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We consider the equation of state of quark matter at finite density in mean field theory, through
an effective chiral lagrangian whose parameters (coupling constants) are all fixed by hadronic data.
Between three to seven times nuclear density, for charge neutral quark matter in § equilibrium, we
find the ground state to be a neutral pion condensate. With increasing baryon density we then
expect nuclear matter, followed by pion condensed quark matter at intermediate density, and finally
the diquark colour-flavour CFL condensate. These are all states with chiral spontaneous symmetry

breaking (SSB).

We find another remarkable feature and this is that the scalar (pseudoscalar) coupling, A, has a
crucial and unexpected influence on the physics of neutron stars. Neutron stars with pion condensed
quark matter cores exist only in a small window, between, 5.7 < A < 6.45. Interestingly, this range
is consistent with the value of A derived from m, 7 scattering data and such stellar cores may carry

magnetar strength magnetic fields.

I. INTRODUCTION

Neutron stars have been a subject of abiding interest
for several decades. There are a variety of astrophys-
ical phenomena that arise from the physics of neutron
stars. These include supernovae, pulsars, accreting bi-
nary X-ray sources and Magnetars, which have super-
strong magnetic fields. Most of these phenomena require
us to understand the physics of matter at very high den-
sity, which govern the mass and the size of neutron stars.
In other words, one needs to have a clear understand-
ing of the equation of state (EOS) of superdense matter.
Although much effort has gone into this enterprise over
the last four decades it still remains poorly understood.
Why?

Central densities of neutron stars are high, more than
~5 times nuclear density puuc = 0.17 fm~3. For a single
species, neutrons, this naively translates into a fermi gas
with typical fermi momentum, k? ~ 600 MeV. On the
other hand nucleons have structure and a typical size of
the order of a fermi (200 MeV)~!. It is clear that at such
high densities nucleons (neutrons) cannot be treated as
elementary. They are composite and resolved. They are
colour singlet bound states of three valence quarks. At
such high densities, therefore, treating nucleons as point
particles interacting via two body (or more) forces will be
inadequate. Yet most available equations of state adopt
this approach and therefore fail to capture the correct
physics at high density.

On the other hand, if we use quarks as the elementary
degrees of freedom, we are presently bound by the fact
that only perturbative calculations can be done for QCD.
This implies that calculations can be done in QCD only
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at very high density when the theory is approximately in
an asymptotically free (AF) phase. However, at interme-
diate and low density (close to nuclear density), where a
nucleonic description is valid, we cannot use perturbative
QCD as the coupling becomes strong and the physics non
perturbative and intractable. This is the dilemma.

There are attempts to model the physics by a
two phase structure — a quark matter core with a
hadronic/nuclear exterior shell and crust. Since there
is no simple way to link the two phases without using
separate parameters for both, this description is some-
what arbitrary. Further, the nature of the quark matter
state is not clear — for example, if it is in a spontaneous
chiral symmetry broken state.

Can we find a single theory that connects both these
domains? For this we use an Effective Chiral Lagrangian,
L, that receives broad support from many contexts. This
lagrangian has quarks, gluons and a chiral multiplet of
[7, 0] that flavour-couples only to the quarks [1-6].
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The masses of the scalar (psuedoscalar) and fermions fol-
low from the minimization of the potentials above. This
minimization yields

p? =2 <o >? (2)
It follows that
m2 =2\% < g >2 (3)

Experimentally, in vacuum, < o >= f;, the pion decay
constant. This theory is an extension of QCD in that it
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additionally couples the quarks to a chiral multiplet, (7
and o) [1-4].

We now summarize some interesting physics that sup-
ports this Lagrangian at the mean field level (MFT)[4, 7].

In this chiral, effective L, we do not consider vec-
tor gluon mean fields which would spontaneously break
colour symmetry and lorentz invariance. Thus, at the
level of Mean Field Theory (MFT) our model reduces to
a linear sigma model with quarks.

(i) It provides a model in which the nucleon is real-
ized as a soliton with quarks being bound in a skyrmion
configuration for the chiral field expectation values (EV)
[1, 4, 7]. This model with composite nucleons gives a
good account of the static properties of nucleons and
nucleon-nucleon interaction potentials [8].

The model provides a natural explanation for the ‘Pro-
ton spin puzzle’ [9]. Such a Lagrangian also seems to
naturally produce the Gottfried sum rule [10].

