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Abstract. Is the universe computable? If yes, is it computationally a polynomial place? In standard 
quantum mechanics, which permits infinite parallelism and the infinitely precise specification of 
states, a negative answer to both questions is not ruled out. On the other hand, empirical evidence 
suggests that NP-complete problems are intractable in the physical world. Likewise, computational 
problems known to be algorithmically uncomputable do not seem to be computable by any physical 
means. We suggest that this close correspondence between the efficiency and power of abstract 
algorithms on the one hand, and physical computers on the other, finds a natural explanation if the 
universe is assumed to be algorithmic; that is, that physical reality is the product of discrete sub-
physical information processing equivalent to the actions of a probabilistic Turing machine. This 
assumption can be reconciled with the observed exponentiality of quantum systems at microscopic 
scales, and the consequent possibility of implementing Shor's quantum polynomial time algorithm 
at that scale, provided the degree of superposition is intrinsically, finitely upper-bounded. If this 
bound is associated with the quantum-classical divide (the Heisenberg cut), a natural resolution 
to the quantum measurement problem arises. From this viewpoint, macroscopic classicality is an 
evidence that the universe is in BPP, and both questions raised above receive affirmative answers. A 
recently proposed computational model of quantum measurement, which relates the Heisenberg cut 
to the discreteness of Hilbert space, is briefly discussed. A connection to quantum gravity is noted. 
Our results are compatible with the philosophy that mathematical truths are independent of the laws 
of physics. 
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INTRODUCTION 

The advance of quantum information and quantum computation [1, 2] as a serious field 
of research has brought forth a new language for looking at problems in physics and a 
novel way of characterizing physical theories [3,4]. Further, information processing may 
play a fundamental role in our understanding of physical laws [5, 6, 7, 8]. Conversely, 
the discovery of Shor's algorithm [9] suggested that knowledge of the physical world 
is relevant to study the limits of efficient computation. These developments highlight 
the interplay between insights into information and computation developed by computer 
scientists on the one hand, and well-tested physical theories documented by physicists 
on the other. Although the idea that information theory or computer science can provide 
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powerful ways to describe and explore the consequences of physical laws may be 
acknowledged as intuitively appealing, belief in its usefulness as a guide to new physics 
is unlikely to be widespread among physicists. We hope this work can help elucidate the 
connection between the two fields. Indeed, several independent approaches inspired by 
a similar philosophy have been undertaken [10, 11, 12, 13]. 

The eminent physicist J. Wheeler has suggested that physical reality itself may be a 
manifestation of information processing through his idea expressed as the aphorism "it 
from bit" [14]. To quote Wheeler: 

"It from bit" symbolizes the idea that every item of the physical world has 
at the bottom- at the very bottom, in most instances- an immaterial source 
and explanation; that which we call reality arises from the posing of yes-no 
questions, and the registering of equipment-invoked responses; in short, that 
things physical are information theoretic in origin. 

In this work, we suggest that the known power of physical computers and the quantum 
measurement problem together offer a clue to and suggest a particular realization of the 
above idea. 

We believe that this approach highlights how computation theoretic considerations 
can shed light on fundamental questions about why physical laws are the way they are, 
and also help constrain or uncover new physics. For example, it is an interesting ques­
tion how the theoretical model of computation compares with physical computers. For 
concreteness, one can ask whether NP-complete problems can be solved in polynomial 
time using the resources of the physical universe. What can we say about physics de­
pending on whether the answer is affirmative or negative? These are some questions we 
consider here. 

Doubtless, various profound approaches to such questions exist, among them string 
theory, different theories of quantum gravity, particle physics, etc. Various recondite 
clues, such as the black hole information paradox, dark matter, dark energy, gamma ray 
bursts are potential harbingers of new physics. Perhaps an advantage of the (quantum) 
information and computation theoretic approach such as this is that it may be possible 
to test predictions using relatively accessible optical and quantum optical experimental 
techniques. 

The article is divided as follows. In the next section, we note that NP-complete prob­
lems are found to be intractable in the physical world. This idea can be brought into 
perspective by showing that if quantum mechanics (QM) were not linear, or not uni­
tary, or not local (ie., conforming to the no-signalling theorem), or not conforming to 
the Born |I/A|2 rule [1], more efficient models of computation would be possible than 
believed to exist [15, 16]. In the subsequent section, we note that algorithmically un-
computable problems are believed to be unsolvable in the physical world. The question 
as to why Nature seems to be exactly as efficient and powerful as theoretical models of 
computation is considered thereafter. It is pointed out that one possible solution is that 
Nature is algorithmic: that is, physical reality is a manifestation of discrete sub-physical 
computations and information processing. We further indicate why this somewhat un­
usual interpretation receives clarification and support from the quantum measurement 
problem. The further Section recapitulates a computational model of quantum measure­
ment, compatible with the conclusion of the preceding section. Possible implications for 
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quantum gravity are then discussed before concluding in the last Section. 

