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Section I-Introduction 

The vibrations of stretched strings excited by bowing and their practical 
application in musical instruments of the violin class present many important 
and fascinating problems to the mathematician and to the physicist. In the 
present monograph which is the first part of a more complete work on the whole 
subject, I propose to deal with the theory of the excitation of these beautiful and 
characteristic types of vibration under various conditions, and of their com- 
munication to the resonator on which the string is stretched. Experimental 
results in confirmation of those obtained from dynamical theory are also 
presented. 
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The problem which it is proposed to consider has formed the subject of 
investigation by many mathematicians and physicists. A list of the works and 
original papers that I have consulted is given in the bibliographical appendix. The 
present position of the subject cannot be considered satisfactory, in view of the 
fact that no complete and detailed dynamical theory has been put forward which 
could predict and elucidate the many complicated phenomena that have already 
been found empirically by those who have worked in the field and that could also 
point the way for further research. It was this defect in the present state of 
knowledge of the subject that induced me to undertake the investigation. Some 
preliminary work had already been carried out by me on the vibrations of bowed 
strings and the physics of bowed instruments. Reference may be made here to 
three papers which may be regarded as the starting points of this investigation'; 
the exposition given in the present paper is however self-contained. In the paper 
on "Discontinuous Wave-Motion" by myself and another that has appeared in 
the Philos. Mag. for January 1916, it has been shown how the well-known 
principal mode of vibration of a bowed string discovered by Helmholtz2 can be 
reproduced experimentally as a free oscillation by imposing on a stretched string 
a certain simple distribution of initial velocities involving a discontinuity. This 
experiment which was first made in September 1914, suggested my undertaking a 
thorough investigation of the general problem. Free use has been made of a 
simplified form of the theory of discontinuous wave-motion given by Harnack, 
Davis and others, which I have extended so as to cover cases not considered by 
these  writer^.^ The whole subject is considered in the light of dynamical theory, 
and an attempt has been made to divest it of empiricism as far as possible. 
Emphasis is laid upon the cases which are of practical interest in music. To make 
the present monograph as comprehensive as possible in respect of the matters 
dealt with, I shall develop the theory, step by step, in detail. A summary of the 
treatment and of the results obtained will be found in section XIV. Many 
illustrative diagrams, photographic curves and numerical results will be found in 
the paper. Not only does the theory succeed in explaining all the known 
phenomena, but it has also justified itself by predicting many new relations and 
results which have been tested experimentally. These are also referred to in the 
course of the paper and in the summary. 

' C V Raman, M.A., May 191 1 .  "Photographs of Vibration-Curves," Philos. Mag.; C V Raman, M.A., 
1914. "The Motion of Bowed Strings," Bull. Indian Assoc. Cultiv. Sci.; See also Sci. Abstr. February 
1915, and Nature (London), August 13, 1914, page 622; C V Raman, M.A., and S Appaswamaiyar 
January 1916 "On Discontinuous Wave-Motion," Philos. Mag. 
'Sensations of Tone, English Translation by Ellis. 
'Two preliminary notes on the subject have been published by me: "On Some New Methods in 
Kinematical Theory," Bull. Calcutta Math. Soc., Vol. IV, pages 1-4; "On the summation of certain 
Fourier Series involving discontinuities," Ibid. V pp. 5-8. 



Section 11-Effect of periodic force applied at a point 

It is clear that the motion of a bowed string is a case of maintained vibration, and 
an adequate treatment of the subject is only possible if the dissipative forces to 
which the string is subject are taken into account. The dissipation may be due, 
(a) to the direct communication of energy to the surrounding medium from the 
string, or (b) to motion set up in the supports between which the string is 
stretched. The forced oscillation of a string in the presence of dissipative forces of 
the first kind, is readily found on the assumption that each element of the string is 
resisted by a force proportional to its velocity. Lord Rayleigh and others have 
discussed the motion that would ensue under such conditions when a periodic 
force is impressed at one point on the string. In practice, however, it is known that 
the second source of dissipation is generally of much greater importance than the 
first. The energy of the vibrating string is conducted through the bridges over 
which it is stretched to the sides of the box on which the bridges are fixed, and 
ultimately to the atmosphere as sound-waves. 

We shall now consider the motion of a string, one end of which is supposed to 
the rigidly fixed at the point x = 0 and the other end of which (x = I )  passes over a 
bridge. A periodic force E cos mt is assumed to act at the point x = x,. The string 
may be taken to be perfectly uniform and not subject to any resistance, so that the 
communication of energy to the surroundings takes place only through the 
bridge. The equation of motion of the string is 

The solution of the equation for values of x between 0 and x, may be written as 

y =  F ,  sinpxsinmt + G, sinpxcosmt (2) 
where 

From x = x, up to x = 1 we may write 

y = D, cos p(1- x) sin mt + E ,  cos p(1- x) cos mt 
+ F ,  sin p(1- x) sin mt + G, sin p(1- x) cos mt. (4) 

Since y must be continuous at the point x,, 

F, sin px, = F, sin p(1- x,) + D, cos d l -  x,) (5 )  
G, sin px, = G, sin p(1- x,) + E,  cos p(1- x,). (6)  

The discontinuous change in the value of dyldx at the point of x, is due to the 
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force E cos mt. From this we get the two equations 

F, cos px, + F2 cos p(1- x,) - D2 sin d l -  x,) = 0 

At the point x = I, 

and this motion at the bridge must be due to its yielding under the transverse 
periodic components of the tension. If the equation of motion of the bridge is 

where M is the mass of the bridge and associated parts, we obtain, by substitution, 
the equations 

(f - M m2)D2 = T,pF, + g2mE2 (9) 
(f - M m2)E2 = TopG2 - g2mD2. (10) 

From the six equations numbered (5) to (lo), the six unknowns F,, F,, GI, G2, 
D, and E ,  should obviously be capable of complete determination. Putting 

= tan0 and g2m = tan), 
f - ~ r n ~  f - Mm2 

the equations may be solved by first eliminating D,, E2 and then F,, GI. Using for 
brevity the expression tan $ = tan 0 cos2 ) and 6 = tan 0 sin 4 cos ), the elimi- 
nant equations obtained are 

F2 sin (pl + $) + G,6 cos $ cos pi= 0 

E cos $ sin px, 
F26 cos $ cos pl - G2 sin @I + +) + = 0.  

P To 
Solving these two equations, we obtain 

- E6 cost $ cos pl sin px, 
F -  

- pTo[sin2 (pl+ $) + b2 cos2 $ cos2 pfl 

- E cos $ sin (pl + $) sin px, 
G2 = 

pTo[sin2 (pl + $) + 6' cos2 $ cos2 pl]' 

If the impressed force E cos mt is regarded as an arbitrarily determined quantity, 
the interpretation of the preceding result is a simple matter, provided tan ) 
(which involves the damping factor g2) is regarded as very small. The second term 
in the denominators is then very small relatively to the first, and the maximum of 



F, is obtained when the first term in the denominator is zero, i.e. when 

$ being then practically equal to 8. G2 is found to be zero when F, has its 
maximum value. 

When sin px, is zero, it is found from equations (5) to (10) that F,, G,, D,, E2 
and F, are all equal to zero. The significance of this is that when the point of 
application of the force coincides with a node of the string for the particular 
frequency of oscillation, the whole of the string between the bridge and the point 
of application remains completely at rest. Only the portion of the string between 
the fixed end and the point of application has any movement, this being of very 
small amplitude, viz. (E/pTo) sin px cos mt. It is thus seen that a periodic force of 
given magnitude produces an effect which is insignificant when it is applied at a 
node of the resulting oscillation, and which gradually increases as the point of 
application is removed further and further from the node. This result has many 
applications, as we shall see later on. 

Generally speaking, the angle 9 may also be taken to be very small, the quantity 
Cf2 - Mm2) being either positive or negative and large compared with Top. We 
then find, as may have been expected, that the vibration set up by the periodic 
force is a maximum when its frequency is the same as that of the free vibrations of 
the string of length 1 with both ends rigidly fixed. But the case is otherwise when 
Cf2 - Mm2) is small, that is, when the free periods of vibration of the string and the 
bridge, taken separately, are nearly equal to one another. If the two periods are 
nearly equal to one another, the amplitude of the vibration of the string set up by 
the application of a periodic force of given magnitude and of frequency equal to 
that of its free oscillations is considerably smaller than if the natural periods of the 
string and of the bridge differed appreciably. To elicit the same amplitude of 
vibration, therefore, a comparatively much larger force would have to be applied 
when the frequency of the vibration is the same as that of the free period of the 
bridge and associated parts. This is the explanation of the difficulty noticed in 
bowing a string steadily when its pitch is that of the maximum resonance of the 
instrument. In section XII, we shall consider the special effects observable under 
these conditions when the pressure of the bow is insufficient to maintain a steady 
vibration, and also those produced by loading the bridge. 