The Nambu Jona Lasinio model, that can be recast as
a chiral sigma model [11], at the level of MFT, also yields
a quark soliton nucleon. This gives structure functions
for the nucleon which are close to the experimental ones.

(ii) In a finite temperature mean field theory such an
effective Lagrangian also yields screening masses that
match with those of a finite temperature QCD simula-
tion with dynamical quarks [12]. This work does not
show any parity doubling for the hadronic states.

(iii) The theory gives a qualitatively consistent descrip-
tion for the transition from hadronic matter to quark
matter at high density and temperature [4, 5, 13, 14].

This L has a single dimensional parameter, f, that
is the pion decay constant, and three couplings, gs, the
QCD coupling, g,, the Yukawa coupling between quarks
and mesons, that will be determined from the nucleon
mass and the meson-meson coupling, A, which, for this
model, can be determined from meson meson scattering
[15]. No further phenomenological input will be used.

Once the couplings of L are determined from the
hadronic sector, the same effective lagrangian describes
the physics of the quark matter sector.

We now consider the question of the scales in QCD and
the scale of validity of this effective L.

i) Constituent quarks vs Current quarks: To begin
with let us consider the two main features of the strong
interactions (QCD) at low energy. These are a) that
quarks are confined as hadrons and b) chiral symmetry
is spontaneously broken (SSB) with the pion as an ap-
proximate Goldstone boson. There is no specific reason
that these two phenomena should occur at an identical
temperature scale, though QCD lattice simulations show
that for flavour SUs(L) x SUs(R) they are close. The
problem in giving an unequivocal answer to this ques-
tion is that we are yet to find a solution to many of the
non-perturbative aspects of QCD.

An interesting question arises: Is the quark matter in
a chiral SSB state with constituent quarks or is it, as is
usually assumed, in a chirally restored state with current
quarks?

At finite density [6, 13], we shall see in what follows,
that quark matter is in a chiral SSB state. Also, if the
chiral symmetry restoration (energy/temperature) scale
was lower than the confinement scale we would expect
hadrons to show parity doubling below the confinement
scale but above the chiral SSB scale. This is not seen in
finite temperature lattice simulations.

i) Compositeness scale: Actually, QCD can have mul-
tiple scales [5]. Apart from a confinement scale and a
chiral symmetry restoration scale we also have a compos-
iteness scale for the pion. We find, somewhat in analogy
with the top quark (large Yukawa coupling) composite
higgs picture, that we can get a compositeness scale for
the scalars (pseudoscalars) in this model by using Renor-
malisation Group (RNG) evolution. This is given by the
scale at which the wavefunction renormalisation for the
mesons - the coefficient of the kinetic term - vanishes.
Once this term vanishes the meson fields are no longer
bonafide degrees of freedom and can be eliminated us-
ing their field equation. We find that this scale, for the
mesons, is inversely proportional to the running Yukawa
coupling and thus naively vanishes when the Yukawa cou-
pling blows up. For our theory such a ballpark scale falls
between 700-800 MeV This also gives us an approximate
idea of the range of validity of our effective Lagrangian,
as, above the compositeness scale we lose the meson de-
grees of freedom.

An independent approach in setting a limit to the
range of validity of non asymptotically free (e.g. Yukawa)
theories, like ours, is the vacuum instability to small
length scale fluctuations (or large momenta in quantum
loop corrections), discovered by one of us [16]. The scale
at which this occurs is of the same order as above. This
is not very surprising since it is connected to non-AF
character of the Yukawa coupling [16, 17].

This discussion is to support the use of our effective
lagrangian up to a threshold scale in energy - the com-
positeness scale.

Given these facts we use the Mean Field Theory to de-
scribe quark matter in the density regime bounded from
above by the compositeness scale.

The plan of the paper is as follows. In Sec. 2 we dis-
cuss how we fix the couplings for our lagrangian from
the hadronic sector. In Sec. 3 we present the equation of
state (EOS) for 3 flavour quark matter using the lowest
energy ground state we have found - the neutral pion con-
densed phase with chiral SSB. In Sec. 4 we use our quark
matter EOS and the EOS for nuclear matter given by
Akmal et al (APR) [18] to make neutron stars. In Sec. 5
we discuss the phase diagram of QCD at finite density.
We comment on other ground states and on the compar-
ison between the pion condensed phase with the colour
superconducting phase. Sec. 6 summarizes our results.