COMPUTATIONAL COMPLEXITY CONSIDERATIONS 

In a remarkable work that founded computer science, in the course of studying the 
problem of what it means to be computable, Turing formalized the intuitive notion of 
an effective procedure or algorithm for a computational task by means of a class of 
abstract devices that have come to be called Turing machine (TM). A TM is a symbol-
manipulating device, equipped with a movable tape of finite but unbounded length, 
divided into cells. Each cell is filled with an element from a finite alphabet which 
includes a blank symbol. A TM is equipped with a read-write head that possesses a 
property known as state, a finite set of instructions for how the head should modify the 
active cell, move the tape and alter its own state [17]. 

It is of interest to study the existence of efficient algorithms to perform certain tasks, 
the relevant resources being (memory) space and time (i.e., number of computational 
steps). The complexity class P denotes the set of all problems solvable on a TM in poly­
nomial time, that is, in steps that are polynomial as a function of problem size. Problems 
in P are often considered as the class of computational problems which are "efficiently 
solvable" or "tractable". With the advent of probabilistic TMs [1] and then quantum TMs 
[18, 19], there are potentially larger classes, such as BPP (for 'bounded-error, prob­
abilistic, polynomial time) and BQP (for 'bounded-error, quantum, polynomial time), 
that are considered tractable. A probabilistic TM can be considered as a (deterministic) 
TM with access to genuine randomness. BPP denotes the set of decision problems solv­
able on a probabilistic TM in polynomial time with error probability of at most 1/3 on 
all instances. The choice of 1/3, which is arbitrary, can be replaced with any constant 
between 0 and 1/2. Analogously, BQP denotes the class of decision problems solvable 
by a quantum computer in polynomial time, with error probability of at most 1/3 [19]. 
Obviously, P C BPP C BQP. 

Roughly speaking, the set of decision problems whose solutions can be easily verified 
is called NP. More precisely, NP is the class of decision problems such that (a) to 
every positive instance of answer, there exists a polynomial-size proof verifiable by 
a deterministic polynomial-time algorithm (i.e., an efficiently computable witness of 
membership); and (b) to every negative instance of answer, the algorithm must declare 
invalid any purported proof that the answer is "yes" [20]. An example of a problem in 
NP is graph isomorphism (GI), the problem of determining whether two graphs on the 
same vertex set are isomorphic; here the witness is a permutation of the vertices that 
makes the two graphs equal. 

A problem P is in complexity class co-NP if and only if its complement P is in NP. 
In simple terms, co-NP is the class of problems for which efficiently verifiable proofs of 
"no"-instances, also called counterexamples, exist. The complement of GI, graph non-
isomorphism, is clearly an example of a problem in co-NP. GI is not known to be in 
co-NP. 

In simple terms, the class of NP-complete problems is the class of hardest problems in 
NP in the sense that if one can find a way to solve a NP-complete problem 'easily' (i.e., 
in polynomial time), then one can use that algorithm to solve all NP problems easily [21]. 
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The Boolean satisfiability problem (SAT) is NP-complete (Given a boolean expression, 
is there at least one assignment of true/false values to the variables that makes the 
expression have a "true" value?). Closely related to the SAT problem is the TAUT 
problem, the problem of determining whether a given boolean formula is a tautology, 
which is co-NP-complete (Given a boolean expression, does every possible assignment 
of true/false values to the variables yields a true statement?). BQP is suspected, but not 
known, to be disjoint from the class of NP-complete problems and a strict superset of 
P. Integer factorization and discrete log, which are in BQP, are NP problems suspected 
to be outside of both the class P and and also of the class of NP-complete problems. 
Clearly, P C NP since easy solvability implies easy verifiability. Intuitively, one would 
expect that the converse is not true. Yet, interestingly, this has in fact not been proved so 

far. This encapsulates the P = NP problem, the most famous open question in computer 
science. 

Computational complexity class #P is the set of counting problems associated with 
the decision problems in NP. That is, it is the class of function problems of the form 
"compute /(x)M, where / is the number of accepting paths of an NP machine. Unlike 
most well-known complexity classes, it is not a class of decision problems, but a class 
of function problems. The canonical #P problem is #SAT: given a Boolean formula, 
compute how many satisfying assignments it has [20]. 

PSPACE is the set of decision problems solvable on a TM using polynomial amount 
of memory. It is immediate that P C PSPACE, since a poly-time algorithm can con­
sume only polynomial space. Given a boolean formula using only 3 (existential) 
quantifiers to bind the variables yields a problem in SAT; using only V (universal) 
quantifiers yields a problem in TAUT. Alternating both yields a True Quantified 
Boolean formula (TQBF) problem, which is PSPACE-complete. A decision problem 
is in PSPACE-complete if it is in PSPACE, and every problem in PSPACE can 
be reduced to it in polynomial time. For example, a SAT problem is the question 
of whether the following is true: 3X 3X^3X3X {xx V ^x3 Vx4) A (^x2 Vx3 V ^x4). This 
can be generalized to a TQBF by replacing the above quantified Boolean formula by 
3xyX23x3Vx4(xi V ^x3 Vx4) A (^x2 Vx3 V -uc4). It is known that NP C PSPACE. The 
following containments are known to hold: P C BPP C BQP C P P C PSPACE and 
P C N P C P P C PSPACE [22]. 