In dealing with the motion of bowed strings, we have to consider the effect, not 
of a simple harmonic force, but of a system of forces whose frequencies form a 
harmonic series acting over a finite region of the string which may, by courtesy, be 
styled the "bowed point." As the bridge over which the string passes, together 
with its associated masses, may have several free periods of vibration, it is obvious 
that the formulae connecting the various harmonic components of the periodic 
force brought into play by the bow, with the respective components of the 
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resulting motion, would not, in general, be of a simple character. Fortunately, 
however, as will be shown in the course of the paper, it is possible to build up a 
theory, which successfully predicts the phenomena observable under a very wide 
variety of conditions. The only assumptions that need be made for the present are 
(I), that the string is uniform and of negligible stiffness, and (2), that the yielding at 
the bridge is negligibly small in comparison with the motion of the string at the 
bowed point, or at any other point actually chosen for observation. These 
assumptions, which may be approximated to, in practice, as closely as desired, 
greatly simplify the treatment. The main result of the preceding treatment that is 
utilized, is that the effect of any of the harmonic components of the impressed 
force depends upon the point at which it is applied, vanishing when it is applied at 
a node, and increasing gradually as it is removed further and further from it. 

The assumptions of the uniformity and flexibility of the string are made to 
ensure the treatment being as far as possible rigorous. Except, however, in the 
case of very complicated types of vibration, these assumptions are not essential, 
provided the frequencies of the normal modes of vibration are not so far from 
forming a harmonic series as to prevent the bow eliciting all the members of the 
series which are of importance, as components of a strictly periodic forced 
oscillation. Owing to this restriction and the dispersion which the waves suffer in 
travelling on a non-uniform string, the treatment then requires modification, as 
will be referred to again, later on. 

Section 111-The modus operandi of the bow 

The function of the bow as normally applied is both to elicit and to maintain thd 
vibrations of the string. The two processes are interdependent, but it is well to 
remember that they should not be confused with each other, inasmuch as it may 
well happen that the character of the motion in its initial stages is not necessarily 
the same or even analogous to that maintained in the final steady state. For the 
present, however, we need not enter into these intricacies, but may simply assume 
that the motion is maintained in some perfectly periodic manner by the action of 
the bow, and proceed to find its character. It is obvious that on the assumptions 
set forth in the preceding section the period of the maintained oscillation is the 
same as that of the free vibrations of the string. 

In a well-known paper on "Maintained Vibrations" (Philos. Mag., 1883) 
reproduced in his Theory of Sound, Vol. I ,  page 81, Lord Rayleigh has discussed 
the general theory of vibrations elicited by generators and has shown that the 
supply of energy to the system through the action of the generator in any given 
time, may sometimes actually exceed that lost by the system in the same time 
through dissipative forces. When this happens, the excited vibrations continue to 
increase indefinitely in amplitude, until some physical limit is reached beyond 
which the equations of motion originally assumed cease to apply. The motion of a 



bowed string is evidently a case of this kind, the physical limit beyond which the 
vibrations cannot increase being imposed by the finiteness of the velocity of the 
bow. It has been suggested (with more or less definiteness) by the previous writers 
on the subject, that the bowed point on the string does attain or nearly attain the 
velocity of the bow in its movement in one direction. As will be seen presently, the 
question whether the forward velocity of the bowed point is absolutely the same 
as that of the bow is one of fundamental importance in the theory of the subject, 
and in one of my own previous publications,4 I have shown how this identity of 
velocities can be brought experimentally to a test. What I propose to do here is to 
discuss the dynamical principles underlying the case in some detail, and then to 
pursue the argument to its logical conclusions. 

The magnitude of the frictional force due to the bow at any instant must 
obviously depend upon the pressure with which it is applied and upon the relative 
velocity at the point of contact. It is also clear that this relative velocity cannot 
oridinarily change sign during the motion, for, if it did, the entire frictional force 
would also change sign and the excess velocity of the bowed point would be 
immediately damped out. (An excellent illustration of this principle may be had 
by bowing a fork vigorously and then suddenly reducing the velocity of the bow. 
It will then be found that the amplitude of vibration of the fork also falls with 
practically equal suddenness.) With an efficient generator, e.g. a bow with rosined 
horse hair acting on the string, the frictional force exerted would be much greater 
when the relative-velocity is nearly but not quite zero, than when it is large. On 
the other hand, when the relative velocity is actually zero, the friction ceases to be 
a determinate function of the relative velocity. From these premises, it is clear 
that, when the bow is applied with sufficient pressure and not too great a velocity, 
the maintaining forces brought into play would be far in excess of those required 
to maintain the vibration of the string (the mass and damping of the latter both 
being small), so long as the relative velocity at the point of contact does not 
actually become zero during any part of the vibration. On the other hand, we 
know that a steady state of vibration is only possible when the energy gains and 
losses balance each other, i.e. when the harmonic components of the force exerted 
by the bow are just sufficient to maintain the motion. The only possible inference 
that can be drawn under the circumstances is that the bowed point does actually 
attain the velocity of the bow during part of its motion and ultimately throughout 
the fractional part or parts of the period of vibration during which it has a 
forward movement. During these stages, the bow merely carries forward the point 
of the string with which it is in contact, and it is important to notice (accordingly 
to the preceding argument) that the frictional force then acting on the bowed 
point would actually fall below the maximum statical value; by how much it 
would fall below this maximum, would depend on the circumstances of the case, 

- 
4See Sci. Abstr. (Physics), February, 1915, p. 87 (C V Raman). 
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viz. the magnitude of the friction during the other stages of the motion as 
determined by the relative velocity, and the magnitude of the forces required to 
sustain the motion. , 

When the bowed point has the velocity of the bow in all the stages of forward 
movement, there is necessarily a discontinuous change of velocity5 when it starts 
moving backward. The preceding argument may be pressed a little further if we 
assume that the forces required to maintain the motion are very small compared 
with the variation of frictional force due to a finite change of relative velocity. 
(Such an assumption would, in general, be justifiable if the pressure of bowing 
were sufficient and the damping coefficient were sufficiently small.) It would then 
follow that the frictional force exerted by the bow is practically constant 
throughout the whole motion, and that during all the intervals in which the 
relative value is not zero, it has a finite constant value which is the same for all 
such intervals. The relative velocity changes from this value to zero and vice versa 
in a discontinuous manner. 

From a consideration of dynamical principles and the relative order of 
magnitudes of the quantities involved, we thus arrive at the following two results: 
(a) during one or more intervals in each period of vibration, the bowed point has a 
forward movement which is executed with constant velocity exactly equal to that 
of the bow; (b) during the other interval or intervals, the bowed point moves 
backwards, also with constant velocity, this being the same for all such intervals 
(if there be more than one). The preliminary treatment of the vibrational modes 
given in the succeeding sections is mainly founded on these two results. It must be 
observed, however, that as the argument by which the second result was deduced, 
is rigorous only in the limiting case of a vanishingly small damping coefficient, 
this particular result, viz. the constancy of velocity in the backward movement, 
cannot be regarded as holding good with the same completeness and generality as 
the first result, i.e. the constancy of velocity in the forward movement. We are thus 
led by the argument to anticipate the existence ofcases in which the velocity of the 
bowed point varies in a continuous manner, particularly in the stages in which the 
movement is in a direction opposite to that of the bow. This is a feature which 
becomes of great importance in certain cases, specially in those of musical 
interest, and which therefore requires to be emphasised. For the present, however, 
it is advantageous to consider the constancy of the velocities of the bowed point 
as holding good rigorously, both in the forward and backward movements. This 
assumption serves admirably as the basis on which the kinematical theory of the 
various possible modes of vibration may be discussed. We shall accordingly 
proceed on this basis. 

We may call the two velocities possible at the bowed point, v, and v, 
respectively, v, being the velocity of the bow, and v, the velocity of the bowed 
point when it travels against the bow. The intervals of time TI, T,, T, etc. in each 

'Equal to the velocity of the bow plus the initial speed of backward movement. 



period of vibration during which the velocity is v, and the intervals T2, T4, T6 etc. 
in which it is v, are obviously connected by the equations, 

TI + T2 + T, + T, + T, + T, + + = T (the complete period of vibration). 

As already remarked, the argument shows that in the presence of dissipative 
forces, the constancy of velocity in the intervals of backward movement is not by 
any means so generally assured as the intervals of forward movement, and a 
steady state of motion in which the total of the time intervals of movement in the 
direction opposite to that of the bow, exceeds that of the intervals of movement 
with the bow, is altogether out of the question. The only cases, therefore, whose 
kinematics need be considered in detail are those in which v, is numerically not 
less than v,. 

Section IV-Simplified kinematical theory 

From the general results indicating the nature of the motion at the bowed point 
obtained in the preceding section, we now proceed to build up a detailed 
kinenatical theory of the motion of the bowed string. For this purpose the 
ordinary Fourier analysis is unsuitable, as it is neither convenient nor suggestive. 
I have therefore devised a simple graphical treatment which is based upon the use 
of the velocity-diagram of the string and appears admirably adapted for the 
present investigation. 

