are embedding dependent.
Thus, Dirac quantization leads to a Schrödinger picture-
based representation. The Schrödinger and Heisenberg
pictures are unitarily related if the evolution of the scalar
field operators from some fixed initial Cauchy slice (this
slice being the analog of the initial instant of time used to
define the Schrödinger picture in quantum mechanics), to
an arbitrary final Cauchy slice is unitarily implemented in
the Heisenberg picture. If such an evolution is unitary, the
Schrödinger picture can be defined as the ‘‘back-evolved’’
image of the Heisenberg picture.

Torre and Varadarajan (TV) [4] showed that in 1� 1
dimensions operator evolution is unitary, the functional
Schrödinger picture exists as the unitary image of the
standard Heisenberg picture-based Fock quantization,
and the functional Schrödinger equation (1.2) is rigorously
defined. However, for spacetimes of dimension greater
than 2 and for generic choices of the final Cauchy slice,
TV found that operator evolution from a flat initial slice is
not unitarily implementable [5].1 Thus the TV results seem
to indicate an obstruction to a physically correct dirac
quantization of higher dimensional PFT. If a Dirac quan-
tization is not viable even in this simplest of models, it is a
matter of concern for any Dirac quantization based ap-
proach to quantum gravity.

Recent results of Cho and Varadarajan [6] reinforce
these apprehensions. They analyze the case of an axisym-
metric scalar field evolving along arbitrary axisymmetric
foliations of a flat 2� 1-dimensional spacetime. This sys-
tem is equivalent, via Kuchař’s canonical transformation
[7], to the midisuperspace of cylindrically symmetric (1
polarization) gravitational fields. Reference [6] obtains a
nonunitary result for generic axisymmetric scalar field
evolution by showing that the action of generic radial
diffeomorphisms on the scalar field operators is not uni-
tarily implementable (see [6] for details).

One of the most active approaches to a Dirac quantiza-
tion of gravity is loop quantum gravity (LQG). We are

particularly interested in the implication of the results of
[5,6] for LQG. Indeed, since a unitary representation of
spatial diffeomorphisms lies at the heart of LQG, the
results of [6] seem to be of significant concern. In this
work, we show that these apprehensions are unjustified by
constructing a Dirac quantization of PFT (in any spacetime
dimension) which is unitarily equivalent to the standard
Fock quantization. Our construction makes vital use of
techniques developed in LQG (see [8] and references
therein). Indeed, in the absence of these techniques, this
work would not have been possible.

How do we avoid the negative implications of
Refs. [5,6]? The key point is that LQG methods demand
a Hilbert space representation for all the phase space
variables, i.e. both the scalar field and the embedding
variables. The arguments leading to Eq. (1.2) were based
on a heuristic treatment of the embedding variables; X̂A, P̂A
were not defined as operators on a Hilbert space. As we
shall see, once the correct Hilbert space representation is
defined for the embedding variables, it is possible to con-
struct a viable Dirac quantization. Specifically, we define
an LQG type of representation on a nonseparable Hilbert
space for the embedding sector. This enables us to specify
embedding-dependent Fock space representations for the
matter sector. The resultant nonseparable Hilbert space for
the embedding and the matter field operators is called the
kinematic Hilbert space in LQG terminology. It provides
an anomaly free, unitary representation for a certain gen-
eralization of the finite (as opposed to infinitesimal) trans-
formations generated by the constraints. Using group
averaging techniques from LQG [8,9] one can construct
physical states from kinematic ones. The physical Hilbert
space, H phys, contains those states which are invariant
under the unitary action of the ‘‘exponentiated’’ constraints
and comes with a natural inner product as a result of group
averaging. It can then easily be seen that the resulting
representation of Dirac observables is such that the theory
is unitarily equivalent to the standard Fock quantization.

Although the construction is valid for any dimension, it
turns out that in higher dimensions only the finite trans-
formations generated by the constraints (more precisely,
their generalization, referred to above) can be defined in
the quantum theory. This is in contrast to the 1� 1 case
where, in a precise sense, infinitesimal transformations can
also be defined. The nonexistence of these infinitesimal
transformations in higher dimensions is the key feature of
our quantization which allows us to avoid the (potential)
obstructions to Dirac quantization indicated by the TV
results. Since these infinitesimal transformations are ill
defined, Eq. (1.2) is ill defined, and the subsequent argu-
ments based on it are inapplicable.

We emphasize that (for higher dimensions), we do not
provide a representation for the matter variables in which
evolution from one arbitrary Cauchy slice to another is a
unitary transformation. Instead, we construct a representa-

1We refer the reader to [5] for a detailed proof of the TV result.
Here we only mention that the choice of the final slice is by no
means pathological. Indeed our view of this unexpected result is
that it is unexpected purely on the basis of a faulty intuition
which presupposes the triviality of all issues in free quantum
field theory on flat spacetime. In contrast, intuition developed
from the representation theory of infinite dimensional field
theoretic systems, immediately points to the ubiquity of inequi-
valent representations. Indeed the TV results can also be viewed
as asserting the existence of inequivalent Heisenberg picture-
based quantizations of flat spacetime free quantum field theory.
From this perspective, the standard ‘‘flat slice’’ based quantiza-
tion is physically preferred because its choice of underlying
complex structure (i.e. positive-negative frequency decomposi-
tion) is Poincaré invariant.
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tion on which (a suitable generalization of) the finite trans-
formations generated by the constraints act unitarily.
Although related, the two sets of transformations, namely,
those generated by the constraints on the phase space of
PFT and those corresponding to evolution of the scalar field
from one fixed slice to another, are distinct from each other.
While the former act not only on the scalar field variables
but also on the embedding variables, XA, PA, in the latter,
the initial and final embeddings are fixed and the embed-
ding momenta PA do not even enter the description. In
other words, the first set of transformations are pertinent to
the description provided by PFT wherein the embeddings
are also dynamical variables whereas the second refer to
free scalar field evolution between two fixed, externally
prescribed (though arbitrary) embeddings. Consequently
the Hilbert spaces underlying the two quantum descrip-
tions2 are also distinct in that the one for PFT also provides
a representation of the embedding variables whereas the
standard Fock representation only attempts at providing a
representation of the scalar field variables, with the embed-
dings playing the role of c-numbers. Hence a unitary
representation of the finite transformations generated by
the constraints on the former can, in principle, coexist with
the lack of a unitary representation of free scalar field
evolution on the latter. This (modulo the generalization
of the finite transformations generated by the constraints
alluded to above) is precisely what happens in our work.

As a consequence of this coexistence in the context of
our quantization, Eq. (1.2) cannot be interpreted as an
equation defining functional evolution of quantum states
in a functional Schrödinger picture; indeed (1.2) is not even
well defined (if, in the context of our specific quantization
of PFT, (1.2) were to be well defined in such a way as to
permit its interpretation as a functional Schrödinger equa-
tion encoding infinitesimal unitary evolution, the argu-
ments subsequent to (1.2) would imply a contradiction
with the TV results).

We proceed as follows. In Sec. II we provide a brief
review of PFT. In Sec. III, we specify the representation for
the embedding variables. In Sec. IV, we define the repre-
sentation for the matter variables. This completes the
specification of the kinematic Hilbert space. In Sec. V
we show that there is a problem with our choice of opera-
tors depending on the embedding momenta3 and arrive at
an improved choice of operators. These operators are the
quantum correspondents of the finite canonical transfor-

mations generated by the constraints. We show that these
operators have a unitary action on the kinematic Hilbert
space. Next, in Sec. VI, we complete the Dirac quantiza-
tion by constructing the physical Hilbert space through
group averaging. We display the action of Dirac observ-
ables on H phys and demonstrate unitary equivalence with
the standard Fock representation. We also show how to
obtain the functional Schrödinger equation in 1� 1 dimen-
sions where a suitable infinitesimal version of the unitary
action of Sec. V can be defined. Section VII is devoted to a
discussion of our results. In particular we discuss the
existence of inequivalent (Dirac) quantizations in higher
dimensions (this is the true implication of the TV results)
and the presence of the Virasoro anomaly in 1� 1 dimen-
sions even though the algebra of the unitary transforma-
tions of Sec. V is anomaly free (this discussion is
essentially a reminder of the comments of Kuchař in [3]
and of Kuchař and Torre in [11]).

In what follows, we use units in which @ � c � 1.

II. REVIEW OF PARAMETRIZED FIELD THEORY

In this section we provide a brief review of PFT. The
reader may consult [1] for details.

A. The action for PFT

PFT is free scalar field theory on a fixed n�
1-dimensional flat spacetime written in a diffeomorphism
invariant manner as follows. The action for a free scalar
field � on a fixed flat spacetime in terms of global inertial
coordinates XA, A � 0; . . . ; n is

 S0��� � �
1

2

Z
dn�1X�AB@A�@B�; (2.1)

where the Minkowski metric in inertial coordinates, �AB, is
diagonal with entries ��1; 1; 1 . . . 1�. If instead, we use
coordinates x�, � � 0; . . . ; n (so that XA are ‘‘parame-
trized’’ by x�, XA � XA�x�), we have

 S0��� � �
1

2

Z
dn�1x

����
�
p

���@��@��; (2.2)

where ��� � �AB@�XA@�XB and � denotes the determi-
nant of ���. The action for PFT is obtained by considering
the right-hand side of (2.2) as a functional, not only of �,
but also of XA�x�, i.e. XA�x� are considered as n� 1 new
scalar fields to be varied in the action (��� is a function of
XA�x�). Thus

 SPFT��;XA� � �
1

2

Z
dn�1x

�����������
��X�

q
����X�@��@��:

(2.3)

Note that SPFT is a diffeomorphism invariant functional of
the scalar fields ��x�, XA�x�. A variation of � yields the
equation of motion @��

����
�
p

���@��� � 0, which is just the
flat spacetime equation �AB@A@B� � 0 written in the co-

2By this we mean the kinematic Hilbert space for PFT and the
standard Fock space for the free scalar field. The physical Hilbert
space in our Dirac quantization of PFT will be shown to be
equivalent to the standard Fock space for the free scalar field.

3This problem can be traced to the fact that the requirement
that each embedding must define a spacelike slice is in contra-
diction with a vector space structure on the space of embeddings.
It is the analog of the problem of preserving the nondegeneracy
of the spatial metric in quantum geometrodynamics [10].
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ordinates x�. On varying XA, one obtains equations which
are satisfied if �AB@A@B� � 0. This implies that XA�x� are
n� 1 undetermined functions (subject to the condition that
the determinant of @�XA is nonvanishing). This n�
1-function worth of gauge is a reflection of the n�
1-dimensional diffeomorphism invariance of SPFT.
Clearly the dynamical content of SPFT is the same as that
of S0; it is only that the diffeomorphism invariance of SPFT

naturally allows a description of the standard free field
dynamics dictated by S0 on arbitrary foliations of the fixed
flat spacetime.

B. Hamiltonian formulation of PFT

In the previous subsection, XA�x� had a dual interpreta-
tion—one as dynamical variables to be varied in the
action, and the other as inertial coordinates on a flat space-
time. In what follows we shall freely go between these two
interpretations.

We set x0 � t and fx�g � ft; xa; a � 1; . . . ; ng. We re-
strict attention to XA�x� such that for any fixed t, XA�t; xa�
describe an embedded spacelike hypersurface in the n�
1-dimensional flat spacetime (it is for this reason that XA�x�
are called embedding variables in the literature). This
means that, for fixed t, the functions XA�x� must be such
that the symmmetric form qab defined by

 qab�x� :� �AB
@XA�x�
@xa

@XB�x�

@xb
(2.4)

is an n-dimensional Riemannian metric. This follows from
the fact that qab�x� is the induced metric on the hypersur-
face in the flat spacetime defined by XA�x� at fixed t.