In the remaining part of this Section, we consider variants of QM that lead to more 
powerful (in the sense of complexity) models of computation. QM is known to be an 
'island in theory space': it is strictly linear, unitary and having measurements obey the 
Born \\j/\2 rule [15]. One cannot give up even one of these features, without collapsing 
its whole structure, as viewed from some physical or computational perspective. In this 
sense, it is unlike, for example, gravity, where one can define a family of Brans-Dicke 
theories in the neighborhood of General Relativity that are practically indistinguishable 
from the latter. 

Consider solving SAT on a computer powered by nonlinear QM. This is easily 
solved if we have a polynomial time algorithm that determines whether there ex­
ists an input value x for which f(x) = 1, where / is a boolean black box function. 
To begin with, we assume f(x) = 1 on at most one value of x. Prepare the state 

| V> = 2~n/2 iTJ Wmdexl/M>flag 0 n " ^ b i t s a n d a ' f l a g ' Wbit 
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There are 2n l 4-dim subspaces, consisting of the first index qubit and the flag qubit, 
labelled by the index qubits 2, • • • ,n. On each such subspace, the first index qubit and 
flag qubit are in one of the states |00) + 111), |01) + 110), |00) + 110). A 'nonlinear OR' 
is applied to these two qubits to transform them according to: 

|00} + |11> ) 
|01> + |10) }> —> |01> -i-111>; |00) + |10> — | 0 0 ) + |10». (1) 
|01) + |H) J 

This operation is repeated (n—\) times, pairing each other index qubit with the flag. The 
number of terms with 1 on the flag bit doubles with each operation so that after the n 
operations, it becomes disentangled and can then be read off to obtain the answer [23]. A 
slight modification of this algorithm solves problems in #P efficiently. One replaces the 
flag qubit with log2 n qubits and the 1-bit nonlinear OR with the corresponding nonlinear 
counting. The final read-out is then the number of solutions to f(x) = 1. 

One can also solve SAT efficiently via non-unitary QM [16]. For example, to the 
second register of | \j/} = 2~nl2 Xx |#) | /(x))? apply the nonunitary but invertible gate 

c-(f\) 
Measurement on the second register allows one to know whether there exists x such that 
f(x) = 1 with exponentially small uncertainty. This also solves the complement of SAT, 
to which TAUT is (polynomial-time many-one) reducible. 

As another variant of QM, suppose QM allows the probability of measurement out­
comes to depend on other norms p than the 2-norm of Born's | \f/\2 rule. Restricting the 
dynamics to be norm-preserving leaves only the trivial dynamics of generalized permu­
tation matrices. So the only option seems to be to use manual normalization: to stipulate 
that when a state \\f/) = Exax\x) is measured in the computational basis, the probabil­
ity of outcome x is \ax \

p /Y,y \ay\p- Since here norm is not required to be preserved, the 
dynamics is free to be unitary or simply consist of invertible matrices. In the latter case, 
'local normalization' can be an option. Each of these three options can be shown to al­
low quantum computers to solve even PP-complete problems [22] in polynomial time 
[16], which are believed to be harder than NP-complete problems. 

Similarly, allowing for nonlocal signalling also permits efficient solving of SAT. 
To see this, observe that nonlocal signalling almost always implies a departure from 
standard QM: nonlinearity (some instances include those discussed in Refs. [25, 26]), 
non-unitarity, etc. As an example of the latter case, we note that the gate in Eq. (2) can 
be used to transmit a nonlocal signal. To do so, sender Alice applies either G or XGX 
to her qubit in the entangled state (l/\/2)(|01) + |10)), shared between her and Bob. 
Accordingly, Bob finds |0) or |1) with probability exponentially close to 1. Here X is 
Pauli X operator. This nonlocal signal 'instantaneously' transmits classical information 
without requiring material or energy transfer using only the Einstein-Podolsky-Rosen 
channel [24]. It is not surprising that nonlocal signalling power is closely related to the 
power to solve hard problems efficiently, inasmuch as a similar "communication across 
superposition branches" is required in both cases. 
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In fact nonlinear quantum computers can even solve PSPACE problems efficiently 
[16]. To solve the PSPACE-complete problem mentioned above, one alternatively ap­
plies nonlinear OR's and AND's, (instead of only nonlinear OR's as used to solve SAT) 
to: \\j/} = Y^=o lx)indexl/(x))flag' s t a r t ing with ^ m a nd flag qubits, moving the control 
bit sequentially leftward. Here the one-bit nonlinear AND is analogous to Eq. (1), given 
by: 

|00) + |10> ) 
|00) + |11) ^ — | 0 0 ) + |10); |01) + |11) —101) + |11». (3) 
|01) + |10) J 

This will disentangle the flagbit which is then read off to obtain the answer. 
The above observations raise the question as to why QM 'chooses' to be such an island 

in theoryspace- strictly linear, unitary, local and conforming to the Born \\j/\2 rule. A 
similar observation applies to other promising candidates among natural processes that 
potentially offer more efficient models of computation, such as simulated annealing, 
soap bubbles, protein folding and 'relativistic computation' [16]. On closer inspection, 
the evidence in support of their ability to efficiently solve hard problems is not found to 
be persuasive. Their route to efficiency seems always to be blocked by such features as 
taking longer relaxation or evolution times [27], ending up in local minima, requiring 
exponentially large energy, etc. 