The general solution of the equation of wave propagation on an infinite string 
not subject to damping is, 

y =  f i (x - at) + f,(x +at). 

It is well known that this solution for the case of an infinite string can be used to 
represent the configuration at any instant of a vibrating string of finite length, by 
arranging the form of the displacement waves in such manner that the motion is 
periodic and satisfies the terminal condition y = 0 at the two ends of the string. 

Similarly, the solution obtained by differentiating (1) with respect to time, viz. 

can be applied to represent the velocity diagram of a finite string at any instant 
during its vibration, if the periodicity of the motion and the terminal conditions of 
velocity are secured. It is obvious that solution (12) as it stands, represents the 
velocity waves that travel on an infinite string without change of form in the 
positive and negative directions respectively. In the case of a finite string of length 
I ,  the reflexions that take place at the two ends have to be taken into account and 
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we may write 

dy - = O(x - at)  + 4 ( x  + at). 
dt 

(13) 

The functions 6(x - at)  and 6(x + at)  represent the positive and negative 
velocity waves which must be imagined as extending to infinity in both directions. 
Further they must each of them be periodic with wavelength equal to twice the 
length of the string, and must be so related that at the two ends of the string x = 0 
and x = 1, the terminal condition dy/dt = 0 is always satisfied. This can be secured 
by arranging the form of the velocity waves in much the same way as the 
displacement waves would be arranged to secure the terminal condition y = 0, i.e. 
the form of the positive velocity wave from x = 0 up to x = 1 in its initial position is 
an inverted and reflected image of the negative wave from x = 1 up to x = 21, and 
vice versa. 

The cases in which the positive and negative velocity waves are completely 
identical in their initial positions, present features of special interest. Half the 
initial velocity at each point on the string is then due to the positive wave, and the 
other half to the negative wave, and there are no initial displacements, i.e. the 
string is everywhere in its position of statical equilibrium. After the expiry of half a 
period, i.e. when the positive and negative waves have each moved through a 
distance equal to the length of the string, the latter is again everywhere in its 
position of equilibrium. This is so because one half of each wave is merely the 
inverted and reflected image of the other half, and the'displacements resulting 
from the initial velocities are annulled during the same half period. During the 
second half period the velocity at every point on the string goes back again to its 
original value through exactly the same stages; in other words, the velocity is 
everywhere an even periodic function of the time which when plotted gives a 
figure with the symmetry characteristic of such functions. It is thus seen that the 
positive and negative velocity waves are necessarily identical in any case in which 
the changes of velocity at points on the string take place in a symmetrical manner 
with respect to time. 

We now proceed to consider casesin which the velocity changes that take place 
at some particular point on the string, say the point x = x,, can be assumed to 
have a specified form. Then the form of the velocity waves 8(x - at)  and 4 ( x  + at )  
must be such that by their movement and superposition, the known changes of 
velocity at the point x, are reproduced. For example, let us assume that the string 
at the point x, moves during the vibration with a succession ofconstant velocities, 
the velocity passing in a discontinuous manner from each value to the next. Then 
at the point x,, d2y/dt2 is always zero, except at certain instants in each period of 
vibration when it becomes + infinity. 

Differentiating (13) with respect to time, we have 

d2y - = - a@(x - at)  + a@(x + at). 
dt2 (14) 



Since at the point x,, d2y/dt2 is generally zero, we must have 

@(x, - at) = #(x, + at). (15) 

If the velocity-waves O(x - at) and 4(x + at) are represented graphically, 
equation (1 5) may be given a geometrical significance; ifany two points are taken, 
one on the positive wave and the other on the negative wave, the distances of 
which from the point x, measured along the string are equal but in opposite 
directions, we should find the slopes of the waves at these two points to be equal. 
We have already seen that the positive and negative waves must satisfy certain 
other conditions, viz. that they are periodic with wavelength 21, and that, initially 
the form of the positive wave from x = 0 up to x = 1 is the inverted and reflected 
image of the negative wave from x = 1 up to x = 21 and vice versa. It is a definite 
geometrical problem to find the configuration of the waves which would 
simultaneously satisfy these three conditions. By inspection, we get the following ,, 

remarkably simple and significant solution: if the point x, divides the string in an 
irrational ratio, the only possible form of the velocity-waves is that in which the 
slope is everywhere the same, in other words, they are representable by a number 
of straight-lines which are all parallel to one another, a discontinuity intervening 
wherever one straight-line leaves off and the next begins. Velocity-waves having 
this form also satisfy the geometrical criteria when the point x, divides the string 
in a rational ratio (i.e. in the ratio of two whole numbers), but in the latter case, 
this is not the only form of velocity-waves geometrically possible. This result is not 
a matter for surprise, for the point x, would then coincide with a node of one of 
the harmonics of the string, and the ordinary Fourier analysis of the kinematics of 
the vibration shows that the motion of the string as a whole is not fully 
determinate, even though the motion at one nodal point on the string is fully 
ascertained. 

It is noteworthy, however, that the result stated above was obtained solely 
from geometrical considerations without any reference to the methods of 
harmonic analysis. 

The utility of .the preceding discussion is obvious. For, we have seen in 
section I11 that at the bowed point, generally speaking, the velocity alternates 
between two and only two constant values, once or oftener in each period of 
vibration. The condition d 2 ~ / d t 2  = 0 is thus generally satisfied at the bowed point, 
except at the instants at which the velocity changes from one value to the other 
and vice versa. At these instants, dzy/dt2 becomes 5 infinity. The preceding 
arguments are thus applicable, and it follows that when the bow is applied at 
some point dividing the string in a irrational ratio, the form of the velocity-waves 
is that of a number of straight-lines parallel to one another, with intervening 
discontinuities. It can now be seen that this is the case even when the bow is 
applied at a point dividing the string in any rational ratio, i.e. at some node on the 
string. For, the kinematical uncertainty in the latter case is due only to the 
harmonic components in the motion which have a node at the point of 
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application of the bow, and we have established from dynamical principles that 
such harmonics are not excited by the bow and do not therefore exist in the 
motion under consideration. The quantities that determine the motion at the 
bowed point must therefore also determine the motion at every other point on the 
string whose position is known. These quantities, in the case of the bowed point, 
are its initial velocity and the magnitudes and positions of the discontinuities in 
the velocity-waves. For, the slopes of the positive and negative velocity-waves 
passing over the bowed point in opposite directions being equal, the velocity at 
that point remains unaffected except when a discontinuity passes over it, the 
velocity then suddenly changing by a quantity equal to the magnitude of the 
discontinuity: the times at which these changes occur are determined by the initial 
positions of the discontinuities and vice versa. As stated above, these quantities 
must also completely determine the motion at all other points on the string, and 
this is only possible when, between the points of discontinuity, the velocity-waves 
consist of straight-lines that are all parallel to one another. 

It is thus seen that the problem of finding the mode of vibration of the string 
under the action of the bow reduces itself to one of finding the number, position 
and magnitudes of the discontinuities in the velocity-waves. From the mode of 
construction of the positive and the negative waves, it is obvious that the number 
of discontinuities in a wavelength of either of the two waves is the same, and is 
equal to the total number of discontinuities actually on the region of the string at 
any instant during the vibration. When a discontinuity travelling with the positive 
wave reaches the end of the string, it is reflected and returns as a discontinuity in 
the negative wave; moving on towards the other end, it reaches it and is again 
reflected and brought on to the positive wave. This process then repeats itself 
indefinitely. In section I11 it was shown that the velocity at the bowed point is 
alternately uA and v,, changing discontinuously from one value to the other, and 
vice versa. The poisitions and magnitudes of the discontinuities in the velocity- 
waves must be such that by their passage over the bowed point, the specified 
changes of velocity at that point are produced. The simplest case possible is that 
in which the discontinuities pass in succession over the bowed point, belonging 
alternately to the positive and negative waves, i.e. pass alternately over the bowed 
point in opposite directions. It is obvious that the discontinuities must then be all 
of the same magnitude and sign, i.e. vA - v,. In other words, the discontinuities 
are all equal in magnitude to one another and to the arithmetical sum of the two 
speeds possible at the bowed point, i.e. to the relative velocity of the bowed point 
with respect to the bow during the backward movement. Other cases that may 
possibly arise are the following: (a)  two dicontinuities of the same magnitude and 
sign may pass simultaneously over the bowed point in opposite directions. (b) two 
discontinuities differing in magnitude or sign or both may simultaneously pass 
over the bowed point in opposite directions. (c) two or more discontinuities may 
pass over the bowed point in succession in the same direction instead of 
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alternately in opposite directions. The contingency in (c) does not however 
actually arise, as it is impossible to construct positive and negative waves which 
would give rise to it and which would at the same time satisfy the condition that 
the velocity at the bowed point should alternate between two values only. 
Further, it is found that if the bow is applied at a point dividing the string in an 
irrational ratio, the contingency in (b) is also impossible, and the discontinuities in 
the velocity-waves are necessarily all equal to one another and to o, - o,. This 
result is of great importance in the theory of the subject. 