An n� 1 decomposition of SPFT with respect to the time
‘‘t,’’ leads to its Hamiltonian form:
 

SPFT��;X
A;�;PA;NA� �

Z
dt
Z
dnx�PA _XA � � _�

� NACA�: (2.5)

Here � is the momentum conjugate to the scalar field �,
PA are the momenta conjugate to the embedding variables
XA, and NA are Lagrange multipliers for the first class
constraints CA, with fCA;CBg � 0. The constraints are
functions on phase space which are linear in the embedding
momenta, CA :� PA � hA�X;�;��, where hA are related
to certain components of the stress-energy tensor of the
scalar field on the t � constant spatial hypersurface
XA�t; xa�. It turns out that the motions on phase space
generated by the ‘‘smeared’’ constraints,

R
dnx�NACA�

correspond to scalar field evolution along arbitrary folia-
tions of the flat spacetime, each choice of foliation being in
correspondence with a choice of multipliers NA. Since the
constraints are first class they also generate gauge trans-
formations, and as in general relativity, the notions of
gauge and evolution are intertwined.

For future reference, we note that if we choose to smear
the constraints with functions of the embedding variables,

the Poisson bracket algebra of the smeared constraints is
isomorphic to the Lie algebra of diffeomorphisms on the
spacetime manifold. We denote the spacetime manifold by
M. Unless otherwise specified, we shall assume that M is
diffeomorphic to Rn�1. Consequently, we shall also as-
sume, unless otherwise specified, that the Cauchy slices
are diffeomorphic toRn so that xa are global coordinates on
Rn. We refrain from specifying boundary conditions/
asymptotic conditions of various phase space variables
and smearing functions; we anticipate that this can easily
be done and will not alter any of our results.

Let �A1 , �A2 be two vector fields on M. We denote their
dependence on the inertial coordinates XA by �AI �
�AI �X�I � 1, 2. These vector fields define the two sets of
functions of the embedding variables, �AI �X�x��, I � 1, 2,
in an obvious manner. We smear the constraints with these
functions to get C��I� �

R
dnx��AI CA�, I � 1, 2. The

smeared constraints have the algebra

 fC��1�; C��2�g � C�L�2
�1�; (2.6)

where L�2
�A1 � �B2

@�A1
@XB � �

B
1
@�A2
@XB . Clearly, Eq. (2.6) dis-

plays an isomorphism with the Lie bracket between vector
fields on M. The latter define the Lie algebra of diffeo-
morphisms on M by virtue of the fact that the diffeomor-
phisms (connected to identity) on M are generated by
vector fields on M.

Given a vector field �A, we define, as before, the
smeared constraint C��� by

 C��� :�
Z
dnx�B�X�x��CB�x�: (2.7)

Then it is easy to see that

 fXA�x�; C���g � �A�X�x�� � �B
@XA

@XB
�: L�XA: (2.8)

In terms of structures on M, the above equation has the
following interpretation: �. � generates a 1 parameter
family of diffeomorphisms d��t�:M ! M. Any diffeomor-
phism onM maps the hypersurface XA�x� to another hyper-
surface in M. The new embedding defined by the
infinitesimal action of d��t� on XA�x� corresponds to that
defined by Eq. (2.8) above.

It is also easy to see that

 f��x�; C���g �
�
��x�;

Z
dnx�A�X�x��hA�x�

�
; (2.9)

 f��x�; C���g � f��x�;
Z
dnx�A�X�x��hA�x�g: (2.10)

It is straightforward to verify that the right-hand side of the
above equations has the following interpretation in terms
of free scalar field evolution on M. Let ���x�; ��x�� be
initial data on the Cauchy slice defined by XA�x�. Consider
the evolution of this data, via the free scalar field equations
on M, to the infinitesimally nearby slice defined by
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Eq. (2.8). The evolved data correspond to that defined by
the right-hand sides of (2.9) and (2.10) above.

C. The standard Fock representation via gauge fixing

A gauge fixing of the constraints which maps the clas-
sical theory directly onto the standard description of a free
scalar field in inertial coordinates is, not surprisingly,
X1 � x1; . . . :; Xn � xn; X0 � t.4 It is straightforward to
implement this gauge fixing, eliminate the embedding
momenta, and obtain a reduced action identical to (the
Hamiltonian form of) S0 (2.1). As is well known, this
form of the theory admits the standard Fock quantization
wherein quantum states j�i are time independent and the
field operators �̂�x; t� are time dependent (note that, here,
�x; t� are chosen to be inertial coordinates by virtue of the
gauge fixing conditions).

It is also possible to obtain the standard Fock quantiza-
tion by first subjecting the canonical coordinates XA, PA,
�, � to a Hamilton-Jacobi type of canonical transforma-
tion and then constructing a Dirac quantization [1,3]. In
this work we are interested in a direct Dirac quantization of
PFT without any canonical transformations to simplify the
constraints. This is because we are interested in PFT as a
toy model for gravity and no such simplifying canonical
transformation is known for gravity.

III. THE REPRESENTATION OF THE EMBEDDING
VARIABLES

We construct the representation for the embedding var-
iables through the following steps. First we specify a
complete set of functions on the embedding phase space
which is closed under Poisson brackets and under complex
conjugation. By complete, it is meant that any other func-
tion on this phase space can be written as the (limit) of
sums and products of these functions.

Next, we define a representation of these functions as
quantum operators so that the Poisson brackets go to
quantum commutators. Finally, we specify an inner prod-
uct on the representation space such that the relations
implied by complex conjugation are enforced as adjoint-
ness relations on the operators.

As is conventional in Hamiltonian theory, we shall drop
the explicit dependence of various variables on the time
coordinate t. Thus, the notation f�x� signifies the func-
tional dependence of the function f on the coordinates xa.

A. The classical Poisson bracket algebra

Let GA�x�; A � 0; . . . ; N be smooth functions of xa, a �
1; . . . ; n. We define the functional, HG, of the embedding
momenta as follows:

 HG�PA� � expi
Z
dnxGBPB: (3.1)

We shall choose our complete set of functions as
�XA�x�; HG�PA�� of functions �XA�x�; HG�PA��. It is easy
to check that the only nontrivial Poisson brackets are

 fXA�x�; HGg � iGA�x�HG: (3.2)

The set of functions is also closed under complex conju-
gation since

 �XA�x��� � XA�x��HG�
� � H�G: (3.3)

B. The representation

We specify the representation of our set of functions as
quantum operators by defining their action on basis states
of our representation. Each state in the basis is labeled by a
set of smooth functions of xa, a � 1; . . . ; n. Given the set
of smooth functions, FA�x� A � 0; . . . ; N, we denote the
corresponding basis state by jFi. We define the action of
X̂A, ĤG through

 X̂ A�x�jFi � FA�x�jFi; (3.4)

 Ĥ GjFi � jF�Gi: (3.5)

It is easy to verify that the above equations provide a
representation of the classical Poisson bracket relations.

C. Inner product

Given the smooth functions FA1 �x�, F
A
2 �x�, we define the

Kronecker delta function �F1;F2
by

 

�F1;F2
� 0 if there exists A; xa such that FA1 �x� � FA2 �x�

� 1 if FA1 �x� � FA2 �x� for all A; xa: (3.6)

Then the inner product between two states in our basis
labeled by the smooth functions FA1 �x�, F

A
2 �x� is defined to

be

 hF1jF2i � �F1;F2
: (3.7)

Note that this inner product implies that our basis states are
orthonormal. Since the basis states are uncountable, we
have a nonseparable representation space. Also note that,
with this inner product, ĤG does not have the appropriate
continuity in GA�x� to define P̂A�x�; thus although ĤG is a
well-defined operator, this representation does not allow
the existence of P̂A�x�.

It suffices to check the implementation of the ‘‘reality
conditions’’ (3.3) in the context of pairs of basis states, i.e.
it is straightforward to verify that

 �hF1jX̂
A�x�F2i�

� � hF2jX̂
A�x�F1i; (3.8)

 �hF1jĤGF2i�
� � hF2jĤ�GF1i: (3.9)

4Technically, this is not a gauge fixing but a 1 parameter
family of gauge fixings (one for each value of t) known as
‘‘deparametrization.’’
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For our purposes in subsequent sections we could stop
here. However, for completeness, we specify the obvious
steps for the construction of the Hilbert space and complete
verification of the reality conditions thereon.

We define the set DX to be the set of finite linear
combinations of the basis states defined above. Thus j i 2
DX if

 j i �
XN
I�1

aIjFIi; (3.10)

where FAI �x�, I � 1; . . . ; N are smooth functions such that
FAI �x� � FAJ �x� only when I � J, N is finite and aI, I �
1; . . . ; N are complex numbers. The inner product (3.7) can
be extended to DX by appropriate linearity. DX serves as a
dense set for the embedding sector Hilbert space H X, i.e.
the Cauchy completion of DX in the inner product (3.7)
yields H X. Thus j i 2H X if

 j i �
X1
I�1

aIjFIi; (3.11)

where FAI �x� are smooth functions such that FAI �x� � FAJ �x�
only when I � J and

P
1
I�1 jaIj

2 <1. Note that DX serves
as a dense domain for the unbounded operator X̂A�x�.

IV. THE REPRESENTATION FOR THE SCALAR
FIELD VARIABLES

A. Preliminary remarks

The only nontrivial Poisson bracket involving ��x� and/
or ��x� is f��x�; ��y�g � ��x; y�. In particular we have the
trivial Poisson brackets f��x�; PA�y�g � 0 and
f��x�; PA�y�g � 0 which are equivalent to the equations
���x�
�XA�y� � 0 and ���x�

�XA�y� � 0. As a result of the latter equations,

we seek, in quantum theory, a representation of �̂�x�, �̂�x�
which is independent of the embeddings. This is like the
Schrödinger picture in standard quantum mechanics, with
(the eigenvalues of) X̂A�x� playing the role of time.
Bearing this analogy in mind, we shall pattern our con-
structions below on corresponding structures in standard
quantum mechanics.

In usual particle quantum mechanics, the Schrödinger
picture is constructed by evolving the Heisenberg picture
operators at time t back to some fixed initial time t0,
usually chosen to be t0 � 0. Here, in order to make contact
with [4,5] we choose the analog of t0 � 0 to be the initial
flat embedding FA0 �x� � �0; x

1; . . . ; xn�. Thus, we want
�̂�x�, �̂�x� to act as if they were Heisenberg picture fields
at the initial embedding FA0 �x�. This prompts the definitions

 �̂�x� �
1

�2��n=2

Z dnk�����
2k
p �âS�k�ei

~k	 ~x � âyS �k�e
�i ~k	 ~x�; (4.1)

 �̂�x� �
1

�2��n=2

Z dnk
���
k
p���
2
p ��iâS�k�e

i ~k	 ~x � iâyS �k�e
�i ~k	 ~x�;

(4.2)

where we have denoted �x1; . . . ; xn�, �k1; . . . ; kn� by ~x, ~k

and where k :�
���������
~k 	 ~k

p
. If evolution is unitary, the

Schrödinger and Heisenberg picture representations exist
on the same Hilbert space. If this were the case, we could
define âS�k�, â

y
S �k� in the usual way as annihilation and

creation operators. We could then generate the Fock space
by the action of the creation operators on the standard Fock
vacuum. Since for spacetime dimensions greater than 2
(i.e. for n > 1) generic evolution is not unitary [5], this is
not the case and, instead, we define the action of âS�k�,
âyS �k� in analogy with the following structure in usual
quantum mechanics.

B. The Heisenberg and Schrödinger pictures in
standard quantum mechanics

Consider a system with phase space coordinatized by
(complex) canonical coordinates �a; a�� so that fa; a�g �
�i. Let its dynamics be described by some time dependent
quadratic Hamiltonian. Consequently, classical evolution
is a linear canonical transformation so that

 a�t2� � ��t2; t1�a�t1� � ��t2; t1�a��t1�; (4.3)

where �, � are complex functions (of the initial and final
times t1 and t2) which are determined by the Hamiltonian
of the system. Denoting the pair a, a� by ~a and defining the
matrix C�t2; t1� by

 C�t2; t1� �
� �
�� ��

� �
; (4.4)

we can write Eq. (4.3) as

 ~a�t2� � C�t2; t1� ~a�t1�: (4.5)

For future purposes we note that Eq. (4.5) implies the
identities:

 C�t3; t1� � C�t3; t2�C�t2; t1�; C�t; t� � 1; (4.6)

where 1 denotes the identity operator. In the Heisenberg
picture, a�t�, a��t� are represented by the operators âH�t�,
âyH�t�. The time independent state space is generated by the
action of the creation operator, âyH�0�, on the vacuum j0i,
the vacuum being defined by âH�0�j0i � 0. Clearly, âH�t�,
âyH�t� are related to the t � 0 operators through the relation

 

~̂a H�t� � C�t; 0� ~̂aH�0�; (4.7)

where we have used the obvious notation that ~̂aH�t� de-
notes the pair âH�t�, â

y
H�t�.