These considerations lend support to the NP-hardness assumption (NPHA): that NP-
complete problems are intractable in the physical world [16]. Our confidence in the 
probable veracity of this assumption stems not only from empirical knowledge of the 
physical world, but from noting that simple modifications to the laws of (quantum) 
physics, which could have led to the possibility of more effecient computing machines, 
are not found to be availed of in nature. 

COMPUTATABILITY CONSIDERATIONS 

Related to the issue of computational complexity is the question of computability, that 
is, the existence of an algorithm to solve a given computational task. An existential proof 
for uncomputable functions is based on a counting argument: the number of functions 
/ : N ^ { 0 , l } i s uncountably many (2**o)5 whereas the number of TMs is only countably 
infinite. Thus, most functions are (Turing) uncomputable. A specific example is Turing's 
halting problem, which is undecidable. 

Suppose all TMs are uniquely numbered as ¥•(•) (J = 0,1,2 • • •) according to some 
consistent scheme. Consider the halting set H = {j | MAj)l}, consisting of machine 
numbers of TMs that halt when they get as input their own number. Simply running 
MAj) until it halts constitutes an algorithm to accept H, that is, to determine any "yes" 
instance to the problem of whether j G H. Thus H is semi-decidable or recursively enu­
merable (r.e.). The latter name derives from the fact that there is an enumeration pro­
cedure (employing a 'dovetailing' principle) whereby every element in H is eventually 
detected. _ 

But H is not co-r.e. (i.e., its complement H is not r.e) because there is in general 
no algorithm to check the "no" instance of this question. Intuitively, this is because 
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if a program does not halt, jwe would never know that it won't do so at a later time. 
More rigorously, suppose H is r.e: let d be the machine or program number of the 
TM that accepts H. Thus n$H <t=^ Md(n)l. Therefore: d$H <t=^ Md(d)l. 
However the definition of H tells us that: d G H <=̂ > Md{d)[. Thus we have that: 
d G H <=̂ > d £ H, a contradiction. It follows that H is not r.e. H is thus non-
recursive- there exists no general membership algorithm for H. The halting function 
h(x) = {x|x G H} is thus algorithmically uncomputable. Uncomputability implies [28] 
Godel incompleteness [29]. 

One might ask whether uncomputability is a limitation of the TM model of compu­
tation, and whether perhaps an algorithm may be more general than a TM. According 
to the Church-Turing thesis (CTT), the answer is in the negative. CTT asserts that any 
problem that may be intuitively considered as computable (in a reasonable sense) is 
computable on a TM. That is, the formal concept of a TM captures exactly the intuitive 
idea of an algorithm or an effective procedure. Note that it is not provable, since it relates 
an intuition to a formal notion. Nevertheless, CTT is falsifiable in the sense that it can be 
refuted by the discovery of an intuitively acceptable algorithm or, more starkly, of some 
physical process, for a Turing-uncomputable task. 

QM is characterized by infinite parallelism and the infinite precision of amplitudes 
(the continuum nature of Hilbert space) [30]. By the counting argument, the cardinality 
of the set of quantum TMs (or programs) equals that of all functions / : N i—• {0,1}. 
Thus, the counting argument cannot be used to exclude a quantum algorithm from 
computing the halting function h(x). In particular, one can conceive of a quantum 
machine £} that accepts H: n ^ H <=> J2(n)[. Contradiction through self-reference 
is averted because J2, being represented by a real number, cannot be the argument to 
any TM. (Actually, this argument can be applied also to real-valued TMs.) 

Yet, it is usually believed that quantum Turing machines (QTM) can only compute the 
same functions that are computable with classical Turing machines. The QTM model, 
defined by Deutsch [18] and further formalized by Bernstein and Vazirani [19], is sim-
ulable by classical Turing machines (albeit at the expense of exponential slowdown), 
therefore so far as computability is concerned and within the scope of this QTM model, 
the set of computable functions remains the same as that for (classical) TM. Empirical 
evidence suggests that in computers based on the principle of relaxing to an energy min­
imum that encodes the solution, as DNA computer, soap bubbles, simulated annealing, 
etc., the physical relaxation time, which is a measure of computational complexity, tends 
to diverge as a function of problem size. Another possible impediment to super-Turing 
power is noise, which can render unfeasible infinitely precise computation. 

We remark on a further point: that, even with infinite parallelism, quantum computers 
may need nonlinearity to solve non-recursive problems. This is analogous to the diffi­
culty of simulating nondeterminism using the exponential parallelism of QTMs [31]. To 
see this, we briefly describe a model of infinite quantum parallelism. 

We are given a problem Z C N and an infinite dimensional quantum system, whose 
Hilbert space Jti?s is spanned by vectors {[/')}. Suppose we can engineer a unitary trans­
formation U whose action on Jf?s ® M"R, where M"R is the 2-dimensional space of an 
ancilla, is such that £/|y)|0) = \j)\f{j)), where f(j) = 1 if j G L and f(J) = 0 other­
wise. We assume further that we can arrange energetically so that all superpositional 
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pathways j terminate within finitely bounded time T independent of j (this requirement 
is analogous to invoking the linear speed-up lemma [32] in the model of infinite paral­
lelism proposed in Ref. [33]). 