The reason why the discontinuities are all equal to v, - v, if the bowed point 
divides the string in an irrational ratio, is not very difficult to see. The result has 
already been demonstrated for cases in which the discontinuities pass in 
succession over the bowed point and never simultaneously. If two equal 
discontinuities pass over the point in opposite directions at the same instant, the 
velocity of the point is left unaffected. Further, if two discontinuities thus cross at 
the bowed point, they cannot again pass simultaneously over the bowed point 
when returning after one reflexion at the ends of the string (the distance of the 
bowed point from the two ends being unequal). On the return journey, the 
discontinuities must therefore pass the bowed point either separately or else 
simultaneously with certain other discontinuities. In the former case their 
magnitudes are necessarily equal to u, - up In the latter case also, a precisely 
similar result holds good, except when all the discontinuities of a given set pass 
over the bowed point in twos and twos and never singly. From very simple 
geometrical considerations it can be shown that the discontinuities would so all 
pass in twos and twos only if they were situated at regular intervals equal to an 
aliquot part of the wavelength, and the bow were itself applied at a point of 
division of the string into an equal number of aliquot parts, i.e. at a point or node 
dividing the string in a rational ratio.6 We thus arrive at the following two general 
results regarding the form of the velocity-waves: (1) When the bow is applied at a 
point dividing the string in an irrational ratio, the velocity-waves consist of 
straight lines that are all parallel to one other with intervening discontinuities all 

6The following simple model serves very effectively to picture the movement and successive reflexions 
of the discontinuities in the velocity-waves. Consider the motion of an endless cord which runs on two 
parallel axes between which it is stretched straight. A number of particles fixed to the cord at  intervals 
may represent the discontinuities. If there are N particles fixed at equal intervals along the cord, the 
particles moving towards one axis would pass those moving the other way, at points dividing the 
distance between the axes into N equal parts. No particle would ever pass these points singly, i.e. by 
itself. A similar result would not be possible if the particles were fixed to the cord at unequal intervals 
or if any other point of observation were chosen. This model may be used for a lecture demonstration 
of the results given in sections VII to X with reference to types of vibration in which there are two, 
three or any larger number of discontinuities. 
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equal to v, - u,, and the number of such discontinuities per wavelength is the 
same in the positive and negative waves. (2) When the bow is applied at a point 
dividing the string in a rational ratio, the velocity-waves also consist of parallel 
straight lines with intervening discontinuities, the number of which is the same 
per wavelength in the positive and negative waves; the magnitude of the 
discontinuities is not however the same as in (1). The argument shows that in this 
case, the non-appearance of the harmonics having, a node at the bowed point 
results in a number of discontinuities being present at regular intervals equal to 
an aliquot part of the wavelength in the positive and negative waves, viz. at 
intervals of 211s when the bow is applied at one of the points of division of the 
string into s aliquot parts.' The discontinuities pass in pairs (never singly) in 
opposite directions over the bowed point and also over the other points of 
rational division of the string. 

From the foregoing it is seen that in any case in which the bow is applied at a 
point of rational division of the string, the form of the velocity waves can be 
derived by a very simple geometrical construction from velocity-waves of the 
irrational type, i.e. those in which the discontinuities are all equal to v, - u,; the 
construction is equivalent to the abolition or removal of those harmonics which 
have a node at the bowed point and leaves the resulting motion at the bowed 
point and at the other points of rational division unaffected. Examples of the 
method will be dealt with later. Its usefulness is evident from the fact that all the 
possible types of vibration may thus be considered as special cases of what may 
be termed the irrational types of vibration, the theory of which can be worked out 
geometrically with the greatest ease and simplicity and which we shall now 
proceed to discuss. 

Section V-Classification of the vibrational modes 

From the results given in the preceding section it is obvious that the vibrational 
modes in the cases in which the bow is applied at a point of irrational division of 
the string can be very simply classified according to the total number of 
discontinuities in the velocity waves. If there is one discontinuity, we may call it 
the first type of vibration of a bowed string. If there are two discontinuities, it may 
be called the second type of vibration, and so on. Generally speaking, each of 
these types of vibrations includes the complete series of harmonics. 

We may now proceed to deduce a few results of general application, examples 
which will be met with in the detailed graphical discussion of individual cases to 
be given later in the course of the paper. 

's is taken to be the smallest possible number of aliquot parts. 



Since the positive and negative velocity waves are representable by parallel 
lines separated by equal intervening discontinuities, the points at which the x-axis 
is cut by the parallel lines (or would be cut by them if produced) must be equi- 
distant from one another. If there are n discontinuities per wavelength, the 
intercepts on the x-axis are evidently 21/n. If n = 1, the intercepts are equal to 21, 
i.e. to the wavelength, and it is obvious that in this case the positive and negative 
waves are necessarily of the same form (symmetrical about the x-axis) and are 
completely coincident twice in each period of vibration. 

If the inclination of the lines to the x-axis is tan-'c and there are n 
discontinuities per wavelength each equal to (v ,  - v,), we have 

2cl= n(v, - v,). (16) 

By summation of the ordinates of the positive and negative waves, the 
velocities at all points on the string can be ascertained and represented 
graphically. The velocity graph thus obtained for the string must evidently 
consist of parallel straight lines inclined to the x-axis at an angle tan-' 2c, the 
maximum number of such straight lines being (n + I), (there being n discontinu- 
ities on the string, some of which might be instantaneously coincident in 
position). Further, these (n + 1) lines on the velocity diagram pass through fixed 
points on the x-axis situated at equal intervals. Since the two ends of the string 
have always zero velocity, these fixed points are in fact the (n + 1) nodes of the nth 
harmonic, and we thus obtain the result that the lines of the velocity diagram 
pass, or would pass if produced through some or all of the (n + 1) nodes of the nth 
harmonic, if the particular type of vibration elicited by the bow is that in which 
there are n equal discontinuities. 

From the preceding result, we may very readily deduce an expression for the 
ratio v,/v, of the two velocities possible at the bowed point, which besides being 
of perfectly general application is also valid for all points on the string, the 
velocity at which alternates between two constant values only, once or oftener in 
each period of vibration. Assume first that the bow is applied at a point of 
irrational division of the string and the mode of vibration elicited is that in which 
there are n equal discontinuities. Consider the motion at a point on the string 
lying between the rth and (r + lYh nodes of the nth harmonic (counting from one 
end) and whose distance x from that end of the string is therefore greater than 
(r - l)l/n and less than rlln. The velocity of this point on the string at any instant 
during the vibration is given by the ordinate of the velocity diagram. As we have 
just seen, this velocity-diagram consists of parallel lines drawn through the 
successive nodes of the nth harmonic at an inclination of tan-' 2c to the x-axis, 
with intervening discontinuities. If the velocity at the particular point on the 
string alternates between two and only two constant values, it must be because 
the ordinate drawn through it intersects alternately the two lines of the velocity 
diagram passing through the two nodes of the nth harmonic on either side of it, as 
a result of the movement of the discontinuities. In other words, the two velocities 
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- 
at the point considered are 2c(x - r - 1 l/n) and 2c(x - r I/n). The ratio of these 
velocities is merely the ratio of the distances of the point from the two nodes, and 
if (for brevity) the symbol x, is used to denote the shorter of the two distances, and 
w is used to denote the total fraction of the period of vibration in which the point 
moves with the larger of the two velocities, we have 

The algebraic difference of the two velocities at the point is 2clln and this is equal 
to (v, - v,), vide equation (16). Since the result given in (17) is true for all points on 
the string at which the velocity alternates between two constant values once or 
oftener in each period of vibration, it applies also at the bowed point, x, denoting 
its distance from the nearest node of the nth harmonic. 

The result given in (17) above is noteworthy by reason of its simplicity and 
perfect generality as also by reason of the simplicity and perfect generality of the 
reasoning from geometrical considerations by which it was deduced. The result is 
equally applicable in cases in which the motion at the bowed point is of the 
simplest possible type (one ascent followed by a descent) as well as those in which 
the motion is one of the so-called complicated types, a succession of several 
ascents and descents within the period of vibration. In deducing the result, it has 
been assumed that the vibration is elicited by applying the bow at a point or 
irrational division of the string, so that the type of motion maintained is one in 
which the discontinuities present in the velocity waves are all equal to (v, - 0,). 