Let the unitary transformation corresponding to evolu-
tion from t1 to t2 be denoted by U�t2; t1�. Then the
Schrödinger picture representative of ~a�t� is given by
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~̂a S � Uy�t; 0� ~̂aH�t�U�t; 0� � ~̂aH�0� (4.8)

and the Schrödinger picture ‘‘vacuum’’ is given by

 j0; tiS � Uy�t; 0�j0i: (4.9)

Clearly, the Schrödinger vacuum is annihilated by the
operator

 b̂�t� � Uy�t; 0� ~̂aH�0�U�t; 0� � Uy�t; 0� ~̂aSU�t; 0� (4.10)

and the Schrödinger picture image of the Heisenberg state
�âyH�0��

nj0i is the state �b̂y�t��nj0; tiS. Note that the
Schrödinger picture image of Eq. (4.7) is

 

~̂a H�0� � ~̂aS � C�t; 0� ~̂b�t�; (4.11)

which, in conjunction with Eq. (4.6), implies that

 b̂�t� � C�0; t� ~̂aS: (4.12)

Given the operator ~̂aS, the above equation can be defined
even in the absence of the unitary transformation U�t; 0�
and hence can be used to define the representation in the
field theory case.

C. Some considerations in classical field theory

Before we define the representation for the matter sector
of PFT, it is useful to review the classical (field theoretic)
structures which are in correspondence with the ones in
Sec. IV B.

Consider free scalar field evolution from the slice de-
fined by the embedding FA1 �x� to the slice defined by the
embedding FA2 �x�. Let the scalar field data on FAI �x�, I � 1,
2 be denoted by ���x�; ��x�� � ��FI �x�; �FI �x��. Instead
of the scalar field data, it is more convenient to work with
the modes a� ~k�, a�� ~k� where

 a� ~k� �
1

�2��n=2

Z
dnx

���
k
2

s �
��x� � i

��x�
k

�
e�i ~k	 ~x: (4.13)

Thus a� ~k�, a�� ~k� are the classical correspondents of âS� ~k�,
âyS � ~k� defined in Eqs. (4.1) and (4.2).

When the data for the scalar fields is ���x�; ��x�� �
��FI �x�; �FI �x��, we denote the corresponding evaluation

of the modes a� ~k�, a�� ~k� by aFI �
~k�, a�FI �

~k�. Explicitly,

 aFI �
~k� �

1

�2��n=2

Z
dnx

���
k
2

s �
�FI �x� � i

�FI �x�

k

�
e�i ~k	 ~x:

(4.14)

As in (4.3), classical evolution is a linear canonical trans-
formation so that

 aF2
� ~k� �

Z
dnl�F2;F1

� ~k; ~l�aF1
�~l�

�
Z
dnl�F2;F1

� ~k; ~l�a�F1
�~l�: (4.15)

The coefficients �, � satisfy the Bogoliubov conditions
[12] by virtue of the transformation being canonical. In
analogy to Sec. IV B, we denote the pair of functions
aFI �

~k�, a�FI �
~k� by ~a�FI� and define C�F2; F1� to be the

infinite dimensional matrix

 C�F2; F1� �
�F2;F1

� ~k; ~l� �F2;F1
� ~k; ~l�

��F2;F1
� ~k; ~l��� ��F2;F1

� ~k; ~l���

 !
: (4.16)

Then Eq. (4.15) can be written as

 ~a�F2� � C�F2; F1� ~a�F1� (4.17)

and it follows that

 C�F3; F1� � C�F3; F2�C�F2; F1�; C�F;F� � 1;
(4.18)

where, as in (4.6), 1 denotes the identity operator.
We can now define the Schrödinger picture as follows.

D. The representation for �̂�x�, �̂�x�

We denote âS� ~k�, â
y
S �
~k� by ~̂aS. Given the slice FA�x�, we

define the operators b̂F� ~k�, b̂
y
F�
~k� �: ~̂b�F� through ~̂b�F� �

C�F0; F� ~̂aS (this is the counterpart of (4.12)). Then we
have, analogous to Eq. (4.11), that

 

~̂a S � C�F;F0�
~̂b�F�: (4.19)

We define the Fock space H F as the one for which
�b̂F� ~k�; b̂

y
F�
~k�� are annihilation and creation operators. We

denote states in H F by j ;Fi and the vacuum state by
j0; Fi so that b̂F� ~k�j0; Fi � 0 for every ~k.

Consider the (nonseparable) kinematic Hilbert space
H kin defined as

 H kin �
M
F

jFi 
H F; (4.20)

where jFi carries the representation of the embedding
operators as discussed in Sec. III. The linear sum of vector
spaces is over all spacelike embeddings FA�x�.5 The inner
product on H kin is defined in the obvious way from the
inner products on the embedding sector and on H F. To
this end consider the linear subspace of H kin denoted by
D and defined as

5This is akin to the sum over the uncountable label set of
graphs in LQG [8]. Just as the set of spin network states organize
themselves into a separable set of states associated with each
graph label, here we have a separable Fock space associated with
each embedding label.
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 D �

�
j i:j i �

XN
I�1

aIjFIi 
 j I; FIi
�
; (4.21)

for all finite N and all choices of complex coefficients aI.
The inner product between j 1i; j 2i 2D with j ii �PN
I�1 aiIjFIi 
 j iI; FIi, i � 1, 2 is

 �j 1i; j 2i� �
XN
I�1

a�1Ia2Ih 1IFIj 2IFIi: (4.22)

D is dense in H kin, so that the latter can be obtained by
the completion of the former in the above inner product.

On any basis element of the form jFi 
 j ;Fi, the
operators X̂A�x�, âS� ~k�, â

y
S �
~k� are defined through

 X̂ A�x�jFi 
 j ;Fi � FA�x�jFi 
 j ;Fi; (4.23)

 b̂ F� ~k�jFi 
 j ;Fi � jFi 
 b̂F� ~k�j ;Fi; (4.24)

 b̂ yF� ~k�jFi 
 j ;Fi � jFi 
 b̂
y
F�
~k�j ;Fi; (4.25)

with âS� ~k�, â
y
S �
~k� defined in terms of b̂F� ~k�, b̂

y
F�
~k� through

Eq. (4.19).6

It can easily be verified, with these definitions, that
X̂A�x� commutes with âS� ~k�, âyS � ~k�, X̂B�y� and that
�X̂A�x��y � X̂A�x�.

Note that since b̂F� ~k�, b̂
y
F�
~k� are annihilation and crea-

tion operators on the Fock space H F, they are adjoint to
each other and have canonical commutation relations on
H F. Note also that âS� ~k�, â

y
S �
~k�map states in the subspace

jFi 
H F �H kin into states in the same subspace. These
facts, in conjunction with Eq. (4.19), the definition of the
embedding sector inner product (3.7), and the fact that
C�F;F0� is a Bogoliubov transformation, imply that
âS� ~k�, â

y
S �
~k� are adjoint to each other on H kin and have

the right commutation relations with each other.

From Eq. (4.19), the operators ~̂aS and ~̂b�F� are related by
the Bogoliubov transformation C�F;F0�. The TV results
imply that this Bogoliubov transformation is not unitarily
implementable on H F for generic choices of FA�x�.
Because of this fact, we are unsure if âS� ~k�, â

y
S �
~k� are

well-defined operators (after appropriate smearing (see
Footnote 6)) on (a dense set in) H kin. However, the formal
‘‘working’’ definition of ~̂aS adopted above through
Eqs. (4.19), (4.24), and (4.25), and the consequent satisfac-
tion, at a formal level, of the reality conditions and com-

mutation relations involving ~̂aS, filters down to the
rigorous definition of Dirac observables in Sec. VI C which
satisfy the correct commutation and adjointness relations
on (a dense set in) H kin.7

To summarize, the representation for X̂A�x�, âS� ~k�, â
y
S �
~k�

on H kin is such that

 �X̂A�x�; X̂B�y�� � 0; �X̂A�x�; ~̂aS� � 0; (4.26)

 �âS� ~k�; âS�~l�� � 0; �âS� ~k�; â
y
S �
~l�� � �� ~k; ~l�; (4.27)

 �X̂A�x��y � X̂A�x�; �âS� ~k��
y � âyS � ~k�: (4.28)

We have deliberately refrained from defining ĤG to act in
the obvious manner because there are problems with such
an action. We now turn to a discussion (and resolution) of
these problems.

V. PROBLEMS WITH ĤG AND THEIR
RESOLUTION IN TERMS OF A TREATMENT OF

THE QUANTUM CONSTRAINTS

A. Problems with ĤG

We would like to define ĤG in the obvious manner by
ĤGjFi 
 j ;Fi � jF�Gi 
 j ;Fi, but this has two prob-
lems. First, assuming FA�x� �GA�x� is an embedding, if
the representation of the matter operators on H F is not
unitarily equivalent to that on H F�G, the above state does
not lie in H kin. Second, if FA�x� is an embedding, FA�x� �
GA�x� need not be an embedding because embeddings need
to satisfy a nondegeneracy condition (described in
Sec. II B; see Eq. (2.4) and the subsequent discussion)
which ensures that they define a spatial slice in the space-
time M.

The first problem can be fixed by enlarging the Hilbert
space to H X 
 �FH F (recall that H X is defined in
Sec. III B as the Hilbert space of the embedding sector).
However the second problem is more acute and is a reflec-
tion of a similar problem in the quantization of configura-
tion spaces which are not vector spaces, an important
example being that of the space of all Riemannian metrics
[10].

We avoid these problems by considering an alternative
set of functions which we will promote to quantum opera-
tors. Thus, instead of choosing our basic Poisson algebra to
be generated by theHG, XA�x�,��x�,��x�, we consider the
alternative set of functionsCA�x�, XA�x�,��x�,��x�, where
CA�x� are the constraints of PFT given by Eq. (1.1). From
our previous work [5], we anticipate (for n > 1) that there
are obstacles to define ĈA�x� as operators. Therefore, mo-
tivated by the treatment of the quantum (spatial diffeo-
morphism) constraints in LQG [8], we adopt the following

6Here j ;Fi 2H F. We have glossed over the fact that b̂F� ~k�,
b̂yF� ~k� are operator valued distributions when the Cauchy slices
are noncompact. We have also glossed over the fact that even
when appropriately smeared, b̂F� ~k�, b̂

y
F�
~k� are not bounded

operators and hence only densely defined. We expect that these
technicalities can easily be taken care of; in the interests of
pedagogy, we refrain from a careful treatment of these mathe-
matical niceties. 7We thank Guillermo Mena for discussions on this point.
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strategy which focuses on the finite canonical transforma-
tions generated by CA�x� rather than on CA�x� itself.

First we consider the smeared constraints C��� defined
by Eq. (2.7). From the discussion in Sec. II B (see
Eqs. (2.8), (2.9), and (2.10)), we expect that every finite
canonical transformation generated by C��� can be labeled
by a corresponding spacetime diffeomorphism d:M ! M
where d is generated by the vector field �A. The expected
correspondence is as follows. dmaps the point p inM with
inertial coordinates XA to the point d�p�. We denote the
inertial coordinates of d�p� by XAd and denote the image of
the spatial slice XA�x� by d as XAd �x�. Then the action of the
canonical transformation labeled by d is to map the em-
bedding variables XA�x� to XAd �x� and evolve the scalar
field data ���x�; ��x�� to the data ��d�x�; �d�x��, where
��d�x�; �d�x�� are obtained from ���x�; ��x�� as follows.
Consider the slice XA�x� in M. Let initial data on this slice
be ���x�; ��x��. Evolve this data from the slice XA�x� to the
slice XAd �x� via the free scalar field evolution equations on
the flat spacetime M. This evolved data on the slice XAd �x�
is ��d�x�; �d�x��.