II. PRELIMINARIES
A. The couplings of L

The nucleon, in our linear sigma model with quarks,
is a colour singlet bound state of three valence quarks
in a skyrme background. The general solution follows
on varying the skyrme configuration 7 and ¢ and quark
fields, that occur in the soliton field equation, indepen-
dently. The quark soliton so obtained is projected to give
a nucleon with good spin and isospin [1](b).

The mass, M, of the nucleon depends just on f (which
is 93 MeV), g, and A. The dependence on X is marginal,
so the only parameter that the mass depends on is the
Yukawa coupling, g,. Fixing M = Myycleon, yields a
generally accepted value for g, = 5.4 [1](b).

Recently, Schechter et al [15] made a fit to scalar chan-
nel scattering data to see how it may be fitted with in-
creasing /s (centre of mass energy), using chiral per-
turbation theory and several resonances. They, further,
looked at this channel using just a linear sigma model.
Their results indicate that for centre of mass energy
Vs < 800 MeV, a reasonable fit to the data can be made
using the linear sigma model with a ‘tree’ level sigma
mass close to 800 MeV, or equivalently, A ~ 6. We may
add that the ‘tree’ level mass is a parameter for the ‘tree’
level L, and is equivalent to setting a value for A - it is
not the physical mass of the sigma (see [15] for details).

The range of validity of the linear sigma model is also
consistent with the range of validity of our effective L.
This completes the determination of all the parameters
of our LL from the hadronic sector.

III. THE GROUND STATE FOR 3 FLAVOUR
QUARK MATTER

For neutron stars it is the ground state of charge neu-
tral quark matter in 8 equilibrium at given density that
is needed for the equation of state. We find, in what fol-
lows, the ground state to be the neutral pion condensate.
What is also new is that the couplings of L are fixed from
the hadronic sector.

For the equation of state we need to calculate the free
energy density at a given density. We first review the
calculation for the energy density from a previous paper
[6], which will be used to calculate the free energy.

In [6] we considered different patterns of symmetry
breaking for the, (# and o), fields and calculated the
respective ground state energies. In particular, we con-
sidered two cases

i) the two and three-flavour (see below), 7o, pion con-
densed phase, where the (7 and o) expectation values are
in a stationary wave configuration, with a wavevector, ¢
(see below).

and ii) the space uniform symmetry broken state,
which follows on putting ¢ = 0. At high density this

state goes through a chiral restoration and essentially re-
sembles conventional strange quark matter (SQM), that
is chirally restored quark matter (CRQM).

The 7 condensed ground state (PC) is found to have
the lowest energy in the chiral limit [6, 13] (see table).
We refer the reader to [6], where we have set up the
machinery to describe this ground state which is built on
non trivial symmetry breaking in the presence of the mg
condensate. This is given as follows,

For the SU(3) flavour case we have a singlet £ and an
SU(3) octet &, of scalar fields and a singlet ¢y and an
SU(3) octet ¢, of pseudoscalar fields, with the expecta-
tion values [6],

<& > = \/3/2F(1+ 2cos (¢.7))/3 (4)
<& > = —V3F(1—cos(77)/3 (5)
<¢pp> =0 (6)
<¢3> = F(sin(qr)) (7)

while all other fields have zero expectation value. On
putting ¢ = 0, we get the vacuum (space uniform) sym-
metry broken state. This yields the simple mass relation
for the strange quark, M, = g, F + ms, where m, is the
current mass and, F = V< 7 >2 + < ¢ >2, is the chiral
order parameter (F = f,, at zero density).

The ground state energy is obtained by summing all
occupied single quasiparticle states, in the presence of
the pion condensate, for the u and d quarks up to their
fermi energy. The quasiparticle states in the presence of
this condensate have a spin-isospin alignment which gives
the ground state a magnetic dipole moment. To this we
add the sum over the plane wave states for the strange
quarks of mass, M, up to the fermi energy. Besides, we
have, the gradient energy and the potential functional
contributions from the meson sector. Charge neutrality
requires us to include electrons as well. (-equilibrium
is imposed and this implies several chemical potential
relations between the different species (see [6]).