Even this restriction may be removed, i.e. we may also include the cases in which 
the bow is applied at a point of rational division of the string, the only difference 
being that the result given in (17) would then be applicable only at the bowed 
point and at some or all of the other nodes of the principal member of the missing 
series of harmonics, and not at any other point on the string. For, as already 
referred to in the preceding section, any type of vibration elicited by applying the 
bow at a nodal point on the string can be considered as one of the modes of 
vibration of the 'irrational' type with the series of harmonics having a node at the 
bowed point dropped out. The process leaves the motion at the bowed point and 
at the other nodes of the principal member of the missing series of harmonics, 
unaffected. 

When n = 1, equation (17) reduces to the well known relation discovered by 
Helmholtz, i.e. the ratio of the velocities of ascent and descent at the point 
considered is the same as the ratio of its distances from the two ends of the string. 
Krigar-Menzel and Raps found in their experimental work that Helmholtz's 
relation was satisfied when the bow was applied in the normal manner at any 
point very close to an end of the string or else very exactly at one of the nodal 
points distant 112, 1/3, 1/4, 115, 116 or 117 from the end. The value of w for other 
points of application of the bow was also measured by Krigar-Menzel and Raps, 
and they state as the result of these measurements that no general algebraic 



relation connecting the value of w at the bowed point with its position on the 
string could be found even when the motion at the bowed point was of the 
simplest possible type representable by a two-step zig-zag. Their deliberate 
conclusion on this question was that, except when the bow was applied close to 
the end of the string or at one of the nodes of some fairly important harmonic, the 
value of w was to be regarded as a purely empirical quantity depending on the 
experimental conditions. It is obvious that if the value of o is thus regarded as an 
arbitrary quantity determinable by experiment. no complete theoretical dis- 
cussion of the kinematics of the string is possible, and in fact Krigar-Menzel and 
Raps did not attempt any such complete discussion. While on the experimental 
side their paper was a notable contribution to the subject, the treatment given by 
them on the theoretical side was thus obviously defective and incomplete. The 
general kinematical analysis set out in the present paper shows that the value of w 
in all cases (i.e. both for rational and irrational points of bowing) should satisfy 
the relation given in equation (17), n being given by the appropriate integral 
value, 1,2, 3,4 or 5, etc. The failure of Krigar-Menzel and Raps to discover this 
general a1gebrai.c relation, or rather this series of relations connecting the value of 
w at the bowed point with its position on the string, must be attributed to their 
having adopted an almost exclusively empirical method of treatment. If, instead 
of relying solely on the result of the measurements which were necessarily subject 
to experimental error in some degree, they had investigated in detail the 
kinematics of some of the simpler types of vibration other than those known 
through the work of Helmholtz, e.g. that obtained by applying the bow at a point 
close to but not coincident with the centre of the string, the functional relation 
connecting the value o f o  at the bowed point with its position on the string could 
have been looked for with a greater chance of success. That such a functional 
relation exists must indeed have been evident from the fact that the characteristic 
vibration-curves in such cases also are perfectly reproducible, time after time, 
with strings of any length, diameter or material. 

The failure to establish a proper scheme of classification of the vibrational 
modes and to find the general form of the functional relation connecting o at the 
bowed point with its position anywhere on the string was also one of the 
fundamental defects in the paper by A. Stephenson cited in the bibliography. In 
this paper (published in 191 1) only the work of Helmholtz is referred to, and a 
perusal of it shows that Stephenson was unacquainted with the work of Krigar- 
Menzel and Raps published in 1891, and that he was, indeed, unaware of many 
facts which anyone who has experimented with a bow and monochord could 
readily observe for himself. It is not a matter for surprise therefore that, though 
Stephenson's paper is noteworthy as an attempt to treat the motion of a bowed 
string as a case of maintained vibration, it takes us little beyond the work of 
Helmholtz. Stephenson also failed to realise that the Fourier analysis is obviously 
incapable of giving any useful indication of what would happen if the bow is 
applied at a point of irrational division of the string, i.e. at a point not exactly 
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coinciding with any nodal point of importance, and it is precisely such indication 
that is required to explain the phenomena observed in experiment. 

We may now pass on to consider the kinematics of the irrational types of 
vibration more in detail. If there are n equal discontinuities, the velocity-diagram 
of the string consists of not more than (n + 1) parallel lines passing through the 
(n + 1) nodes of the nrh harmonic. As the discontinuities move one way or the 
other, the lines of the velocity-diagram increase in length or else shorten and 
sometimes vanish altogether, and given the form of the velocity-diagram at any 
epoch of the vibration, it is quite an easy matter to find its form at any subsequent 
epoch or to trace directly the succession of velocity-changes at any point on the 
string and thus to determine the form of the vibration curves. If the positive and 
negative velocity-waves are of identical form, it is obviously convenient to 
commence with the epoch at which they are completely coincident and the string 
everywhere passes through its position of statical equilibrium. At that epoch, the 
discontinuities are everywhere situate in pairs along the string, the odd 
discontinuity, if any being at one end of the string, and the lines of the velocity- 
diagram pass through the alternate nodes of the nth harmonic. In the subsequent 
motion, the discontinuities situate along the string separate and move off in 
opposite directions, the odd discontinuity, if any, situate at the end of the string 
moving straight off towards the other end. After half a period, the positive and 
negative waves again coincide and the velocity-changes at every point on the 
string are gone through in the reverse order, as already described in section I1 of 
the paper. It should be remarked that the positive and negative waves are 
necessarily of the same form when the motion at any one point on the string is 
representable by a simple two step zig-zag, or by any other curve possessing a 
similar type of symmetry. As normally applied, the bow excites the vibrations of 
the string from an initial state in which the latter is everywhere in its position of 
equilibrium. The tendency is thus, in a large majority of cases, to set up vibrations 
having this characteristic type of symmetry. 

Section VI-The first type of vibration 

Of the possible types ofvibration set up by the application of the bow at a point of 
irrational division, the first type with only one discontinuity on the velocity- 
diagram is the simplest and most important. In this case, as already remarked, the 
positive and negative velocity-waves are necessarily of the same form, and at the 
instant at which they are coincident, the velocity-diagram is a straight line 
passing through one end of the string (x = 0), with a discontinuity at the other end 
(x = I) .  As this discontinuity moves in along the string, the velocity-diagram 
consists of parallel lines passing through its two ends, and the velocities at any 
point before and after its passage are respectively proportional to the distances 
from the two ends. When the discontinuity reaches the end x = I ,  it is reflected and 
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the velocity-diagram then passes back through the same stages to its original 
form. 

Figure 1 (first column) shows the successive velocity-diagrams at intervals of 
one-twelfth of an oscillation. 

Velocity-diagrams Vibration curves and displacement 
diagrams 

Figure 1. First type of vibration. 

Figure 1 (second column with the heavy and thin lines taken separately) also 
shows the displacements of the string from its initial position at similar equal 
intervals throughout the complete period of vibration. These configuration- 
diagrams, as we may call them, evidently consist of two straight lines passing 
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through the ends of the string and meeting at the point up to which the 
discontinuity in the velocity-diagram has travelled at any instant. (It should be 
remarked here that the displacements are always measured from the position of 
equilibrium of the string under the steady frictional force exerted by the bow, and 
not from the position of equilibrium attained when the bow is removed.) The 
second column of figure 1, with the heavy and thin lines taken together represents 
on the same scale of ordinates, the vibration curves for the complete period, of 
points situated on the string at successive equal intervals of one-sixth of its length, 
commencing from one end. When extended on either side for a number of 
complete periods, the vibration-curves are seen to consist of simple two-step zig- 
zags, the fraction w of the complete period during which any point moves with the 
larger of the two velocities being given by the relation 

where x is the distance of the point from the nearer of the two ends of the string. 
The correspondence noticed above between the configuration of the string as a 

whole and the vibration-curves of individual points on it is not peculiar to the 
present case, but may be established with generality for any possible type of 
vibration of a stretched string in which the positive and negative velocity-waves 
are of the same form. A geometrical proof is very readily given by noticing that the 
displacement at any point is the time-integral of the velocity and is therefore 
representable by the area enclosed by two ordinates drawn at equal distances on 
either side of the point under consideration, to intersect the velocity-wave. The 
following is an analytical proof. In such cases we have 

m nnx . 2nnt 
y = Cansin-sln- 

1 l T '  

If x is regarded as constant and t as a variable, equation (19) represents the 
form of the vibration-curves. On the other hand, if t is regarded as constant and x 
as the variable, the equation gives us the configuration of the string. By taking 
only half the complete period into consideration, i.e. from t = 0 up to t = T / 2  or 
from t = T / 2  up to t = T,  we can get identical geometrical representations for the 
motion at individual points on the string, and for the configuration of the string as 
a whole, provided that the times for the latter and the positions for the former are 
so chosen that 2t /T = x/l. 