Note that the data �XAd �x�; �d�x�; �d�x�� (partially) spec-
ify a point in phase space only if XAd �x� is also a spacelike
slice. Thus, in order to preserve the phase space, we would
like to restrict attention to those vector fields �A�X� which
generate diffeomorphisms which preserve the spacelike
property of the embeddings XA�x�. Let the set of spacelike
embeddings be E. We denote by G�E�, the subspace of
diffeomorphisms d:M ! M such that XAd �x� 2
E 8 XA�x� 2 E. It is not clear to us if there exist any
elements of G�E� which are not conformal isometries of
the spacetime �M;�AB�.

8 The discussion in [13] indicates
that the issue is not trivial. We return to it at the end of this
section. For the moment we make the following assump-
tion: G�E� exists as an infinite dimensional subgroup9 of
the group of diffeomorphisms and every d 2 G�E� is gen-
erated by some vector field �A�X�.

Consider the canonical transformation on phase space
labeled by the diffeomorphism d 2 G�E�. We denote the
operator which implements this transformation in quantum
theory by Ûd. Then, in addition to the canonical commu-
tation relations between �̂�x�, �̂�x�, X̂A�x�, we also need to
represent Ûd such that

 Û d2
Ûd1
� Ûd1
d2

; (5.1)

 Û d�1 � Ûyd ; (5.2)

 Û dX̂
A�x�Ûyd � X̂Ad �x�; (5.3)

 Û d�̂�x�Û
y
d � �̂d�x�; (5.4)

 Û d�̂�x�Û
y
d � �̂d�x�: (5.5)

Several comments are in order. The fact that Eq. (5.1)
defines a representation of G�E� by right multiplication
follows from Eq. (2.6). Equation (5.2) follows from the
fact that the constraints are real. The right-hand side of
Eq. (5.3) is to be understood as follows. The action of d on
the embedding XA�x� yields the d-dependent functionals
(one for every value of A), fAd �X; x�, of the embedding.
Here, in a notation introduced by Kuchař (see, for example,
[7]), the left square bracket denotes the fact that for each
value of A, fA is a functional of the embedding and the
round bracket denotes the fact that fA is a function of x.
Using our notation in the discussion above, we have
XAd �x� � fAd �X; x�. Then by X̂Ad �x�we mean that the embed-
ding should be replaced by its corresponding quantum
operator in fAd �X; x�, i.e.X̂Ad �x� :� fAd �X̂; x�. Finally, the
right-hand sides of Eqs. (5.4) and (5.5) are to be understood
in a similar manner. The classical fields ��d�x�; �d�x�� are
d-dependent functionals of the embeddings and the fields
���x�; ��x��. Since the underlying dynamics is that of a
free field, it follows that the dependence on ���x�; ��x�� is
linear. The right-hand sides of Eqs. (5.4) and (5.5) are
obtained by substituting the embeddings and the matter
fields by the corresponding quantum operators. Since the
right-hand sides of (5.3), (5.4), and (5.5) are either inde-
pendent of or linear in the matter fields, and independent of
the embedding momenta operators, there are no operator
ordering ambiguities in their definition.

Let d be generated by the vector field �A�X�. Suppose
that Ûd has the appropriate continuity in d so that its
generator Ĉ��� can be defined via the action of Ûd for
infinitesimal diffeomorphisms d. Then it follows that
Eq. (5.1) implies that Ĉ��� satisfies the commutation rela-
tions implied by (2.6), that Eq. (5.2) implies that Ĉ��� is
self-adjoint, and that Eqs. (5.3), (5.4), and (5.5) imply that
Ĉ��� satisfies the commutation relations implied by
Eqs. (2.8), (2.9), and (2.10). It is in this sense that
Eqs. (5.1), (5.2), (5.3), (5.4), and (5.5) provide a represen-
tation of the relevant Poisson bracket algebra and ‘‘reality’’
conditions.

The above discussion was predicated on the assumed
existence and properties of G�E�. It is beyond the scope of
this paper to analyze the validity of this assumption. From
the discussion in [13] it seems unlikely that G�E� has the
structure of an infinite dimensional group (although the
situation of 1� 1 dimensions is probably an exception due
to the existence of the infinite dimensional group of con-
formal isometries). It turns out that in order to apply the
technique of group averaging, we need the label ‘‘d’’ to

8We thank Charles Torre for discussions on this point.
9We expect that the vanishing of the constraints CA�x� is

equivalent to the vanishing of the smeared constraints C���
provided that the latter holds for sufficiently many �A�X�.
Since ‘‘sufficiently many’’ evidently includes ‘‘infinitely
many,’’ a minimal requirement on G�E� is that it be infinite
dimensional.

DIRAC QUANTIZATION OF PARAMETRIZED FIELD THEORY PHYSICAL REVIEW D 75, 044018 (2007)

044018-9



take values in some group which acts on E. In this regard,
we note that the set of bijective maps from E to itself has
the structure of a group (recall that the set of bijective maps
of any set defines the symmetric group of that set [14]). We
denote this group by S�E�.

As we shall see, the analysis in the rest of this work
holds if we replace the (putative) group G�E� by S�E�. We
denote the action of d 2 S�E� on XA�x� 2 E by XAd �x�,
which is a bijective mapping. Let d1 
 d2 2 S�E� denote
the map obtained by the composition of the map d2 2 S�E�
with d1 2 S�E�, i.e. d1 
 d2�XA�x�� � d1�XAd2

�x�� �:

XAd1
d2
�x�. As before, we define ��d�x�; �d�x�� as the free

field evolution of ���x�; ��x�� from XA�x� to XAd �x�. If G�E�
with the assumed properties does not exist, the discussion
in this section up to this point serves merely to motivate the
imposition of Eqs. (5.1), (5.2), (5.3), (5.4), and (5.5), with d
now taking values in S�E�.

To summarize, we replace the set of quantum operators
ĤG, X̂A�x�, �̂�x�, �̂�x� by the set Ûd, X̂A�x�, �̂�x�, �̂�x�. If
our assumption on G�E� is correct then d takes values in
G�E�. If G�E� (with the assumed properties) does not exist,
d takes values in S�E�. In either case, we impose the
relations (5.1), (5.2), (5.3), (5.4), and (5.5) in addition to
the commutation relations between (and the reality con-
ditions on) the set X̂A�x�, �̂�x�, �̂�x�.

The imposition of these conditions, in conjunction with
the demand that physical states be invariant under the
action of Ûd, constitute our definition of the Dirac quanti-
zation of PFT.

B. G�E� versus S�E�

Clearly, the replacement of G�E� by S�E� is a very
nontrivial step. The group structure of S�E� has very little
to do with the manifold structure of the spacetime M. This
can be seen through the following example. Consider two
distinct spacelike embeddings FA1 �x�, F

A
2 �x�. Let the bijec-

tive map d be such that (i) it maps FA1 �x�, F
A
2 �x� to the

distinct spacelike embeddings FA1d�x�, F
A
2d�x�, (ii) it maps

FA1d�x� and FA2d�x� to FA1 �x� and FA2 �x�, respectively, and
(iii) it is the identity on the rest of E. We can choose FA1 �x�
and FA2 �x� to define intersecting hypersurfaces in M. Since
d only needs to be a bijection, we can choose FA1d�x�,
FA2d�x� such that they define nonintersecting hypersurfaces
in M. Thus elements of S�E� can have a very ‘‘discontinu-
ous’’ action on E. (An even ‘‘worse’’ scenario is if FA1 �x�
and FA2 �x� are chosen so as to define the same hypersurface
in M (albeit with different coordinatizations), and FA1d�x�,
FA2d�x� are chosen such that they define distinct (say, non-
intersecting) hypersurfaces in M.)

Thus, intuitively speaking, S�E� corresponds to a huge
enlargement of the set of gauge transformations generated
by the constraints in classical PFT. The justification for
using S�E� in the quantization of PFT is an a posteriori
one—as we shall show in Sec. VI C, the resultant quanti-

zation of PFT is equivalent to the standard Fock quantiza-
tion of the free scalar field on flat spacetime. This
equivalence relies on the fact that S�E� has a transitive
action on E.

In view of the above discussion, it would be desirable to
replace S�E�with some subgroup thereof which is sensitive
to (at least some aspects of) the manifold structure of M
and which has a transitive action on E.10 This could be
attempted by defining a topology on E which takes into
account properties of M and by restricting attention to
continuous bijections (with continuous inverses) on E
which have a transitive action on E. We leave such an
investigation for future work.

C. Representation of Ûd
We define the action of Ûd by its action on the

embedding-dependent Fock basis states of the subspace
jFi 
H F �H kin (see Eq. (4.20)). For a fixed embedding
FA�x� such a Fock basis consists of the vacuum jFi 
 j0; Fi
and the ‘‘N-particle’’ states, jFi 


Qm
i �b

y
F�
~ki��ni j0; Fi.

Here N �
Pm
i�1 ni, and the N-particle states contain ni

excitations of momentum ~ki, i � 1; . . . ; m. The action of
Ûd is defined as

 Û djFi 
 j0; Fi � jFd�1i 
 j0; Fd�1i; (5.6)

 Û djFi 

Ym
i

�byF�
ni j0; Fi � jFd�1i 


Ym
i

�byFd�1
�ni j0; Fd�1i;

(5.7)

embedding Fd�1 , obtained by the action of the above basis
states. The action of Ûd can be extended to any state in
jFi 
H F (and then to any state in H kin) by linearity.

Next, we show that this action satisfies Eqs. (5.1), (5.2),
(5.3), (5.4), and (5.5). It suffices to check the action of Ûd
on the vacuum and N-particle basis states defined above.

Verification of Eq. (5.1)—Recall that the notation
‘‘Fd�1 ’’ in Eq. (5.12) signifies the embedding Fd�1 , ob-
tained by the action of d�1 on the embedding FA�x�.
Consider the action of d1 on E, followed by the action of
d2 on E. As in Eq. (5.1), we denote the resultant map on E
by d2 
 d1. Under this map XA is mapped to XAd1

and then to
coordinates XAd2
d1

. Thus, we have that

10G�E� with its assumed properties would be a candidate if it
also had a transitive action; however, as mentioned earlier, we
suspect that G�E� with the assumed properties does not exist in
spacetime dimensions greater than 2.
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 Û d2
Ûd1
jFi 


Ym
i

�byF�
ni j0; Fi � Ûd2

jFd1
�1i



Ym
i

�byFd
1
�1
�ni j0; Fd1

�1i

(5.8)

 � jFd2
�1
d1

�1i 

Ym
i

�byFd
2
�1
d

1
�1
�ni j0; Fd2

�1
d1
�1i (5.9)

 � jF�d1
d2�
�1i 


Ym
i

�byF
�d1
d2

�1�
�ni j0; F�d1
d2�

�1i (5.10)

 � Ûd1
d2
jFi 


Ym
i

�byF�
ni j0; Fi: (5.11)

Similar considerations hold when we replace the
N-particle state by the vacuum state j0; Fi in the above
equations. This completes the verification of (5.1).