Consider trying to solve the halting problem, or, equivalently, Hilbert's 10th problem 
[34]. In the former case, the action of U on pathway j may simulate a given program P 
acting on its input x, through the first j steps, and evaluate f(j) to " 1 " iff P(x) halts 
within these steps. In the latter problem, the quantum computer computes on each 
pathway y, the given Diophantine equation D on input j and evaluates f(x) to " 1 " iff 
D(j)=0. 

If U were physically realizable, running this quantum computer on a superposition 
of all possible inputs, by virtue of quantum mechanical linearity, one obtains the pos­
sibly entangled state U(Y7=o L/)|0)) —• ^7=o \j)\f(j))- To be able to compute Turing-
uncomputable functions, we require a finite method to detect an acceptance on at least 
one term in the output superposition of U. Unfortunately, we can do no better than to 
quantum search through all the infinite terms. We thus recover uncomputability, since 
a quantum search can yield no better than a quadratic speedup [31], so that a negative 
answer to L can never be ruled out in this way in finite time. This line of reasoning sug­
gests that infinite quantum parallelism cannot necessarily be harnessed to solve Turing 
uncomputable problems. 

THE QUANTUM MEASUREMENT PROBLEM 

The conclusions of the preceding two sections demonstrate that CTT and NPHA present 
us with what is arguably a twofold coincidence: (a) On the one hand, we find that NP-
complete problems do not seem to be efficiently solvable by any physical means; (b) on 
the other hand, algorithmically uncomputable problems do not seem to be computable 
by any physical means. 

This close correspondence between the efficiency and power of theoretical algorithms 
and those of physical computers (abbreviated to CCAP) evokes the question: How do 
we account it? Three broad possibilities present themselves: 

(1) that the laws of physics support super-Turing efficiency and power, but instances of 
violation of NPHA and CTT in Nature remain unidentified. 

(2) The universe is not Turing computable, let alone polynomial, but super-Turing effi­
ciency or power is not "harnessable", because of quantum mechanical 'insularity' 
(i.e., QM being linear, unitary, etc.), or "accidents" such noise, energetics, etc. One 
possibility that realizes this option is that the universe is a quantum computer, where 
the origin of uncomputabality and intractability could be the infinite quantum par­
allelism (eg., as in a harmonic oscillator) and exponential quantum parallelism (eg., 
as in a multi-qubit system), respectively, with the purported impossibility of solv­
ing the halting problem or efficiently simulating nondeterminism having its origin 
in the special, 'insular' structure of QM. 

(3) The universe is algorithmic: the states and evolution of physical objects are mani­
festations of discrete information stored and computations performed at the 'sub-
physical' level by a probabilistic TM, which serves as a 'meta-universe'. Physi-
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cal laws are manifestations of efficient sub-physical algorithms on the probabilis­
tic TM. Physical reality is fundamentally information theoretic, in the sense of 
Wheeler's phrase "it from bit". We need to clarify, which we do below, why this 
option does not contradict the fact that BQP apparently characterizes the observed 
power of quantum computers. 

Are there other observations that can influence our choice of one or other option? We 
claim that the quantum measurement problem (QMP) is one such. We will argue that 
QMP clarifies the above situation in two ways: first, it will enable us to argue that the 
apparent BQPness of microscopic quantum states that we are sure we can prepare does 
not contradict the proposition that classical macrosystems exist in BPP. This is crucial 
to justify option (3) as an explanation of CCAP; second, it will enable us to argue that 
macro-classicality undermines both options (1) and (2). 

QMP is a fundamental problem of interpretting QM, that, in its simplest form, is 
concerned with the questions (among others): Why is the macro-world classical? Why 
do we not find conspicuous macroscopic manifestations of quantum interference? 

In slightly more detail: when a quantum measurement is performed on a system S 
in the state \\f/) = Z7-tf ,•[/') (2/ l^/P — 1)> quantum mechanical linearity implies that a 
Schrodinger cat state should be generated as follows: 

I«,U)I*> — I«yli)l^)> (4) 
J J 

where \R) is the 'ready' state, and |^,)'s the correlated states of the measuring apparatus. 
Instead, selectively speaking (i.e., conditioned on the read-out of the measuring appara­
tus), only one of the possible outcomes \j) \R.) is observed. The origin of this apparently 
discontinuous, non-unitary jump, sometimes called the "collapse of the wavefunction" 
or "reduction of the state vector", is QMP (or, more precisely, an important part of QMP). 

QMP is a long-standing and contentious problem about the interpretation of QM, 
with many proposed, interesting solutions (cf. [35] for a detailed review). Often the 
formal collapse is treated only as an interpretational concept rather than an objective 
physical phenomenon. Part of the reason is that it is hard to establish a critical size 
at which the physical collapse may be said to happen or to come up with a clearly 
testable mechanism. In the view of many, it is not ruled out that QMP may be resolved 
without invoking collapse. Still, in Refs. [36, 37], we argued that the mechanism of 
environmental decoherence [38, 39, 40], complemented by a wavefunction collapse, is 
a reasonable way to resolve QMP. Our support for option (3) over options (1) and (2) is 
based on this line of thought, in particular, the assumption that collapse is an objective 
occurance. 