Two other important consequences of equation (19) may also be noticed here. 
If two points are taken on the string, one on either side of the centre at equal 
distances from it, the form of their vibration-curves are the mirror-images of one 
another with respect to the centre of the string. The second consequence is that 
the vibration-curve at a point very close to the end of the string from t = 0 to 
t = T / 2  or from t = T / 2  up to t = T is, in the limit, of the same form as the 
velocity-diagram of the string at time t = 0 or t = T / 2  as the case may be. This 
may be regarded as a particular case of the correspondence of form noticed 



in the preceding para obtained by putting the chosen values of t and x very 
small. For, when t is very small but not actually zero, the small displacement at 
any point is proportional to the initial velocity at the point. 

Section VII-The second type of vibration 

We now pass on to consider the case in which there are two discontinuities in the 
velocity-diagram. 

At some epoch or other of the vibration, the two discontinuities must 
necessarily coincide, and we thus see that in the second type of vibration also, the 
positive and negative velocity-waves are necessarily of the same form. The 
particular point on the string at which the discontinuities cross, remains, 
however, at our disposal. If this point is the centre of the string, the discontinuities 
would again cross at that point after half a period, and it is obvious that the string 
would vibrate in two segments, the frequency of vibration being twice that of the 
fundamental, and the vibration-curves would everywhere be simple two-step zig- 
zags. If, however, the discontinuities cross at a point distant 112 + b from one end, 
their second crossing after the expiry of a half-period would be at a point distant 
112 - b from the same end, and the frequency of the vibration would be that of the 
fundamental. Figure 2, first column, shows the velocity-diagrams for this case. 
Initially, the velocity-diagram consists of two parallel lines passing through the 
two ends of the string and separated by the two coincident discontinuities. When 
these move off in opposite directions, the third line that forms on the velocity- 
diagram and extends both ways, passes through the centre of the string. During 
the greater part of each half-period, therefore, the centre of the string remains 2t 
rest,s displaced from the position of equilibrium first to one side and then to the 
other, the movement from one position to the other being executed with great 
velocity (equal to v, - v,). The two stationary positions ofthe centre of the string 
should therefore appear very brillianty visible on a dark ground. The vibration- 
curves of any desired points on the string can be very readily set down by 
inspection of the velocity-diagrams or otherwise. They are shown in the second 
column of figure 2. At the centre, the motion is of the type already de~cr ibed .~  The 

8This phenomenon of which, it is believed, the simplest explanation is here given, and the analogous 
appearances at the respective nodes in the case of the third, fourth and higher types of vibrations were 
observed and figured so long ago as 1800 by Dr Thomas Young in the Philos. Trans. for that year. 
Young obtained them by spplying the bow at points close to but not coincident with the points of 
aliquot division of the string. He appears to have fully understood the fact that the types of vibration 
thus set up were totally different from those obtained by applying the bow at the points of aliquot 
division, and not merely modifications thereof. His explanation of the difference in terms of the 
impulses which he assumed the bow to send out and of their interference at the bowed point, was 
remarkably near the truth. 
'Three typical vibration-curves of the type here described appear among the photographs published 
by Krigar-Menzel and Raps, but these authors failed to observe the essential kinematical relation 
given in (20) necessary to connect them together. 
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Velocity- diogmms Vibration-cums and displacement 
diagrams 

Figure 2. Second type of vibration. 

nature of the movement at points intermediate between the limits x = 112 f b is 
not shown, but this the reader can find for himself from the velocity-diagram. At 
the points x = 112 f b, the vibration-curve is a simple two-step zig-zag, the ratio o 
of the time of movement with the larger velocity to the total period of vibration 
being given by the simple relation 

Outside the limits x = 112 + b the motion is representable by a four-step zig-zag, 
the velocity alternating twice between two constant values, o being given by the 
relation 

where x, is the distance ofthe point of observation from the centre ofthe string or 
from the end, whichever is less. 



A motion of the type here described would, normally speaking, be excited if the 
bow were applied at one or other of the two points x = 112 f b. It is obvious, 
however, that it might also be excited, if the bow were applied outside these limits, 
the motion at the bowed point then being a four-step zig-zag. In either case, the 
maximum value of b is 114, since this would make w in (20) equal to $. 

As already explained in section V, the relation w = 2xJ1 would hold good at 
the bowed point even if this divided the string in a rational ratio, as the dropping 
out of the harmonics having a node at the bowed point would leave the motion 
there unaffected. It is instructive to compare the values of w for various points on 
the string, for the first and second types of vibration. These are shown in table I. 
The distance of the point from the end of the string is given as a fraction of the 
total length. For convenience, the ratio of two large numbers prime to one 
another may be used as practically equivalent to an irrational ratio. If the motion 

Table I 
-- - - 

Positlon of bowed polnt t + f i ? E & & & $  4 2 '  5 1 1 3 $ & f  

Value of o for the first type f +f $? 3 & 5 & $ 3 4 f f & $ 

Value of o for the second type $ & & j!g if & 8 $ 4 & f $ A 4 

at the bowed point is of the simplest possible type, a two-step zig-zag, it is seen 
from the third row of figures in table I that one of the sides of the zig-zag becomes 
very steep if the bow is applied close to the centre of the string. It becomes less and 
less steep as the bow is removed farther and farther from the centre of the string, 
but it continues steeper than in the vibration-curve for the first type until the 
point 1/3 is reached when w becomes identical for the first and second types of 
vibration; the significance of this is that in the second type of vibration the octave 
is the dominant harmonic and far more powerful than the fundamental when the 
point of application of the bow is close to the centre of the string, but the 
difference becomes less and less marked as the bow is removed farther from the 
centre; when the bow is applied at a distance 113 from the end of the string, the 
octave and the fundamental are present in the same proportion in the second type 
of vibration as in the first, and, in fact, the two types of vibration then become 
identical owing to the dropping out of all harmonics having a node at 113. Similar 
relations are met with in the theory of the third and higher types of vibration, and 
a fuller discussion of this identity of vibration types in certain cases will be given 
when dealing in detail with the theory for rational points of bowing. Between 113 
and 114, the value of o is actually less for the second type than for the first, and the 
octave becomes feebler and feebler as  the bow is removed from the centre, till at 
114, it vanishes altogether, o being equal to +. 
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Section VIII-The third type of vibration 

When there are three equal discontinuities on the velocity-diagram, the positive 
and negative velocity-waves are not necessarily of the same form. If at an epoch at 
which two of the discontinuities are coincident in position, the third is at one of 
the ends of the string, then, obviously, the positive and negative waves are of the 
same form and actually coincident at that instant; the vibration at every point on 
the string is then of the symmetrical type. At the epoch referred to, the velocity- 
diagram would consist of only two parallel lines, one of which passes through an 
end of the string, and the other through the point of trisection farthest from it. In 
the subsequent motion, the number of lines in the velocity-diagram would, in 
general, be four, and at certain instants, three or two. On the other hand, in the 
unsymmetrical cases, the number of lines is never less than three and is generally 
four. Apart from this, the form of the vibration-curve at any point on the string 
can be found in precisely the same way in the unsymmetrical cases as in the 
symmetrical ones, i.e. by considering the changes of velocity due to the movement 
of the discontinuities. 

As the symmetrical cases are much the more important, we shall now consider 
them a little more fully. Figures 3 and 4 illustrate the mode of vibration, the initial 
coincident position of the two discontinuities lying outside the two points of 
trisection of the string in figure 3 and between them in figure 4. If this position is 
at x = 2/13 + 2b, the two discontinuities again coincide after a half period at the 
point x = 113 T 2b. It can be seen that at the points 113 + b and 2113 - b in figure 3 
and at the points 1/3 - b and 2113 + b in figure 4, the vibration-curve is a simple 
two-step zig-zag, these being also points at which discontinuities cross. At the 
points 113 - 2b and 2113 + 2b in figure 3, and at the points 113 + 2b and 2113 - 2b in 
figure 4, the vibration-curve is seen to be a four-step zig-zag. Except in the region 
on either side of the points of trisection between the limits 113 - 2b c x < 113 + b 
and 2/13 - b < x < 2113 + 2b in figure 3 and the limits 113 - b < x < 113 + 2b and 
2113 - 2b < x < 2113 + b in figure 4, the velocity at any point on the string 
alternates between two constant values thrice in each vibration-period. The 
fraction w of the complete period during which the larger velocity subsists is given 
by the relation 

0 = 3x3/1 (21) 

where x, is the distance of the point of observation from either point of trisection 
or from the end of the string whichever is the least. The types of vibration shown 
in figures 3 and 4 may be regarded as set up by application of the bow at a point 
distant b from one of the points of trisection, and lying between them in respect of 
figure 3, and outside of them in figure 4. The motion at the bowed point is then of 
the simplest possible type (representable by a two-step zig-zag), the value of o 
there being given by the relation 



Velocity -diagrams Vibration curves and displacement 
diagrams 

Figure 3. The third type of vibration (negative). 

The maximum value of b is 116 as o is then equal to 3. 
The values of o as given by equation (21a) for various values of b within the 

limit stated above, are shown in table 11. The distance of the bowed point from 
one end of the string is shown as a fraction of the total length 1. 