While Eqs. (5.8), (5.9), (5.10), and (5.11) are straightfor-
ward to check, the notation is a bit cumbersome. It is more
convenient to use the following notation instead. Given a
state j ;Fi 2H F, we denote the action of Ûd on the state
jFi 
 j ;Fi (obtained by the expansion of j ;Fi 2H F
in the Fock basis and the employment of Eqs. (5.6) and
(5.7) on the basis states) by

 Û djFi 
 j ;Fi �: jFd�1i 
 j ;Fd�1i: (5.12)

In this notation we can directly verify (5.1) for any state
jFi 
 j ;Fi as follows:

 Û d2
Ûd1
jFi 
 j ;Fi � Ûd2

jFd1
�1i 
 j ;Fd1

�1i (5.13)

 � jFd2
�1
d1

�1i 
 j ;Fd2
�1
d1

�1i (5.14)

 � jF�d1
d2�
�1i 
 j ;F�d1
d2�

�1i (5.15)

 � Ûd1
d2
jFi 
 j ;Fi: (5.16)

Verification of Eq. (5.2)—Consider the states jF1i 

j 1; F1i, jF2i 
 j 2; F2i where j 1; F1i 2H F1

and
j 2; F2i 2H F2

and FA1 �x�, FA2 �x� are embeddings.
Recall that (,) denotes the inner product on H kin (see
(4.22)). For any d we have that

 �ÛdjF1i 
 j 1; F1i; ÛdjF2i 
 j 2; F2i�

� �j�F1�d�1i 
 j 1; �F1�d�1i; j�F2�d�1i 
 j 2; �F2�d�1i�:

(5.17)

Clearly �F1�
A
d�1�x� � �F2�

A
d�1�x� if FA1 �x� � FA2 �x�. Also,

it is straightforward to see, from (5.6) and (5.7) in con-
junction with our notation, Eq. (5.12), that for any pair of
states j ;Fi, j�;Fi 2H F and any d, the following iden-
tity holds

 h ;Fj�;Fi � h ;Fd�1 j�;Fd�1i: (5.18)

It then follows from (5.17) that
 

�ÛdjF1i 
 j 1; F1i; ÛdjF2i 
 j 2; F2i�

� 0 if there exists A; x such that FA1 �x� � FA2 �x�;

� h 1; F1j 2; F2i if FA1 �x� � FA2 �x� 8 x; A: (5.19)

It follows from the above equation that Ûd is unitary. This,
in conjunction with (5.1) yields (5.2).

Verification of Eq. (5.3)—We have that

 Û dX̂
A�x�Ûyd jFi 
 j ;Fi � ÛdX̂

A�x�jFdi 
 j ;Fdi

(5.20)

 � FAd �x�ÛdjFdi 
 j ;Fdi (5.21)

 � X̂Ad �x�jFi 
 j ;Fi: (5.22)

We have used (4.23) and the definition of X̂Ad �x� (see the
discussion following (5.5)) in the second and third lines.
Note that the second and third lines themselves may be
used as a precise definition of X̂Ad �x�, especially for the case
when d 2 S�E�. This completes the verification of
Eq. (5.3).

Verification of Eqs. (5.4) and (5.5)—It is more conve-
nient to show that Ûd generates the correct evolution on the
operators âS� ~k�, â

y
S �
~k� defined via Eqs. (4.1) and (4.2) in

Sec. IVA. Recall from Eq. (4.13) in Sec. IV C that the
classical counterparts of �âS� ~k�; â

y
S �
~k�� are �a� ~k�; a�� ~k��.

We shall refer to the classical correspondent of the action
of Ûd as ‘‘the finite action of the constraints’’ even when
d 2 S�E�. In this language, we have that the classical
correspondent of the action of Ûd on �âS� ~k�; â

y
S �
~k�� is given

by the corresponding finite action of the constraints on
�a� ~k�; a�� ~k��. From the discussion in Sec. VA, it follows
that this action corresponds to classical evolution from the
slice XA�x� to the slice XAd �x�whereXA�x� is the embedding
part of the PFT phase space data. Thus in the language and
notation of free scalar field evolution employed in
Sec. IV C, the modes a� ~k�, a�� ~k� are to be thought of as
data on the slice XA�x� and hence are denoted by ~a�X�.
Then the finite action of the constraints, labeled by d, on
the data ~a�X� is to evolve them to the data ~a�Xd� by scalar
field evolution from the slice XA�x� to the slice XAd �x�.
Thus, in the notation of Sec. IV C (see, for example,
Eq. (4.17)), we have that

 ~a�Xd� � C�Xd; X� ~a�X�: (5.23)

If Ûd does indeed generate the correct transformations in
quantum theory, then it follows that the quantum corre-
spondent of the above equation is

 Û d
~̂aSÛ

y
d � C�X̂d; X̂� ~̂aS: (5.24)
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Here, the embedding-dependent linear transformation
C�X̂d; X̂� is obtained by replacing XA�x�, XAd �x� in
C�Xd; X� by X̂A�x�, X̂Ad �x� where we have defined X̂Ad �x�
in Sec. VA (see the discussion following Eq. (5.5)) and
through Eqs. (5.21) and (5.22). We shall now verify
Eq. (5.24).

We have that

 Û d
~̂aSÛ

y
d jFi 
 j ;Fi � Ûd

~̂aSjFdi 
 j ;Fdi: (5.25)

Using Eq. (4.19), we have that ~̂aS � C�Fd; F0�
~̂b�Fd�.

Using this we obtain

 Û d
~̂aSÛ

y
d jFi 
 j ;Fi � C�Fd; F0�ÛdjFdi 


~̂b�Fd�j ;Fdi

(5.26)

 � C�Fd; F0�jFi 

~̂b�F�j ;Fi (5.27)

 � C�Fd; F0�C�F0; F� ~̂aSjFi 
 j ;Fi (5.28)

 � C�Fd; F� ~̂aSjFi 
 j ;Fi (5.29)

 � C�X̂d; X̂� ~̂aSjFi 
 j ;Fi: (5.30)

Here we have used (4.19) in (5.28) and (4.18) in (5.29).
We have also used the easily verifiable fact (see the re-
marks at the end of Sec. IV C) that X̂A�x� commutes with
~̂aS. This completes our discussion of Eqs. (5.4) and (5.5).

To summarize, we have verified that H kin provides a
Hilbert space representation for Eqs. (4.26), (4.27), (4.28),
(5.1), (5.2), (5.3), and (5.24). This implies that we have
defined a �-representation for the set of operators
�Ûd; X̂

A�x�; âS� ~k�; â
y
S �
~k�� (or, equivalently, using

Eqs. (4.1) and (4.2), of the set �Ûd; X̂
A�x�; �̂�x�; �̂�x��).

We now proceed to an implementation of Dirac quantiza-
tion along the lines employed in LQG [8].

VI. DIRAC QUANTIZATION

Just as in the case of the spatial diffeomorphism con-
straints in LQG, Ûd does not have the appropriate continu-
ity in d to allow a definition of its (putative) generator
ĈA�x�. Clearly, this is so for d 2 G�E� and is expected to be
so for d 2 S�E� for any reasonable topology on S�E�. If
ĈA�x� is not defined, the identification of its kernel as the
space of physical states is not possible. In such a case we
can still use the LQG method of group averaging [8,9] to
construct the physical state space. After some preliminary
remarks in Sec. VI A, we discuss the construction of the
physical Hilbert space H phys in Sec. VI B and the action of
Dirac observables on physical states in Sec. VI C. We shall
see that the resultant quantization is equivalent to the
standard Fock space quantization. In Sec. VI D we show
how to obtain the action of ĈA�x� on physical states as

functional Schrödinger equations in the case when operator
evolution is unitary and all the embedding-dependent
Hilbert spaces fH Fg are identical. We shall attempt a
reasonably self-contained exposition. However the reader
is urged to consult Refs. [8,9] for details regarding the
group averaging technique. We shall intersperse our ex-
position with remarks pertaining to the analogy with struc-
tures in LQG. These remarks may be ignored by readers
unfamiliar with LQG.

A. Preliminary remarks

(i) Given FA1 �x�, F
A
2 �x� 2 E, H F1

can be identified with
H F2

by an identification of the Fock basis states as fol-
lows. Identify j0; F1i with j0; F2i and identify the
N-particle states (see Sec. V C)

Qm
i �b

y
F1
� ~ki��ni j0; F1i withQm

i �b
y
F2
� ~ki��ni j0; F2i. Since any state can be expanded in

the above Fock basis, every state in H F1
has a counterpart

in H F2
and vice versa. We shall use the notation j ;F1i

and j ;F2i to denote the states so identified. Clearly, if
FA1 �x� � FA2d�x� for some (not necessarily unique) choice
of d, we have that

 jF2i 
 j ;F2i :� ÛdjF1i 
 j ;F1i; (6.1)

which is consistent with the notation of Eq. (5.12).
(ii) Note that even if d 2 G�E�, d defines a bijective map

on E. This follows from the fact that 8 FA�x� 2 E, there
exists �FA�x� � FA

d�1�x� 2 E so that FA�x� � �FAd �x�.
(iii) Let D� denote the vector space of complex linear

mappings from D �H kin (see Eq. (4.21)) to the set of
complex numbers. D� is called the algebraic dual to D.
Elements of D� are called distributions. Consider any
operator Â on H kin such that Ây maps D into itself.
Define the action of Â on D� as follows. Let � 2D�

map j�i 2D to the complex number ��j�i�. Define Â�
by

 Â��j�i� :� ��Âyj�i�: (6.2)

Let Â, B̂ be operators such that the operators Ây, B̂y, ÂyB̂y,
B̂yÂy map D into itself. Then we have that

 Â B̂��j�i� � B̂��Âyj�i� � ��B̂yÂyj�i�; (6.3)

so that the action of the commutator �Â; B̂� on � is

 �Â; B̂���j�i� � ���B̂y; Ây�j�i� � ���Â; B̂�yj�i�:
(6.4)

Equation (6.4) implies that D� provides an anti-
representation for the operators Â, B̂.

B. Physical states through group averaging

For the remainder of this work, we shall restrict attention
to the case that d 2 S�E�. Our considerations will also
apply unchanged if G�E� is such that given FA1 �x�, F

A
2 �x� 2
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E, there exists d 2 G�E� such that FA1d�x� � FA2 �x�. If G�E�
does not have this property there may be superselection
sectors in the physical state space constructed via group
averaging. Since we do not even know if G�E� exists, much
less the structure of G�E�, we leave the analysis for this
case for future work.

1. Construction of the space of physical states

Physical states must be invariant under the action of Ûd,
i.e. � 2H phys if 8 d, Ûd� � �. We can formally con-
struct such a state as follows. Define � by the formal sum

 � �
X
F2E

jFi 
 j ;Fi: (6.5)

Here, we have used the notation defined in (i) above. Then
we have that

 Û d� � Ûd

X
F2E

jFi 
 j ;Fi (6.6)

 �
X

Fd�12E

jFd�1i 
 j ;Fd�1i (6.7)

 �
X
F2E

jFi 
 j ;Fi � �: (6.8)

The formal sum in (6.5), in the language of group
averaging, corresponds to the choice of a discrete measure
on S�E�. To see this, we note that we can define

 � �
� X
d2S�E�

Ûd

�
jF1i 
 j ;F1i; (6.9)

where FA1 �x� is some fixed embedding and the discrete
measure on S�E� is such that the right-hand sides of (6.5)
and (6.9) are identical. Note that FA1 �x� has a nontrivial
‘‘isotropy group’’ [8], i.e. the subgroup of S�E� which
leaves FA1 �x� invariant. The sum in Eq. (6.9) is, therefore,
not over the entire group S�E�, but only over the orbit of the
state jF1i 
 j ;F1i.

The sum (6.5) is a formal one. To make our consider-
ations well defined, it is appropriate to think of � as
defining the distribution � 2D� through

 � �
X
F2E

h ;Fj 
 hFj: (6.10)

The sum in (6.10) is to be interpreted through the action of
� on D as follows. � maps the state jF1i 
 j�;F1i to the
complex number ��jF1i 
 j�;F1i�, where

 � �jF1i 
 j�;F1i� �

�X
F2E

jFi 
 j ;Fi; jF1i 
 j�;F1i

�
(6.11)

 �
X
F2E

�F;F1
h ;F1j�;F1i (6.12)

 � h ;F1j�;F1i; (6.13)

where we have used the definition (see Eq. (4.22)) of the
inner product on H kin in the second line.