Under option (3), one is required to reconcile the assumed polynomiality (i.e, 
BPPness) of the universe with the observed exponentiality of the quantum states, which 
empowers the massive quantum parallelism behind Shor's algorithm [9]. The latter 
gives a polynomial time quantum algorithm for the factoring problem, which is not 
believed to be in P. A crucial fact here is that this exponentiality has never been seen 
on macro-scales, which of course is QMP. Therefore, if we accept option (3), the only 
way to avoid the contradiction between the presumed polynomiality of the universe 
and the apparent exponentiality confirmed at small scales seems to be to fundamentally 
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upper-bound the degree of superposition allowed for any quantum system. By choosing 
this bound judiciously, that is, by positioning it at the Heisenberg cut (the scale that 
seemingly separates the quantum realm from the classical), one can guarantee that suffi­
ciently small systems will manifest superpositions and hence exponential behaviour; on 
the other hand, for sufficiently large systems, exponential (superpositional) behaviour 
will be replaced by polynomial (classical) behaviour. With this proviso, the fact that 
quantum computers are apparently characterized by BQP at microscopic scales would 
not be incompatible with the proposition that the universe is in BPP. 

Conversely, this may be expressed as follows. We treat QMP interpreted as an objec­
tive collapse as a threshold phenomenon, which separates the quantum behaviour in the 
micro-world from the classical behaviour in the macro-world. It may be thought of as 
a sort of quantitative (as against qualitative) "Sure/Shor" separator [41], a criterion that 
separates the quantum states are that are surely experimentally preparable, from states 
that arise in a large-scale implementation of Shor's algorithm. Given the polynomiality 
of the universe per option (3), and the tested exponentiality at small scales, option (3) 
predicts that the quantum superposition principle should break down at some finite scale. 
By identifying this threshold scale with the quantum-classical divide, we have a natural 
resolution to QMP. From this viewpoint, macro-classicality is a sign that the universe is 
in BPP. 

QMP interpreted as a collapse phenomenon in fact undermines both options (1) 
and (2). For example, consider the assumption of linearity of QM under option (2) 
as a possible explanation for CCAP. Clearly, the validity of the linearity of quantum 
evolution at all scales is called into question if lack of superpositions of the type (4) is 
due to collapse. This contradiction is not weakened by taking into consideration noise, 
measuring errors and such details [43]. (A caveat is that alternative interpretations of QM 
like Many-worlds or Bohmian may be exempt from this contradiction.) If we regard 
macro-classicality as a sign of breakdown of linearity at some scale, then option (2) 
seems to be disfavored. 

This breakdown would also imply that a superposition of infinite terms is disal­
lowed. In the ITS model, infinite parallelism is necessary (though not sufficient) for 
computing non-recursive functions. According to this model, the breakdown in linear­
ity/superposition principle also disfavors option (1). 

Adopting option (3) as the explanation of CCAP, we are led to the worldview that 
the universe is computable, 'simulated/computed' by efficient algorithms run on a sub-
physical probabilistic TM, which serves as a meta-universe. Quantum randomness is ac­
cepted as fundamental. Thus the universe is described as a polynomial place in BPP. We 
believe that option (3) is potentially a more 'natural' and 'deeper' explanation of CCAP 
than the other options. First, we note that NPHA and CTT follow immediately and nat­
urally: CTT is simply the consequence of Turing-uncomputability; NPHA follows from 
the situation that probably no efficient algorithms exist to solve hard problems (if such 
exist, perhaps they are so unobvious that Nature hasn't yet 'discovered' them!) Under 
option (3), we then conclude that Schrodinger evolution is linear, unitary and compatible 
with no-signalling and quantum measurement obeys the Born rule because if it were not 
so, the resulting computational power would be larger than that supportable by an algo­
rithmic universe. In fact, wavefunction collapse implies a breakdown in both linearity 
and unitarity, but not of a kind that would allow efficient computation of hard problems, 
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or, for the matter, nonlocal signaling, (though non-selectively, that is, at the level of the 
density matrix, the evolution is still linear, and can be regarded as unitary in a larger 
Hilbert space [1].) This suggests that while the insular structure of QM in theory space 
is special, a departure of QM from insularity may be allowed if it is compatible with the 
algorithmicity of the universe. 

These observations allow us to reduce a host of physical laws to basic results in 
computation theory. Furthermore, teleologically speaking, there is an obvious, intrinsic 
'motivation' for an algorithmic universe to employ efficient algorithms: if they indeed 
suffice to engender a sufficiently complex universe (which seems to be the case, cf. Ref. 
[12]), then no further 'computational effort' on the universe's part is needed! 

Options (1) and (2) are less satisfactory as fundamental explanations of CCAP. For 
example, consider the assumption of linearity of QM under option (2) as a possible 
explanation. There is no a priori reason to expect that a self-consistent QM should 
be linear. Invoking the prohibition on nonlocal signaling to impose linearity brings in 
an extraneous physical criterion. Moreover, it means that one of them has to accepted 
axiomatically. 