The ground state energy and the baryon density de-
pend on the two variational parameters, the order pa-
rameter or the expectation value, F, and the condensate
momentum, |q].

Ref.[6] provides the expressions for the baryon density,
ny, and the total energy density, €, of the PC in terms of
the u,d,s quark fermi energies/chemical potentials.

For the EOS we need to construct the Gibbs free energy
at a fixed baryon density.

Q=e—npup (8)
The baryon chemical potential is defined as
wp = Oe/Ony, 9)

After meeting all the neutrality and equilibrium condi-
tions above for fixed F' and ¢, we can write all the above
variables as a function of a single variable, .

We then minimize 2 independently with respect to F’
and g. The energy per baryon, Ej, etc then follow.



TABLE I: Charge neutral, 3-flavour, beta-equilibrium pion
condensed phase with m, = 800 MeV. The columns are: u-
quark chemical potential (., in MeV), baryon density (n; in
fm™3), energy per baryon (Ej, in MeV), electron density (e
in fm™?), ratio of densities of d-quark and u-quark (ng/n.),
that of s-quark and u-quark (ns/n.), the order parameter (F
in MeV) and magnitude of the vector g.

I ny Ey Ne Na/Mu Ns /My F q
280.0 0.2972 984.94 .2303E-02 1.916 .0318 37.0406 2.5945
300.0 0.3645 981.48 .1602E-02 1.731 .2269 31.9655 2.6149
320.0 0.4591 994.07 .1141E-02 1.599 .3640 28.6471 2.9703
340.0 0.5409 1008.88 .1173E-02 1.564 .4004 30.4335 3.0216
360.0 0.6700 1043.21 .9455E-03 1.499 .4672 28.8195 3.6217
380.0 0.7628 1062.14 .1063E-02 1.482 .4847 31.6743 3.4574
400.0 0.8967 1104.94 .4413E-03 1.345 .6245 23.6066 3.9497
420.0 1.0472 1134.64 .1283E-02 1.463 .5040 36.1496 3.9839
440.0 1.1774 1168.76 .4890E-03 1.317 .6529 26.8871 4.0720
460.0 1.3225 1216.52 .1794E-03 1.218 .7529 19.3370 4.3125
480.0 1.5149 1246.21 .3896E-03 1.267 .7033 26.9453 4.3670
500.0 1.6900 1290.81 .2212E-03 1.211 .7597 23.0806 4.4865

The results are presented in the tables below and in
Figure la. Fig 1b gives the the EOS for all the phases
considered so far.

As promised in the introduction

i) We note that the SSB neutral pion condensed ground
state is always lower energy than the CRQM state, indi-
cating that quark matter is in the chiral symmetry broken
state.

ii) As is clear from the table we have stayed in range
of validity, u < 700 MeV, of the our effective L.

iii) Another feature of this my condensate is that we
have a spin isospin polarization, 'u’ and 'd’ quark quasi-
particles have opposite spin and opposite charge. We can
then get a net magnetic moment in the ground state, as
the magnetic moments of the u and d quarks add [6] .

IV. NEUTRON STARS FROM OUR EOS

In order to construct stars with this pion-condensed
(PC) matter, we note that this state is thermodynam-
ically stable only at densities above twice the nuclear
density, so it is necessary to extend the equation of state
to lower densities by interfacing with a nuclear equation
of state. To describe the nuclear regime we use the APR
[18] equation of state. We treat the phase transition be-
tween these two states as a first order one with a density
discontinuity, where the pressures and the chemical po-
tentials of both phases match. We determine this phase
transition via the regular Maxwell construction (fig. 2).
We find that the density discontinuity is small, giving
us the confidence that even if the transition occurs via
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FIG. 1: (a) Upper panel: energy per baryon vs baryon num-
ber density for 3-flavour pion-condensed phase for three val-
ues of assumed tree-level mass of the scalar meson o. Charge
neutrality and beta equilibrium are imposed. One-gluon ex-
change interaction is included using the prescription of Baym
[19]. (b) Lower panel: comparison of the equations of state of
the 3-flavour space uniform phase and pion-condensed phase
for mos = 800 MeV, with APR [18].

a mixed state [20] the results will be similar to those
obtained with a discontinuous transition. At subnuclear
densities, the equation of state is smoothly matched to
those of Negele and Vautherin [21], Baym, Pethick and
Sutherland [22], and Feynman, Metropolis and Taylor
[23].