The action of � can be extended to all of D by linearity.
The invariance of � (6.8) translates to the easily verifiable
statement that 8 j�i 2D,

 Û d��j�i� � ��Ûyd j�i� � ��j�i�: (6.14)

From (6.9) it follows that � can also be defined by

 � �
X
d

h ;F1j 
 hF1jÛ
y
d ; (6.15)

where the sum over d is again to be interpreted as a sum
over the orbit of the state jF1i 
 j ;F1i rather than over the
entire group S�E�. Since the sum in (6.9) and (6.15) is over
elements of (a (nonunique) subset of) the group S�E�, this
technique of constructing physical states from kinematic
ones is called group averaging.

We denote the finite linear span of the set of invariant
distributions (i.e. those defined through Eq. (6.10) for all
choices of j ;Fi) by D�

phys. Thus � 2D�
phys if � �PN

I�1 cI�I, with cI being complex numbers and each �I

being of the form (6.10),

 � I �
X
F2E

h�I; Fj 
 hFj: (6.16)

We shall see that D�
phys can be equipped with a natural

inner product thus converting it into the Hilbert space
H phys. Before introducing this inner product, it is useful
to understand the structure of D�

phys better. We do this by
defining the group averaging map � [8].

2. The group averaging map �

Equation (6.15) defines a map from states of the form
jFi 
 j ;Fi to states in D�

phys. This map can be extended to
all of D by antilinearity. In the notation of Ref. [8], this
map is denoted by �. Explicitly, �:D!D�

phys is defined
as follows. Let j�i 2D so that

 j�i �
XN
I�1

aIjFIi 
 j�I; FIi: (6.17)

Then �j�i �: � is given by the following expression:

 � �
XN
I�1

a�I

�X
d

h�I; FIj 
 hFIjÛ
y
d

�
�
XN
I�1

a�I�I (6.18)

with �I �
P
F2Eh�I; Fj 
 hFj.

From the definition of D�
phys, it follows that the anti-

linear map � is onto. The map � has a nontrivial kernel.
This can be seen as follows. The action of � defined in
Eq. (6.18) on any state j i 2D,
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 j i :�
XM
J�1

bJjGJi 
 j J;GJi (6.19)

is

 � �j i� �
XN
I�1

XM
J�1

a�I bJh�I;GJj J;GJi: (6.20)

From Eq. (6.1) and the fact that Ûd is unitary, it follows that
��j i� can also be written as

 � �j i� �
XN
I�1

XM
J�1

a�I bJh�I; Fj J; Fi; (6.21)

for any FA�x� 2 E. This implies that ��j i� � 08 j i 2
D if 8FA�x� 2 E,

 

XN
I�1

a�I h�I; Fj 
 hFj � 0: (6.22)

Equation (6.22) implies that the kernel of � consists of all
j�i 2D, j�i �

PN
I�1 aIFIi 
 j�I; FIi 2D with aI,

j�I; FIi such that Eq. (6.22) holds.
The above structure of the kernel implies that every

element of D�
phys is of the form (6.10). More precisely,

let � be an arbitrary element of D�
phys. Then, as can be

verified, there exists a unique state j�;Fi 2H F such that
8 FA�x� 2 E,

 � � �jFi 
 j�;Fi: (6.23)

3. The inner product on D�
phys

The map � endows D�
phys with the following inner

product. Let �, � 2D�
phys. Then their inner product is

defined as

 ��;�� � ��j i�; (6.24)

where j i 2D is any state in D such that �j i � �.
We note the following:
(a) The right-hand side of Eq. (6.24) is independent of

the choice of j i: Let j 1i, j 2i be such that �j 1i �
�j 2i � �. Then j 1i � j 2i is in the kernel of �. From
Eq. (6.22) this means that j 1i � j 2i �

PM
J�1 bJjGJi 


j J;GJi with bJ, j J;GJi such that

 

XM
J�1

b�Jh J; Fj 
 hFj � 0; 8 FA�x� 2 E: (6.25)

Let � � �j�i with j�i 2D given by j�i �PN
I�1 aIjFIi 
 j�I; FIi. Then ��j 1i � j 2i� is given by

Eq. (6.21), the right-hand side of which vanishes as a result
of Eq. (6.25). Thus ��j 1i� � ��j 2i�.

(b) The inner product is Hermitian: Let �, j i be given
by Eqs. (6.18) and (6.19) with aI, bJ not necessarily
satisfying Eqs. (6.22) and (6.25). Then from Eq. (6.21),

we have that

 ��;�� � ���j i�� �
XN
I�1

XM
J�1

a�I bJh�I; Fj J; Fi

� ��;���: (6.26)

(c) Equation (6.24) is linear in its second element and
antilinear in its first element. This follows from the linear
vector space structure of D�

phys and the antilinearity of the
map �.

(d) The inner product is positive definite: Let � � �j�i
be given by Eqs. (6.17) and (6.18) with aI not necessarily
satisfying Eq. (6.22). Then

 ��;�� � ��j�i� �
XN
I�1

XN
J�1

a�I aJh�I; Fj�J; Fi

� h�;Fj�;Fi (6.27)

with j�;Fi �
PN
I�1 aIj�I; Fi. Thus ��;�� � 0 and van-

ishes only if j�;Fi � 0, i.e. only if j�i is in the kernel of �
(see Eq. (6.22)).

(e) As in Footnote 6, we shall gloss over mathematical
niceties related to the distinction between operators and
operator valued distributions, as well as issues related to
unbounded operators and dense domains. However, we do
note here that the completion of the space D�

phys in the
inner product (6.24) does not enlarge D�

phys so that, as
vector spaces, D�

phys �H phys. The interested reader
may easily verify this fact by using Eq. (6.23) and noting
that H F, FA�x� 2 E are Hilbert spaces and hence Cauchy
complete.

C. Dirac observables

1. Classical theory

From the work of Kuchař [1,2] it follows that Dirac
observables can be identified with the values of the phase
space variables ���x�; ��x��, or equivalently, ~a�X� (see the
discussion before Eq. (5.23) for the definition of ~a�X�) at
some initial embedding, say FA0 �x�. We denote the Dirac
observables corresponding to the values of ~a�X� at FA0 �x�
by ~aD � aD� ~k�, a�D� ~k�. Thus ~aD is given by the expression

 ~a D :� C�F0; X� ~a�X�: (6.28)

The following argument shows that aD� ~k�, a�D� ~k� are in-
deed Dirac observables. Consider a finite transformation
generated by the constraints which evolves the data
�XA�x�; ~a�X�� to �XAd �x�; ~a�Xd��. Denote ~aD evaluated on
the new data by � ~aD�d. Then we have that
 

� ~aD�d � C�F0; Xd� ~a�Xd�

� C�F0; Xd�C�Xd; X� ~a�X�

� C�F0; X� ~a�X� � ~aD; (6.29)
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where we used Eqs. (4.17) and (4.18) in the second line.
Thus aD� ~k�, a�D� ~k� are invariant under the action of the
constraints. Hence they are classical Dirac observables.

Clearly, since ~aD is related to ~a�X� via a canonical
transformation only dependent on XA�x�, it follows that
the Poisson brackets between aD� ~k�, a�D� ~k� are given by

 faD� ~k�; aD�~l�g � 0 � fa�D� ~k�; a
�
D�
~l�g;

faD� ~k�; a�D�~l�g � i�� ~k; ~l�:
(6.30)

2. Quantum theory

The quantum correspondent of Eq. (6.28) is

 

~̂a D :� C�F0; X̂� ~̂aS; (6.31)

where C�F0; X̂� is defined by replacing XA�x� by X̂A�x� in
the expression for C�F0; X�. The action of ~̂aD on jFi 

j ;Fi is given by

 

~̂a DjFi 
 j ;Fi � C�F0; X̂� ~̂aSjFi 
 j ;Fi (6.32)

 � C�F0; F� ~̂aSjFi 
 j ;Fi (6.33)

 � C�F0; F�C�F;F0�jFi 

~̂b�F�j ;Fi (6.34)

 � ~̂b�F�jFi 
 j ;Fi: (6.35)

We have used the fact that X̂A�x� commutes with ~̂aS (see
Eq. (4.26) in (6.33). Equation (6.33) follows from the
definition of ~̂aS in Eq. (4.19). Equation (6.35) implies
that ~̂aD has the following properties.

(a) ~̂aD maps physical states to physical states: Let � 2
D�

phys. Then it follows from Eq. (6.23) that � is of the form
� � �j�i, j�i � jFi 
 j�;Fi. Let j i 2D, j i �
jGi 
 j ;Gi. Then

 â D� ~k���j i� � ��âyD� ~k�j i� (6.36)

 � ��jGi 
 b̂yG� ~k�j i� (6.37)

 � h�;Gjb̂yG� ~k�j ;Gi (6.38)

 �: �âD� ~k�
�j i�; (6.39)

where

 � âD� ~k�
� ��b̂F� ~k�jFi 
 j�;Fi�: (6.40)

Since states of the form jGi 
 j ;Gi are a basis for D, and
since ��b̂F� ~k�j�i� is independent of the choice of FA�x� 2
E, it follows that âD� ~k�� is of the form (6.10) and is hence
a physical state. Similar considerations hold for âD� ~k�y.

(b) The action of the operators âD� ~k�, â
y
D�
~k� on physical

states provides an anti-representation of their Poisson
bracket relations (6.30): Given � 2D�

phys and j i �
jFi 
 j ;Fi, we have that

 �âD� ~k�â
y
D�
~l����j i� � �âyD�~l����jFi 
 b̂

y
F�
~k�j ;Fi�

(6.41)

 � ��jFi 
 b̂F�~l�b̂
y
F�
~k�j ;Fi�; (6.42)

so that �âD� ~k�âD�~l�y� � �b̂F�~l�; b̂
y
F�
~k�� � �� ~k; ~l�. Similar

calculations, with the same choice of j i as in the above
equations show that the commutators �âD� ~k�; âD�~l��,
�âyD� ~k�; â

y
D�
~l�� are mapped to the commutators

�b̂yF�~l�; b̂
y
F�
~k��, �b̂F�~l�; b̂F� ~k��. Note that (i) b̂F� ~k�, b̂

y
F�
~k�

are annihilation, creation operators on H F,
(ii) Eq. (6.42) (and similar equations for the other commu-
tators) is independent of the choice of FA�x�, and (iii) states
of the form jFi 
 j ;Fi, FA�x� 2 E provide a basis for D.

It follows from (i)–(iii) that Eq. (6.35) defines an anti-
representation, on H phys, of the Poisson algebra generated
by the Poisson brackets (6.30).

(c) The operators âD� ~k�, â
y
D�
~k� are adjoint to each other

on H phys: Let �i � �j ii, j ii � jFi 
 j i; Fi, i � 1, 2
(Eq. (6.23) implies that this choice of j ii involves no loss
of generality). Then we have that

 ��1; âD� ~k��2�� ��2�b̂
y
F�
~k�jFi 
 j 1; Fi� (6.43)

 � h 2; Fjb̂
y
F�
~k�j 1; Fi; (6.44)

 ��2; â
y
D�
~k��1�� ��1�b̂F� ~k�jFi 
 j 2; Fi� (6.45)

 � h 1; Fjb̂F� ~k�j 2; Fi: (6.46)

Since b̂F� ~k�‘, b̂
y
F�
~k� are Hermitian conjugates on H F, it

follows that ��1; âD� ~k��2��
� � ��2; â

y
D�
~k��1�� thus im-

plying that �âD� ~k��y � âyD� ~k� on H phys.

3. Equivalence with the standard Fock representation

Recall that in the standard Fock quantization, the field
operator �̂�X� is given by the expression

 �̂�X� �
1

�2��n=2

Z dnk�����
2k
p �â� ~k�e�ikT�i ~k	 ~X

� ây� ~k�eikT�i ~k	 ~X�; (6.47)

where we have used the notation X0 � T and fXA; A �
1; . . . ; ng � ~X. The operators â� ~k�, ây� ~k� are the annihila-
tion and creation operators on the standard Fock space F .
The standard Fock vacuum is denoted by j0i so that
â� ~k�j0i � 0 8 ~k and F is generated by the (repeated)
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action of the creation operators ây� ~k� on j0i. We denote the
pair â� ~k�, ây� ~k� by ~̂a.11

We shall now show that this quantization is equivalent to
the Dirac quantization of PFT constructed in this work. We
proceed in two steps. First we show that jF0i 
H F0

is
naturally isomorphic to H phys. Next we show that jF0i 


H F0
is also naturally isomorphic to F and that the con-

sequent isomorphism between F and H phys renders the
two representations equivalent.