From the viewpoint of classical computation, option (3) is conservative because it 
sides with the belief that it is unlikely that Nature would manipulate or maintain expo­
nentially (not to mention, infinitely) large objects "free of cost" (or, at unit cost) [42]. It is 
intuitively satisfying to picture the laws of physics as algorithms for physical dynamics, 
and hence that the limits on efficient computation and on computability in the physi­
cal world derived from them, to correspond to formal, purely mathematical notions of 
computation. Option (3) thus arguably supports the philosophy that mathematical truths 
do not depend on the laws of physics and suggests that insights from computer science 
can be used to constrain the search for new physics. In contrast, option (2) arguably 
supports the philosophy that the limits of mathematics are dependent on physical laws. 
This viewpoint does not encourage the hope that computer scientific insights may con­
strain physics, but instead that new physics may extend the limits of algorithms and 
mathematics. 

An important objection to this argument is the following: that, despite its origin in 
physics, BQP is a fully mathematical notion, since the underlying concepts, namely the 
superposition principle and the tensor product structure of Hilbert space, are fully math­
ematical; and that, a classical computer scientist, accustomed to a different mathematical 
framework (namely that of discrete mathematics with composite systems described in 
terms of the cartesian product) may have found quantum computation a little unfamiliar, 
simply because of unfamiliar mathematics, rather than because they involve physics in 
any essential way. 

This point merits further consideration, but we briefly note the following: that, un­
less one adopts option (3), one probably has no way, except by empirical observation 
of the physical world, to fix what one would regard as the most powerful possible "rea­
sonable" model of computation, both in the sense of computational complexity and of 
computability. For example, to one who adopts the viewpoint of option (1) or (2), there 
would be no fundamental explanation for his claim that quantum computers can exist in 
nature, but machines such as (say) nondeterministic computers cannot. 

It remains to concretize option (3) in the form of a model of measurement that 
accounts for a bounded degree of superposition. Such a model had been proposed by 
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us earlier [36, 37], which we briefly review in the next Section. 

COMPUTATIONAL MODEL FOR QUANTUM MEASUREMENT 

This section briefly discusses a model of quantum measurement, called the computa­
tional model for quantum measurement (CMQM), which is a particular realization of 
option (3). A fundamental assumption of the CMQM is that Hilbert space is discrete 
[36, 37]. The idea of a discrete Hilbert space has been independently arrived at in Ref. 
[44] on quantum gravity grounds. Here discretization means that the description of any 
quantum state with respect to some reference basis in a finite dimensional Hilbert space 
requires only a finite number (/i) of bits. We denote by J ^ the Hilbert space M" dis-
cretized at /i-bit accuracy. Parameter /i specifies an intrinsic limit on the resolution of 
states, and not an effective limit due to practical constraints. In a more detailed model, 
/i need not be fixed, but only upper-bounded, and discretization may not mean a lattice 
structure. 

A state | y/) e Jf?n is described by /i bits per amplitude (/i/2 for the real and imaginary 
parts). Thus the full state is specified by Dfi bits, where D is the Hilbert space dimension 
(Actually, (D— l)/i bits suffice because of normalization. However, for simplicity, we 
will ignore this detail.) The sub-physical computational rate corresponding to a system's 

evolution when driven by a Hamiltonian E]j)(j\ is &{D,E) = ^~X ;-£7- = 2 ^E 

operations per second (ops) [36, 37]. Unitarity and normalization hold true only to /i-
bit precision. In principle, continuous SU(N) group structure can be obtained in the 
long wavelength limit from discrete symmetry. Thus, the discretization is not necessarily 
inconsistent with the observed apparent continuous evolution of quantum systems [44]. 

A consequence of finite /i is that the degree of superposition of a coherently evolving 
system is bounded above by Anax = 2M since in a larger Hilbert space, not all amplitudes 
can be resolved. Therefore, the coherent evolution of any physical system can proceed 
along at most a finite number, 2^, of parallel superpositional pathways (terms in a 
coherent superposition). The number of quantum TMs or programs in CMQM is thus 
only countably infinite, and we recover uncomputability. In an arbitrary dynamical 
situation, a Hilbert space of dimension larger that 2M may become energetically available 
to the system. If in this situation the 'loss of probability' through unresolvabihty of 
amplitudes is sufficiently small, then the loss is deemed insignificant. Eg., given a, for 
sufficiently large /i, a coherent state \a) and its finite equivalent \a^) in J ^ will be 
hardly distinguishable in practice [37]. 

On the other hand, if via interactions large entanglement is generated, then the unre­
solvabihty of the state, and the resultant loss of amplitude information, are arguably no 
longer insignificant. In Ref. [37], we introduced a simple entanglement monotone as a 
suitable measure of entanglement resolvable at /i bits (/i-bit resolvable or /i-resolvable). 
Given a set S of particles, let S(p) denote the single particle marginal entropy to /i-bit 
precision and 2? the set of all non-vanishing proper subsets of S. We define /i-resolvable 
entanglement by: 

£(JV) f lUs<J>j) i f (*+)* ^2_M/2yyG *- (5) 
S^ \ 0 otherwise, V J 
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where {X+)y is 2nd largest eigenvalue (at /i-bit precision) of tr>;(|
xF) (*F|) = try(|*F) (*F|). 

The idea is that two systems are not resolvably entangled if the Schmidt representation of 
their joint state contains only one coefficient resolvable at /i-bit precision. An TV-partite 
system possesses genuine TV-partite /I-resolvable entanglement only if every bipartite 
division reveals /I-resolvable entanglement. Two systems that are not /I-resolvably en­
tangled are said to be /i-separable. 