Table I1 

Position of bowed point + & $ $ ? & $ & & g i 4 i  
Value of w for the third type $ f f & Q 

Position of bowed point + & u  5 5 & & $ ? ? + 3 :  * 
Values of w for the third type & 6 -3 $ + 
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Velocity- diagrams Vibration-curves and displacement 
diagrams 

Figure 4. The third type of vibration (positive). 

From table I1 it will be seen that w is very small at the bowed point when this is 
situate close to the point of trisection. One side of the zig-zag vibration-curve at 
the bowed point is then much steeper than the other and, as can be seen from 
figures 3 and 4, the third harmonic is dominant in the resulting motion, being in 
fact far more powerful than even the fundamental. As the bow is removed from 
the node, w becomes larger and the amplitude of the third harmdnic falls off 
rapidly, and vanishes completely when the bow is applied at the points x = 4/19 or 
2/19, the value of w being then exactly f. A distance of 1/9 either way from any of 
the nodes of the third harmonic may thus in a sense be regarded as the range of 
application of the bow for the excitation of the third type of vibration. On 
comparing the values of o in table I1 with those for the first and second types 
shown in table I, it will be noticed that at the point 21/5 the second and third types 



both give the ratio $ and that at the point 114 the first and third types both give 
o =a. It is instructive to note the gradual changes in the form of the vibration- 
curves for the third type at the centre of the string and at 115 as the point at which 
the bow is applied approaches 114 and 2/15 respectively. 

Figure 5(a), vibration-curve ofthe 9th type, bowed at 5119 - 11135 and observed 
at 1/15. 

Figure 5(b), (c), (d), (e), vibration curves at the bowed point for the 2nd, 4th, 6th 
and 8th types respectively, when the bow is applied close to the centre of the 
string. 

I 

Figure 5. (For explanation see text). 
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Figure 5( f), velocity-diagram of the 4th type: (g) and (h), velocity diagrams of 
the 5th type: (i), velocity-diagram of 3rd type, bow applied at 5218. 

Section IX-The fourth and higher types of vibration 

The cases in which there are four or more equal discontinuities moving on the 
velocity-diagram of the string are also capable of investigation with facility by the 
graphical method. Certain general laws are readily established of which we have 
already seen instances in the second and third types of vibration. Certain 
important and very remarkable differences are also noted between the cases in 
which n (the number of discontinuities) is a prime integer, e.g. 5,7 or 11, and the 
cases in which n is not prime, e.g. 4,6,8,9 or 10. One result that holds good for all 
values of n is that the motion at every point on the string lying outside certain 
limits is representable by a vibration curve consisting of 2n straight lines, 
alternate ones being parallel to one another. In other words, outside certain limits 
the velocity at every point on the string alternates between two constant values, n 
times in each complete period, the fractional part of the period w during which the 
larger velocity subsists being given by the relation w = nx,/l already found 
(equation 17). 

The regions within which the velocity may have more than two values in each 
period, lie on either side of the (n - 1) intermediate nodes of the nth harmonic and 
are bounded by points at which discontinuities moving in opposite directions 
cross one another. The vibration curve of a point at which one such crossing takes 
place consists of (2n - 2) straight lines in each complete period; if two crossings 
occur at one point in each period, its vibration curve consists of (2n - 4) straight 
lines and so on. If(n - 1) crossings take place at a point, the vibration curve at that 
point is of the simplest possible form, i.e. a two-step zig-zag. 

We now proceed to find the conditions that must be satisfied if the motion at 
some specified point on the string is to be of the simplest possible type. 

Choosing as origin of time, the instant at which the positive and negative waves 
are completely coincident, it is easy to find the positions on the string at which the 
coincident discontinuities in the waves should lie, if the motion at some specified 
point on the string is to be representable by a simple two-step zig-zag. Take first, 
the case in which n = 4 and let the x-coordinate of the specified point be 3114 - b. 
The velocity-diagram at time t = 0 consists of three parallel lines passing through 
the centre and the two ends of the string respectively. Let the coordinates at time 
t = 0 of the two pairs of coincident discontinuities be 114 + c and 3/14 + 
d respectively, see figure 5 ( f ) .  In this diagram the positions of the nodes and of 
the specified point are shown by arrow-heads. In the subsequent movement, 
the discontinuities would pass over the point referred to, after times correspond- 
ing to the following distances of travel: (b + d), (112 - c - b), (112 - d + b), ( I  + c - 
b), (1 - c + b),(31/2 + d - b),(31/2 + c + b) and (21 - b - d). It is seen that by putting 



c = b and d = 3b, the alternate distances (excluding the first and the last) become 
equal to.one another. The condition for the vibration curve at the point 3/14 - b 
being a simple two-step zig-zag is thus that the initial positions of the 
coincident discontinuities should be (114 + b) and (3114 + 3b). We may then 
mark off the following scheme of points on the string: 

(f - 3b), (f + b), (f - 2b), (k + 2b ), ($ - b), (r + 3b) 

zig-zags. 

The nature of the motion at the points marked off is indicated below them in 
the scheme. If the point at which the motion is of the simplest possible type is 
(3114 + b), then we get instead the following scheme: 

(f - b),(f + 3b),(5- Zb),(f + 2b),(:- 3b),($ + b), 

zig-zags. 

It will be noticed that in both schemes, the region on either side of the central 
node is bounded by points at which the motion is representable by a four-step zig- 
zag. It is not possible, by assigning arbitrary values to c and d or in any other way, 
to secure that the region round the central node should be bounded by points at 
which the vibration-curve is a two-step zig-zag, so long as we are dealing with the 
fourth type of vibration. This result has a very important significance.. If the 
fourth type of vibration is excited by applying the bow near either of the two 
nodes 114 or 3/14, the motion at the bowed point might be (and, in fact, generally 
would be) of the simplest possible type, i.e. having a two-step zig-zag as the 
vibration-curve. On the other hand, if the bow is applied near the centre of the 
string (which is also a node of the fourth harmonic), the fourth type of vibration, if 
elicited, would not give a motion of the simplest possible type at the bowed point. 
Nor, for that matter, would the sixth, eighth or tenth types, if elicited. For the 
second type of vibration, a simple two-step zig-zag vibration-curve for the bowed 
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point is possible. But for the fourth type, if elicited by bowing near the centre of 
the string, the minimum number of lines in the vibration-curve at the bowed point 
for each complete period is four; for the sixth type, it is six, for the eighth type, it is 
eight, and so on. 

Figures 5(b), (c), (d) and (e) illustrate the preceding remarks. They were drawn 
from the initial velocity-diagrams of the respective cases, which were disposed so 
as to give a vibration-curve of the minimum complexity admissible at the bowed 
point. 

, Kinematical analysis by the method described above leads to analogous results 
in every case in which n is not a prime integer and the vibration is elicited by 
application of the bow near a point which is a node of the nrh harmonic but is also 
a node of some harmonic of lower frequency. For instance, the sixth type of 
vibration, if elicited by bowing near a point of trisection, would not give a 
vibration-curve at the bowed point of a simpler type than a four-step zig-zag; the 
ninth type under similar circumstances would give a vibration-curve at the 
bowed point with not less than six lines per period; the twelfth type would not give 
less than eight lines per period, and so on. Near the point of quadrisection of a 
string, the eighth type would give a vibration-curve at the bowed point with at 
least four lines per period and so on. As a final example we may mention the case 
in which the bow is applied very close to one end of the string. Only the first type 
(n = 1) would then give a simple two-step zig-zag at the bowed point. For other 
values of n, i.e. 2,3, etc. the vibration-curve at the bowed point would consist of 
4,6, or more lines as the case may be, in each complete period. 

When n is a prime number, e.g. 5 7 ,  or 11, the corresponding type of vibration 
may be elicited by applying the bow on either side of any one of the intermediate 
nodes of the nth harmonic on the string, with a simple two-step zig-zag as an 
admissible vibration-curve for the bowed point. The initial positions of the 
coincident discontinuities in the velocity-diagram differ very considerably, 
however, according to the particular node selected, and the character of the 
vibration-curves elsewhere than at the bowed point is correspondingly different 
in the respective cases. On the other hand when n is not a prime, a two-step zig- 
zag would be possible as the vibration-curve at the bowed point, only if this is at 
the boundary of the region on either side of a node of the nth harmonic which is 
not also a node of some harmonic of lower frequency; e.g. 116 or 5/16 for the sixth 
type, 1/8,31/8,51/8 or 7\18 for the eighth type and 1/9,21/9,41/9,51/9,71/9 or 8/19 for 
the ninth type. Near the other nodes, the motion at the bowed point for these 
types is necessarily of a less simple type, as we have already seen. 