Equations (6.22) and (6.23) imply that � restricted to
jF0i 
H F0

is bijective. Specifically, (6.22) and (6.23)
imply that every j i 2 jF0i 
H F0

is uniquely mapped
to � 2H phys via �j i � �. Further, given j i, j�i 2
jF0i 
H F0

, we have that

 ��j i; �j�i� � h�j i; (6.48)

 â D� ~k��j�i � �b̂F0
� ~k�j�i; (6.49)

 â yD� ~k��j�i � �b̂yF0
� ~k�j�i: (6.50)

These equations imply that � defines a 1-1, antilinear map
from jF0i 
H F0

to H phys which induces an antilinear
?-homomorphism from the ?-algebra of operators gener-
ated by b̂F0

� ~k�, b̂yF0
� ~k� to that generated by âD� ~k�, â

y
D�
~k�.12

Next, note that the representation of the ?-algebra of
operators generated by b̂F0

� ~k�, b̂yF0
� ~k� on jF0i 
H F0

is

(trivially) unitarily related to that generated by â� ~k�, ây on
F . Explicitly, we define this relation via the map U:F !
jF0i 
H F0

where

 Uj0i � jF0i 
 j0; F0i; (6.51)

 U
Ym
i

�ây� ~ki��ni j0i �
Ym
i

�b̂yF0
� ~ki��ni jF0i 
 j0; F0i: (6.52)

Clearly, we have that13

 U~̂aUy � ~̂b�F0�: (6.53)

It follows that the map U :� � 
 U is a 1-1, antilinear
map from F to H phys which induces an antilinear
?-homomorphism from the ?-algebra of operators gener-
ated by â� ~k�, ây� ~k� to that generated by âD� ~k�, â

y
D�
~k�. In

language shorn of mathematical jargon, all we are saying is
that the Dirac quantization constructed here is unitarily
equivalent to the conjugate representation defined by the
Fock representation, where, by conjugate representation
we mean the representation defined on ‘‘bra’’ states from
that defined by ‘‘ket’’ states. This completes our proof of
the physical equivalence of the standard Fock quantization
and the Dirac quantization described in this paper.

D. The functional Schrödinger equation in 1� 1
dimensions

In this section, our aim is to reveal the structures in the
Dirac quantization of PFT which allow for the possibility
of defining functional Schrödinger equations in 1� 1 di-
mensions of the type considered in Refs. [3,4]. We shall
assume familiarity with the contents and results of
Refs. [3,4] and limit our exposition to a rephrasing of those
results in terms of the structures defined here.

We start with a few remarks which lead to a caveat
regarding the applicability of the Torre-Varadarajan analy-
sis to the case of noncompact Cauchy slices considered
here. Torre and Varadarajan [4] showed that in 1� 1
dimensions, free scalar field evolution from an initial flat
slice to an arbitrary slice of flat spacetime is unitarily
implemented in the standard Fock space quantization.
They defined Schrödinger picture states by the action of
the inverse (embedding-dependent) unitary transformation
on (embedding-independent) states in the standard Fock
space. By functionally differentiating the Schrödinger pic-
ture states with respect to the embedding, TV showed that
these states satisfy a functional Schrödinger equation
which corresponds to a rigorous definition of Eq. (1.2) in
quantum theory. This rigorously defined Schrödinger equa-
tion was anticipated in full detail by Kuchař in [3]; in terms
of structures introduced in [3,4]. The TV results in 1� 1
dimensions [4] were derived for compact Cauchy slices
diffeomorphic to the circle. In this paper, for the case of
1� 1 dimensions, we have considered noncompact
Cauchy slices diffeomorphic to the real line. Hence,
strictly speaking, the TV results do not apply here.
However, TV have persuasively argued in Sec. V of
Ref. [4] that their results should also apply to the case of
the spatial topology being that of the line.14 Therefore we
shall simply assume that the relevant TV structures exist in
the case of the noncompact Cauchy slices considered here.

11In the notation employed in Sec. IV B, the operators ~̂a would
be denoted by ~̂aH�F0� since they are the Heisenberg picture
representatives of the classical variables ~a�X� on the initial slice
XA�x� � FA0 �x�. This notation (and a suitable notation for the
individual annihilation and creation operators) is cumbersome
and this is why we have used the simpler notation with the bold
face.

12The operators which generate the algebra are related by
adjointness relations. These relations induce adjointness rela-
tions among elements of the algebra in the obvious way. Such an
algebra with adjointness relations is called a ?-algebra. A
?-homomorphism between two ?-algebras preserves both the
algebraic and the adjointness relations between elements of the
algebras. For a more precise definition of these structures, see,
for example, Ref. [8].

13Equation (4.19) implies that ~̂b�F0� � ~̂aS. The discussion in
Secs. IV B and IV C suggests that ~̂aS be associated with the
‘‘time zero’’ Heisenberg operators ~̂aH�F0�. The discussion after
(6.47) with regard to notation implies this association is consis-
tent with Eq. (6.53) below.

14Conversely, we believe that our general considerations here
should apply with suitable modifications to the case of compact
Cauchy slices.
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It is beyond the scope of this paper to provide a detailed
generalization of the TV analysis to the noncompact case.
We now proceed to a rephrasing of the (assumed) TV
results in terms of our constructions in this work.

Note that if evolution between FA0 �x� and any FA�x� 2 E
is unitary on F , it follows that all the Hilbert spaces H F,
FA�x� 2 E are identical. We denote this single Schrödinger
picture Hilbert space by H . Of course H � F ; we use a
different notation only to remind the reader that we are
dealing with a Schrödinger picture representation.

Next, note that if P̂A�x� was a well-defined operator on
H kin, we could directly evaluate its action on � 2H phys

via the dual action (6.2). However, as mentioned earlier,
besides the problems described in Sec. V, the operator ĤG
does not have the requisite continuity in GA�x� to define
P̂A�x�. Specifically, the limit

 lim
�!0

Ĥ�G � 1

i�
j i :�

Z
dxGA�x�P̂A�x�j i (6.54)

for j i 2DX does not exist on the Hilbert space H X (see
Sec. III C for a discussion of DX, H X). Although this limit
does not exist on H X, we show below that such a limit can
be defined on a suitable subspace of the algebraic dual
space D� (see (iii) of Sec. VI A for the definition of D�).

Let � �
P

�F2Eh ; �Fj 
 h �Fj 2H phys. We define the
‘‘partial’’ action of � on jFi, FA�x� 2 E as follows:

 � �jFi� :�
�X

�F2E

j �Fi 
 j ; �Fi; jFi
�

(6.55)

 �
X
�F2E

� �F;Fh ; �Fj (6.56)

 � h ;Fj: (6.57)

Next, consider the action on �, of the operator Ĥ�G�1
i� , in

the context of this partial action. We have that

 

�
Ĥ�G � 1

i�
�
�
�jFi� � �

�
Ĥy�G � 1

�i�
jFi

�
(6.58)

 � �
�
jF� �Gi � jFi

�i�

�
(6.59)

 �
h ;F� �Gj � h ;Fj

�i�
: (6.60)

Note that in general FA�x� � �GA�x� =2 E for arbitrary
FA�x�, GA�x�, �. However, for a given GA�x� of compact
support and FA�x� 2 E, it is straightforward to see that
there exists �0 > 0 such that 8 � satisfying the condition
0< �< �0, we have that FA�x� � �GA�x� 2 E.15 Thus,

Eq. (6.60) is well defined for sufficiently small �. Note
that such an equation would not be meaningful if H F��G
and H F were not identical. This is expected to happen in
higher dimensions for generic choices of FA�x�, GA�x� [5].
Thus Eq. (6.60) is expected to only make sense in 1� 1
dimensions or in the context of special choices of FA�x�,
GA�x� in higher dimensions.

The �! 0 limit of Eq. (6.60) exists on the Hilbert space
H provided j ;F� �Gi is sufficiently well behaved in �.
If this happens we may write the �! 0 limit of (6.60) as

 lim
�!0

�
Ĥ�G � 1

i�
�
�
�jFi� � i

Z
dxGA�x�

�

�FA�x�
h ;Fj:

(6.61)

As we argue below such well-behavedeness should follow
from a specification of the Schrödinger picture-vacuum
state along the lines of Ref. [4]. Recall that we defined
j0; Fi to be the state annihilated by the operators b̂F� ~k�,
8 ~k. This definition only specifies j0; Fi up to an FA�x�
dependent phase. For an arbitrary choice of this phase, the
�! 0 limit of Eq. (6.60) may not exist.

In [4], the embedding-dependent-Schrödinger picture
vacuum is constructed by the action of the exponential of
an operator, quadratic in the creation operators, on the
standard Fock vacuum, multiplied by an explicitly defined
embedding-dependent normalization factor. The coeffi-
cients of the creation operators in the exponent are con-
structed out of the Bogoliubov coefficients which define
the classical canonical transformation corresponding to
(inverse) evolution from the embedding back to the initial
flat slice. These structures are in correspondence with the
following structures in this work. Clearly the creation
operators correspond to ay� ~k� and the standard Fock vac-
uum to j0i. Footnote 12, together with the fact that H �

F , implies the identifications b̂yF0
� ~k� � âyS � ~k� � ay� ~k� and

j0; F0i � j0i (in fact, we fix the phase ambiguity in the
definition of j0; F0i by this identification). The Bogoliubov
transformation is C�F;F0� and the Bogoliubov coefficients
are �F;F0

� ~k; ~l�, �F;F0
� ~k; ~l� where ~k, ~l are in correspondence

with the set of real numbers since they are spatial vectors in
1 dimension (see Eq. (4.16) for the definition of �, �).

We expect that, as in the spatially compact case, the
Schrödinger picture vacuum can be explicitly constructed
along the lines of [4] and that, as in [4], it is functionally
differentiable with respect to the embedding. Thus, we
expect that Eq. (6.61) is well defined for j ;Fi � j0; Fi.
The Schrödinger picture N-particle states of Sec. V C can
then be obtained by the repeated action of the creation
operators b̂yF� ~k� on j0; Fi. From [4] we expect that these
states should also be functionally differentiable with re-
spect to FA�x�. It follows that any j ;Fiwhich is a suitably
well-behaved linear combination of these basis states is
also functionally differentiable. The right-hand side of
Eq. (6.61) can be explicitly computed for such states in

15We expect that a similar result should be true forGA�x�, FA�x�
satisfying suitable ‘‘asymptotically flat’’ conditions which allow
for more general GA�x�.
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terms of the functional derivatives of the basis states. We
expect that the latter can be computed along the lines of [4]
and that here, in close analogy to the result of such a
computation in Ref. [4], h ;Fj satisfies a rigorously de-
fined functional Schrödinger equation with a precisely
defined, nontrivial operator ordering prescription for
ĥA�x� and an additional c-number correction.16

This completes our discussion of the (expected) deriva-
tion of the 1� 1-dimensional functional Schrödinger
equation from the Dirac quantization constructed in this
paper.