To construct the neutron star, we solve the Tolman-
Oppenheimer-Volkoff (TOV) hydrostatic equilibrium
equation [24] with the above equation of state. For a
given m,, the PC core exists only if the central density
of the star exceeds the APR-PC transition, which would
happen above a threshold stellar mass Mp. With in-
creasing my, the APR to PC phase transition moves up
to higher densities, and My increases correspondingly.
At m, > 850 MeV (A = 6.45), the PC core cannot form
since M7 exceeds the maximum mass of the neutron star,
which in this model works out to be about 1.6 Mg, (see
fig. 3). On the other hand, at m, < 750 MeV (A =
5.7) the Maxwell construction between the PC and the
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FIG. 2: The Maxwell construction: Energy per baryon plot-
ted against the reciprocal of the baryon number density for
APR equation of state (dashed line) and the 3-flavour pion-
condensed (PC) phase, for three different values of m. (solid
lines). A common tangent between the PC phase and the
APR phase in this diagram gives the phase transition be-
tween them. The slope of a tangent gives the negative of the
pressure at that point, and its intercept gives the chemical po-
tential. As this figure indicates, the transition pressure moves
up with increasing m., and at m, below ~ 750 MeV a com-
mon tangent between these two phases cannot be obtained.
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FIG. 3: Mass vs central density of neutron stars with mag-
netic pion condensed cores. The upper line corresponds to
pure nuclear matter with APR [18] equation of state. The
lower lines (labelled PC) indicate stars with pion-condensed
quark core, displayed for two values of m,, 800 and 815 MeV.
The density discontinuity at the phase transition is clearly
visible.

APR state is no longer possible. Neutron stars with PC
cores can therefore exist only if m, is in the range 750—
850 MeV. The magnetic moment of such PC cores could
lead to magnetic fields as strong as ~ 10'® G at the sur-
face of the neutron star and may be responsible for the
strong fields found in magnetars.

V. DISCUSSION
A. quark matter ground states

(i) At issue is the question if the neutral pion conden-
sate we have considered is the lowest energy ground state.
It is to be noted from the lecture notes of Baym [19], that
the neutral pion condensate is the preferred ground state
over the charged pion condensate for charge neutral nu-
clear matter in 3 equilibrium, in the non relativistic limit.

Let us first consider the question as to how the charged
pion condensate ground state compares with our ground
state. Reference [13] finds these two condensates are re-
lated by a chiral rotation and are degenerate in energy,
but this is only for isospin symmetric matter - that is in
the absence of both charge neutrality and 3 equilibrium.

We have considered this question for charge neutral
quark matter in 3 equilibrium analytically and find that
the neutral pion condensate is the preferred ground state
over the charged pion condensate, for non-relativistic and
point-like (94 = 1) quarks. This is important as the
charged pion condensate has no dipole magnetism [13].

(ii) The K condensate in nucleon matter is a strong
candidate for the ground state. In nuclear matter the
term that gives rise to this is the chiral symmetry break-
ing, sigma term, which is proportional to the nucleon
mass and first order in the symmetry breaking expansion
parameter (or ms). In the case of quark matter, with
point like quarks, such a term is not proportional to the
nucleon mass and is second order in mg and is thus un-
likely to play a defining role. We think that this may
rule against K condensates in quark matter as opposed
to nuclear matter, though we have not carried out this
calculation.

(iii) It is worth pointing out that all these conden-
sate states have lower energy than the chirally restored
CRQM state, are chiral symmetry broken states.

B. Quark matter at even higher density

At very high density, QCD gluon interactions become
weak and enter the asymptotically free regime. It is well
known that the quark fermi seas are unstable to the for-
mation of the diquark condensate state, no matter how
weak the gluon interaction is.

There is an important issue which then arises; at what
density does the pion condensed quark matter state tran-
sit into the diquark condensate state? In this section we
review some work [25, 26] that addresses this question
using the NJL model and which has implications for our
work.

We have argued that the linear sigma model is a valid
model till centre of mass energies/scales of less than, 700-
800 MeV, the right procedure would be to take this model
to describe physics up to this scale. But our model has
only chiral condensates.