We shall now consider one after another the fifth and higher types of vibration 
confining our attention to those cases in which the motion at the bowed point has 
the simplest character possible under the circumstances, that is, a two, or four, or 
a six-step zig-zag, etc. as the case may be. It is obvious, from considerations of 
symmetry, that it is sufficient to consider the cases in which the bow is applied at 



some point between the centre and one end of the string, that is between x = 112 
and x = I .  For any given value of n, as we have seen, the velocity-diagram consists 
of parallel lines passing through the nodes of the nth harmonic, and it follows that 
at these nodes the state is alternately one of rest and of motion in one direction or 
the other. These positions of rest at intervals during the vibration at the respective 
nodes are readily visible to the eye on inspecting the string, appearing the 
brighter, the longer the intervals of rest. If two such positions coincide, the line of 
rest seen is twice as bright, and so on. For instance, in the fourth type of vibration 
already discussed, three lines of rest are visible at the centre of the string, and four 
lines at the points x = 114 and x = 3114. 

The fifth type of vibration 

This may be elicited by applying the bow at the points 

the motion at the bowed point being in each case a simple two-step zig-zag. In the 
first case the initial positions of the discontinuities in the velocity-diagram are 

0, ( y - 2b) and (r - 4b). 

By writing b for - bin the above, the initial position of the discontinuities in the 
second case is found at once. The initial velocity-diagram for this case is shown in 
figure 5(g). In the third case the initial positions of the discontinuities are 

(f + 2b), (; - 4b) and I 

The solution for the fourth case is obtained by writing - b for b in the preceding. 
The initial velocity-diagram for the fourth case is shown in figure 5(h). 

On working out the form of the vibration-curves from the velocity-diagrams, it 
is found that in all these cases, five lines of rest should be visible at each of the four 
nodes 115, 2115, 3/15 and 4/15. Except in the limited regions lying on either side of 
each of these nodes, the vibration-curve at any point on the string is a ten-step zig- 
zag in which the alternate lines are all parallel to one other. The boundaries of the 
regions about the nodes and the character of the motion at the limiting points are 
indicated in table 111. 
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Table 111 
(Fifth type o f  vibration) 

115 - b): 2-step 
(115 + 46): 8-step 
(2115 - 2b): Cstep 
(2115 + 3b): 6-step 
(3115 - 36): 6-step 
(3115 + 2b): 4-step 
(4115 - 46): 8-step 
(4115 + b): 2-step 

(115 - 46): 8-step 
(115 + b): 2-step 
(2115 - 36): 6-step 
(2115 + 26): 4-step 
(3115 - 2b): 4-step 
(3115 + 36): 6-step 
(4115 - 6): 2-step 
(4115 + 4b): 8-step 

(115 - 36): 6-step 
(115 + 26): 4-step 
(2115 - b): 2-step 
(2115 + 4b): 8-step 
(3115 - 46): 8-step 
(3115 + b): 2-step 
\41/5 - 2b): 4-step 
(4115 + 3b): 6-step 

(115 - 26): 4-step 
(115 + 36): 6-step 
(2115 - 4b): 8-step 
(2115 + b): 2-step 
(3115 - b): 2-step 
(3115 + 46): 8-step) 
(4115 - 3b): 6-step 
(4115 + 2b): 4-step 

zig-zags. 

It will be seen that the distance between the two points on either side of each 
node as shown in the table, is in all cases equal to 5b. 

The sixth type of vibration 

By applying the bow at either of the two points 5116 + b the type of vibration with 
six equal discontinuities on the velocity-diagram may be elicited with a two-step 
zig-zag as the vibration-curve at the bowed point. 

It is obvious that for this to be possible, the discontinuities should cross at the 
bowed point five times in each period of vibration, and the initial positions of the 
discontinuities are thus found to be 115 T b, 3116 T 3b and 5116 T 5b, the upper 
minus signs being taken for the first case and the plus signs for the second. The 
following are the eight points on the string at which crossings of discontinuities 
take place during the vibration and the character of the vibration-curve 
determined by the number of such crossings is indicated below the respective 
points: 

First case 

(: + 3b), (: - 4b), (: + 2b), (; - 5b) and (; + b) 

6-step 8-step 4-step 10-step 2-step 

zig-zags. 



Second case 

(;+ 36),(:-~),(:+4b),(;- b) and (:+5b) 

6-step 4-step 8-step 2-step 10-step 
zig-zags. 

It will be noticed that the regions on either side of the nodes are all of the same 
length 6b. (With the fifth type of vibration, this length was found to be 5b, with the 
fourth type 4b, with the third 3b, and with the second type 2b, the motion at the 
bowed point being in each case a simple two-step zig-zag. The generalization of 
the result is obvious). 

From the vibration-curves, it is found that six lines of rest should be visible at 
each of the nodes 116 and 5116 in the case discussed above, five lines of rest at  each 
of the nodes 2116 and 4116, and four lines of rest at the central node 3/16. 

Passing on to the cases in which the bow is applied in the neighbourhood of the 
node 4/16, it is found that the maximum number of crossings in each period 
possible at the bowed point is four. (If we attempt to find the position of the 
discontinuities on the assumption that there are five crossings, the resulting 
equations are inconsistent with each other). A four-step zig-zag thus represents 
the least complicated motion possible at the bowed point in this case. We have 
then three pairs of coincident discontinuities in the initial velocity-diagram of the 
string, and as there are two crossings of discontinuities at the bowed point in each 
half period, we get two simple algebraic equations connecting the position of the 
bowed point with the initial positions of the discontinuities. Thus if the position of 
the bowed point is at 4116 + b, and the initial positions of the three pairs of 
discontinuities are 116 + c, 3/16 + d and 5/16 + e, we obtain the two equations 
(e - b) = (b - d), and (e + b) = (c - b). It is obviously not possible from these two 
equations alone to determine the three quantities c, d and e, uniquely in terms of 
the known quantity b. While c, d and e are thus in a sense arbitrary quantities, in 
practice owing to the flexibility of the dynamical conditions under which the 
motion is maintained (this will be referred to again later on), the vibration would 
tend to settle down into a type in which b, c, d and e are all integral multiples of 
one and the same quantity, these multiples being as small as is consistent with the 
kinematical conditions referred to above and the dynamical conditions of 
maintenance in the presence of dissipative forces. For instance, by putting c = 5h, 
d = - b, and e =  3b, we get a solution which satisfies the two kinematical 
equations and gives a characteristic type of vibration. 
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The case in which the sixth type is elicited by applying the bow in the 
neighbourhood of the node 3116, i.e. near the centre of the string, may be similarly 
dealt with. In this case, the maximum number of crossings of discontinuities at the 
bowed point in each period is three and the simplest type of motion at the bowed 
point is a six-step zig-zag. The initial position of one pair of discontinuities then 
necessarily coincides with the bowed point. To find the initial positions of the 
other two pairs, we have only one equation which is given by the crossing that 
takes place within each half-period. The case has therefore to be dealt with in a 
manner analogous to that described in the preceding. Thus if the position of the 
bowed point is at 3116 + b, the discontinuities may initially be taken to be at the 
positions (116 - 3b), (3116 + b) and (5116 + 5b). 

The seventh type of vibration 

For this type, we have to consider the bowed point as being at one or other of 
the six positions (6117 f b), (5117 f b), and (4117 f b). Each of these cases gives a 
mode of vibration characteristically different from the others, though at the 
bowed point the vibration-curve is the same in all the cases, a two-step zig-zag. 
When the bow is applied at 6117 + b, the discontinuities are initially at the 
positions 0, (2117 - 2b), (4117 - 4b) and (6117 - 6b). In the resulting vibration, if b 
be small, the seventh harmonic is very strong. By writing - b for b in these 
quantities, we get the solution for the second case in which the bow is applied at 
(6117 - b). Both the sixth and the seventh harmonics are then powerful in the 
mode of vibration set up. If the position of the bowed point is shifted to the point 
(5117 + b) the initial positions of the discontinuities are found to be (117 - 4b), 
(3117 + 2b), (5117 - 6b) and 1 respective1y:In the resulting vibration the fourth and 
seventh harmonics are dominant. By writing - b for b as before, the solution for 
the bowed point (5117 - b) is obtained. The third and seventh harmonics are then 
dominant. When the bow is applied at the point 4/17 + b), the initial positions of 
the discontinuities are 0, (2117 + 4b), (4117 - 6b) and (6117 - 2b). It can be shown 
that the second, fifth and seventh harmonics are then dominant. The solution for 
the case in which the bow is applied at (4117 - b) may be obtained as above by 
changing the sign. The second and seventh harmonics are found to be dominant 
in the resulting vibration. 

The eighth, ninth and higher types may be readily discussed in accordance with 
the general principles already outlined. The form of the vibration-curve for the 
ninth type of vibration elicited by bowing at the point (5119 - 11135) and 
calculated for the point of observation distant 1/15 from one end of the string is 
shown in figure 5(a). It will be seen from the general form of the vibration- 
curve that the second and ninth harmonics are dominant in the resulting motion. 