Consider a system of N particles with D < 2 ^ , but D^ > 2^. When separable, the 
system's state is resolvable. But in a regime of high interaction, f^ « NlogD > /i, 
so that the loss of amplitude information can be significant. Significant unresolvability 
leads to computational instability: that is, the sub-physical simulation of the physical 
system at /i-bit precision becomes very noisy. According to CMQM, 'collapse of the 
wavefunction' is an error-preventive response to computational instability, whereby the 
system is abruptly re-set from massive entanglement (^ « / i ) to a computationally stable 
state (with t, <C /i), which may or may not be a product state in terms of the most 
fundamental degrees of freedom of the system. 

Wavefunction collapse is thus understood as an algorithmic (rather than dynamic) 
process or transition. It can be shown that repeated cycles of collapse and episodes of 
/I-unitary evolution lead to macro-classicality compatible with the decoherence of an 
open system [36, 37]. An implication for quantum computation is that asymptotically, 
the power of QCs is not BQP but BPP, since the degree of superposition (the degree 
of quantum parallelism) is upper-bounded by 2^. A quantum computer of more than /I 
strongly interacting qubits will tend to collapse rapidly, hardly manifesting non-classical 
behaviour. Ref. [44] obtain a similar result starting from the assumption of discreteness 
of space. 

RELATIVITY AND QUANTUM GRAVITY 

Earlier we noted that the no-signaling feature reduces to the assumption of an algorith­
mic universe built on efficient algorithms. But we observe that no-signaling only implies 
localism in the sense that any signal should be mediated by material motion. It does not 
imply that there is an upper-bound (namely, c) to the speed of material motion, which 
Relativity does. It is not clear that these two versions of localism may be related but we 
conjecture they are. 

Since the cardinality of space or time taken as a continuum is the same as that of the 
set of functions / : N i—• {0,1}, the possibility seems to arise of analog computers with 
super-Turing power, at least in a noiseless classical world. One can imagine solving the 
halting problem in this rather exotic fashion: by executing the first step of computation 
in half a second, the second in the next 1/4 second, the third in 1/8 of a second in the 
subsequent interval, and so on until at the end of 1 second, the halting problem has been 
solved! Also, given the ability to compute x + y,x —y,xy,x/y and [xj in one step, where 
x and y are any unlimited-precision real numbers, NP-complete and even PSPACE-
complete problems are classically solvable in polynomial time [45]. 

For this reason, under option (3), we would expect that physical space and time must 
also be disrete. In fact, reasonable grounds lead us to expect that finite /I implies dis­
creteness of space and time [37]. Spacetime discreteness is of course an idea familiar 
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in certain approaches to quantum gravity [46]. As the discreteness of spacetime rules 
out space- or time-based analog computers, we again recover properties favoring com-
putability and polynomiality of the universe. 

DISCUSSION 

The present work may be summarized as an effort to take CCAP seriously as a funda­
mental physical principle. That the proposition of the universe's algorithmicity can pro­
vide an economic explanation for such a wide range of basic physical laws as quantum 
mechanical linearity, unitarity, signal-locality, the Born rule, and macroscopic classical-
ity is justification for the belief that the search for fundamental physical laws can benefit 
from examining constraints coming from computation theory. Although many physicists 
(as against computer scientists) may be skeptical, we believe it is worth taking this idea 
farther and asking whether all qualitative features of physical laws can be reduced to 
results in the logical foundations of mathematics and computation theory. 

It is a deep-rooted belief of scientists that the laws of physics should be unified into 
a single deeper law, simply because it seems unlikely (though not impossible) that the 
universe is fundamentally a patchwork of independent, basic laws. Similarly, we also 
expect that the mathematical structure that physical laws will assume at a sufficiently 
deep level may force us to resolve our ambiguity towards such profound and basic 
mathematical concepts as continuity and infinitessimals in real analysis, and those like 
infinity in the logical foundations of mathematics [47]. We believe the present approach 
indicates one way to address this issue, by suggesting a concrete connection between 
computation theory and physical law. Further, it has important implications for the 
philosophy of mathematics [48]. It is not unreasonable to regard logic, mathematics 
or classical computation theory as independent of the "accident" of physical laws and 
intrinsic to the "laws of thought", however one might conceive, them The discovery 
of Shor's celebrated algorithm, when interpretted under option (2), would seem to 
undermine this belief. In contrast, option (3) tends to affirm it, and gives us confidence 
to believe that NPHA and CTT should be true in any instance of the universe. It can thus 
help constrain the search for new physical laws on the road to fundamental theories such 
as a theory of quantum gravity or string theory. 

Are there tests of the the model of the algorithmic universe? More simply, is it 
falsifiable? Clearly, any unequivocal proof that wavefunction collapse does not happen 
will falsify it. But this may be difficult to test, given that CMQM is hardly distinghishable 
from the effect of decoherence nonselectively, and experimental tests of decoherence 
performed thus far are incapable of differentiating the effect of decoherence from that of 
decoherence terminated by a collapse [37]. This is an important issue we hope to address 
in the future. 

I thank Dr. Piyush Kurur, Prof. J. Gruska, Mr. Sudhir K. Singh for comments and 
discussions. I am thankful to the anonymous referees for constructive suggestions. 
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