It is well known that there is an identity between the
NJL model and the linear sigma model [27], and thus the
NJL can be mapped to our linear sigma model [26] and
the ground state thereof. The NJL model, which has
a chiral symmetric four fermion interaction can, how-
ever, accommodate both chiral (quark-antiquark colour
singlet) condensates and diquark condensates.

A comparison of these two states has been done by
Sadzikowski [25, 26, 28] in the context of a NJL chiral
symmetric model, for the case of 2 flavours — SU(2) 1, x
SU(2)r. What is done is at the level of mean field the-
ory. The NJL model has four fermion interactions in
terms of the quark bilinears corresponding to the ¢ and
7 field quantum numbers, with a common dimensional
coupling, G. If we are interested in a ground state carry-
ing sigma and/or pion condensates we can replace these
quark bilinears by the corresponding o and m# EV’s in the
MFT. This yields the ground state energy of the space
uniform SSB and the PC states. Further, these works
calculate the ground state energy of the the diquark con-
densate which is got from the NJL four fermi interaction
by Fierz transformation.

Although these results [25, 26, 28] are not for exactly
the same parameters they provide a good sense of the
physics. In this case the PC is the preferred ground state
till p well above 400 MeV. As the tables suggest such val-
ues of u, correspond to baryon density 5-6 times nuclear
density - the central density in our stars. This makes the
PC a likely state in our neutron star cores.

Of course, these works deal with the two-flavour case
— where the colour diquark condensate is a chiral singlet.
Realistically, we must consider 3 flavours, since the quark
chemical potential is much greater than the strange quark
mass. In this case we are very likely to have the CFL
state as the lowest energy state. The criterion for this is
given in [29] and is A > m?2 /4y, which is easily satisfied.
Furthermore, in this case the diquark condensate is a
colour-flavour condensate which has both chiral SSB and
colour SSB, albeit in a manner different to the PC.

With increasing baryon density we then expect the fol-
lowing hierarchy. At nuclear density and above we have
nuclear matter, followed by neutral pion condensed quark
matter and finally a transition to the diquark CFL state
which all have chiral SSB. These considerations indicate
that, at any finite density (7" = 0) chiral symmetry re-
mains spontaneously broken. A similar result has also
been obtained in 141 dimension [30].

VI. RESULTS

i) For neutron stars it is charge neutral quark matter
in B equilibrium at given density that is needed for the
equation of state. We have found that the neutral pion
condensate is the ground state for such quark matter.
This is the first such calculation for this EOS and what
is also new is that all the parameters of L are fixed from

the hadronic sector.

ii) We have made a strong case for the spontaneous
breaking of chiral symmetry at all baryon density (at T
=0).

iii) We have constructed neutron stars with pion con-
densed quark matter cores and found that such cores oc-
cur only under very particular constraints on the value
of the scalar (pseudoscalar) coupling, 5.7 < A < 6.45
(or equivalently, when the ‘tree’ level sigma mass in this
model is in a small window, 750 - 850 MeV). This window
is consistent with, 7w, 7 scattering data.

iv) We also find that at the central density of such stars
the pion condensed state is the most likely and that the
quark cores can carry high magnetic fields.

Is this a coincidence that a single parameter in our
effective L, the ‘tree’ level mass of the sigma or the value
of A, plays a crucial role? Is it fortuitous that the tree
level sigma mass set by scattering experiments sits in a
small window that simultaneously rules out SQM as the
absolute ground state of matter [6] and also can provide
us with neutron stars that can have magnetic PC cores?

The problem in sustaining a PC core with a nuclear
exterior is that we have a stiff exterior with a soft interior
— a rather unstable situation. It is thus not so surprising
that very particular conditions must obtain for this to
occur.

Clearly to get quantitative results we have to work with
a specific model. In this case we have worked with a spe-
cific effective L that is built on the two symmetries of
the strong interaction, chiral symmetry and colour sym-
metry. Further, all its couplings are determined from
experimental hadronic data. In this case we are working
from low density (energy) to higher density (energy), till
the compositeness scale. This is different from the vast
literature on diquark condensation (CFL), which exam-
ines the problem from the high density end where is no
experimental data. Though, we cannot claim any sanc-
tity for our L, we have provided physical justification for
it, its range of validity and determined its parameters
from hadronic physics. Finally, proof can be provided
only from testing our specific results.
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