VII. DISCUSSION

In particle quantum mechanics, the Heisenberg picture
is identified with the Schrödinger picture at some initial
instant of time. In the case of n� 1-dimensional PFT,
Torre and Varadarajan choose this identification to be at
an initial flat slice defined by XA�x� � �0; x1; . . . ; xn�. Their
results imply that embedding-dependent Schrödinger pic-
ture states cannot be constructed as the unitary images of
(embedding-independent) states in the standard
(Heisenberg picture) Fock space, F , for generic choices
of embedding and for n > 1. This rules out the possibility
of defining (unitary) functional evolution of states on F .17

While such evolution of states in the single Hilbert space
F is ruled out, TV showed that functional evolution of
states can be defined, provided the notion of a quantum
state is enlarged to that used in algebraic quantum field
theory [5]. There, algebraic states are identified with PLFs
on the Weyl algebra (see, for example, [12]). Conversely,
every PLF on the Weyl algebra defines, through the
Gelfand-Naimark-Segal (GNS) construction [12], a
Hilbert space representation of the Weyl algebra. This
representation is such that there is a state in the GNS
Hilbert space for which the expectation value of any
Weyl algebra element is the same as the evaluation of the
PLF on this element. Consider the Weyl algebra for a free
scalar field on flat spacetime. Inverse evolution from any
embedding to the initial flat embedding is a canonical
transformation and, hence, defines an automorphism of
the Weyl algebra [5]. The induced action of this automor-
phism on any PLF defines a new PLF, i.e. a new algebraic
state. Any state in F defines, via its expectation values in
the standard Fock representation, a PLF on the Weyl
algebra. The action of the automorphism corresponding

to inverse evolution from an arbitrary embedding to the
initial flat one on this PLF yields an embedding-dependent
PLF, i.e. an embedding-dependent algebraic state. It is in
this sense that functional evolution of algebraic states is
well defined.

In the context of this algebraic quantum field theory
viewpoint, the TV results indicate that the GNS Hilbert
space representation associated with a generic embedding
is inequivalent to the Fock space representation. Indeed,
the embedding-dependent Hilbert spaces H F defined in
Sec. IV D are precisely the embedding-dependent GNS
Hilbert spaces.18 Thus, our work can be considered to be
an implementation, using LQG techniques, of algebraic
state evolution in the context of the single, nonseparable
Hilbert space H kin (4.20). Moreover, even though generic
scalar field evolution is not unitary on F , the evolution
generated by the constraints, as defined by Ûd, is unitary on
the ‘‘much larger’’ Hilbert space H kin (see Sec. V B).
Clearly, the LQG type of representation of the embedding
variables plays a key role in this unitarity.

Despite our demonstration that the TV results are not an
obstruction to a Dirac quantization of PFT, these results
can be restated in the context of Dirac quantization as
follows. Rather than interpret them in the context of a
(putative) Schrödinger picture, the TV results can be in-
terpreted within the context of Heisenberg picture-based
quantizations. In this context, they imply the existence of
inequivalent quantizations of the free scalar field. These
arise from inequivalent complex structures, i.e. inequiva-
lent choices of basic annihilation and creation operators.
Specifically, given an embedding FA1 �x�, the operators
~̂a1 � C�F0; F1� ~̂a (see Eq. (6.47) for the definition of ~̂a)
are the annihilation and creation operators for the Hilbert
space H F1

. Any embedding-dependent Heisenberg pic-
ture operator can be constructed from the operators corre-
sponding to ~̂a, and then reexpressed in terms of the
operators ~̂a1. If the Bogoliubov transformation C�F0; F1�
is not unitarily implementable on F then the Heisenberg
picture representation on H F1

is inequivalent to the stan-
dard Heisenberg picture Fock representation on F . This
unitary inequivalence can be traced to the fact that the
operator N̂0 which measures the number of excitations
associated with ~̂a (i.e. N̂0 �

R
dnkây� ~k�â� ~k�) has a well-

defined vacuum expectation value in F but not in H F1

(where the vacuum state in H F1
is defined to be j0; F1i)

[12]. Conversely the number operator N̂1 for the excita-
tions associated with the operators ~̂a1 has a well-defined
vacuum expectation value in H F1

but not in F .

16The expected functional Schrödinger equation may be iden-
tified with a definition of the constraint operator ĈA�x� on H . As
in Refs. [3,4], the c-number correction is expected to compen-
sate for a Virasoro type anomaly in the constraint algebra which
arises if ĈA�x� is defined without this additional correction; it is
only with this correction that the constraint algebra is expected
to close [3].

17Since embeddings are specified by functions-worth of data,
we refer to the evolution from the initial slice to an arbitrary final
one as ‘‘functional’’ evolution.

18Denote the GNS Hilbert space associated with FA�x� by
H �GNS�

F . Then H �GNS�
F is naturally identified with H F in such

a way that â� ~k�, ây� ~k� are mapped to âS� ~k�, âyS � ~k�. See
Footnote 13 with regard to the naturalness of this identification.
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A Dirac quantization of PFT, equivalent to this quanti-

zation, can be constructed by replacing the operators ~̂b�F�

by (in obvious notation) the operators ~̂h�F� �

C�F0; F1�
~̂b�F�,19 and the Dirac observables ~̂aD by the

Dirac observables ~̂a�1�D � C�F0; F1�âD, in our construc-
tions. Thus, the new kinematic Hilbert space, H 1

kin, is
given by H 1

kin �
L

F jFi 
H 1
F where H 1

F is the Fock
space associated with the annhilation and creation opera-
tors ĥ� ~k�, ĥy� ~k�. The interested reader can check that all the
steps go through and one obtains a quantization equivalent
to the Heisenberg picture quantization on H F1

. In this
quantization the Dirac observable N̂�0�D �R
dnkâyD� ~k�âD� ~k� does not have a well-defined vacuum

expectation value (where the vacuum is defined to be the
state annihilated by â�1�D� ~k�) whereas the Dirac observable

N̂�1�D �
R
dnkây

�1�D�
~k�â�1�D� ~k� does have a well-defined

(vanishing) vacuum expectation value. Conversely N̂�1�D
does not have a well-defined vacuum expectation value in
the representation constructed in Sec. VI (where the vac-
uum is defined to be the state annihilated by âD� ~k�)
whereas the vacuum expectation value of N̂�0�D vanishes.
This concludes our discussion of the relation of the TV
results to the constructions of this work.

We shall discuss the very interesting open issue regard-
ing the existence and structure of G�E� towards the end of
this section. Now, we turn to a summary of technical details
which need to be worked out in the Dirac quantization of
PFT. As mentioned in Sec. II B, we have not specified
asymptotic boundary conditions on the embedding varia-
bles. As mentioned in Footnote 6, we have been cavalier
about the distinctions between genuine operators and op-
erator valued distributions, as well as those between
bounded and unbounded operators. We feel that these de-
tails can easily be supplied in a more careful treatment and
that our results will be unaffected. In Sec. VI D, we as-
sumed that our results would also apply, in the 1�
1-dimensional case, to spatially compact slices of topology
S1. In the spatially compact case, there are two new in-
gredients. The first is the absence of global inertial coor-
dinates. This should easily be handled, as in [2], by
describing the embedding variables as suitable maps
from S1 to the spacetime. The second new ingredient is
the appearance of ‘‘zero modes’’ of the scalar field; these
are quantum mechanical (as opposed to field theoretic)
degrees of freedom and we expect that they can be accom-
modated without changing our basic results, but this needs
to be worked out. Note also that, in the case studied in this
work (i.e. the case of the spatial topology being that of Rn),
we have not explicitly worked out the Bogoliubov coef-

ficients. As noted in [4], there may be infrared problems
when n � 1—we refer the reader to the comments in [4]
as they apply here as well. Note that in this case (i.e. of the
spatial topology being that of a line), a Dirac quantization
of PFT different from ours, has been recently constructed
by Laddha [15]. It would be of interest to compare his
quantization with ours.

Let us assume that our results do go through as envis-
aged in 1� 1 dimensions for the spatially compact case.
Then Footnote 16 indicates that despite an anomaly free
quantization of the constraints, the formalism is still sensi-
tive to the Virasoro anomaly. Further, as stressed by Kuchař
in [3], although there is no anomaly in the algebra of
constraints due to the compensating ‘‘anomaly potential’’
term, there is the usual Virasoro anomaly in the algebra of
Dirac observables which correspond to the normal ordered
stress-energy fluxes. Since the closed bosonic string can be
realized as a PFT with an additional constraint [11], we
believe that a Dirac quantization, along the lines sketched
here, of this system should be possible and should yield a
quantization identical to that of [11]. It would be of interest
to attempt to construct such a quantization and compare it
with Thiemann’s quantization of the string [16].

We also believe that our constructions here can be
suitably (and trivially) modified so as to apply to the case
of axisymmetric PFT in 2� 1 dimensions. Thus, we ex-
pect that despite the results of [6], it is possible to construct
a Dirac quantization of the system which is equivalent to
the standard Fock quantization. The results of [5,6] ob-
tained in the context of higher dimensional PFTs and
cylindrical waves seemed to raise apprehensions about
the physical viability of any Dirac quantization based
approach to quantum gravity. It is ironical that in the light
of our results here, the Dirac quantization of these systems
(certainly PFTs and most likely, cylindrical waves, in their
reformulation as axisymmetric PFTs) are beautiful ex-
amples of the power of the techniques developed in one
such approach, namely, that of LQG.

As mentioned earlier in this section, we shall now turn to
a discussion of the most interesting open issue in this work,
namely, that of a precise characterization of the space of
finite canonical transformations generated by the smeared
constraints C��� of Eq. (2.7). Recall that the problem is that
while the Poisson bracket algebra of the smeared con-
straints is isomorphic to the Lie bracket of vector fields
on the spacetime, the finite canonical transformations gen-
erated by C��� are not in correspondence with the group of
all spacetime diffeomorphisms because the latter do not
leave the space of spacelike embeddings, E, invariant. It is
therefore of interest to know whether there exists an infinite
dimensional space of diffeomorphisms which keep E in-
variant. If this (putative) space exists as the group G�E� of
Sec. VA, and if E can be generated by the action of G�E� on
any fixed element of E, the technique of group averaging
yields the Dirac quantization constructed in this work. If

19In order not to have too cumbersome a notation, we have
omitted to signify the dependence of ~̂h�F� on the fixed embed-
ding FA1 �x�.
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G�E� does not have this property, we expect the existence
of superselection sectors in the space of physical states.
Clearly, the detailed structure of G�E� (if it exists) deter-
mines the structure of the physical Hilbert space.

Since the work of [13] seems to indicate that G�E� may
not exist as an infinite dimensional group, we have re-
placed the set of finite canonical transformations generated
by the smeared constraints by the (intuitively) much larger
set of transformations labeled by bijections from E to itself,
i.e. by elements of S�E�. As discussed in Sec. V B, such
bijections do not have any continuity properties reflective
of the differential structure of the spacetime manifold M.
Nevertheless, this ‘‘enlargement’’ of the set of gauge trans-
formations in quantum theory yields the physically correct
quantization on a separable Hilbert space. It would be
useful to understand exactly why this happens. This en-
largement of the notion of gauge is reminiscent of the
proposed enlargement of the spatial diffeomorphism gauge
in LQG by Zapata [17]. Zapata showed that his proposal
lead to a separable Hilbert space prior to the imposition of
the Hamiltonian constraint. It is not clear what repercus-
sions Zapata’s proposed enlargement of spatial diffeomor-
phism gauge has on the classical limit of LQG. By virtue of
the close analogy between structures in the Dirac quanti-
zation of PFT and in LQG, we hope that this work may be
of some use in clarifying the above issue as well as other

issues (such as those of interpretation) in LQG. Note that
one key difference between the PFT case and LQG is that
in the former, the smeared constraints form a Lie algebra. It
may be of interest to see if progress can be made in an LQG
type of quantization of more complicated systems in which
the constraint algebra is a Lie algebra, such as that of
gravity with appropriate matter [18].

Finally, we note that in this work our aim was to provide
a Dirac quantization of PFT which is unitarily equivalent to
the standard Fock representation of flat spacetime free
scalar field theory. We achieved this despite the TV results,
by a combination of an LQG type representation for the
embedding variables and Fock type representations for the
scalar field variables. One may, of course, enquire as to the
existence of a Dirac quantization of PFT in which both sets
of variables (i.e. embedding and scalar field) are repre-
sented in LQG type representations. Although the question
is open for higher dimensions, significant progress has
been made by Laddha in the case of 1� 1 dimensions [15].
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