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1. Introduction 

It is a classic result in the phenomenological theory of elasticity that two 
independent constants suffice to describe the stress-strain relationships for an 
isotropic solid. If, for example, the bulk modulus and the shear modulus of the 
material are known, Young's modulus and Poisson's ratio may be calculated 
therefrom. In the present paper, the ideas regarding the natbre of the strains and 
stresses in solids on which the derivation of this result is based are critically 
examined and it is shown that they are untenable. A re-formulation of the 
phenomenological theory of elasticity not open to the same objections is then 
presented and its consequences are developed. It emerges that three independent 
constants are needed to describe the stress-strain relationships of an isotropic 
body; in particular, it is shown that the bulk modulus of the material cannot be 
evaluated from the experimental data for the velocities of propagation of 
longitudinal and transverse waves respectively in the solid and its density. 

2. Some general considerations 

As is well known, the elastic constants of solids can be determined independently 
by static and dynamic methods. The latter are based on measurements of the 
velocity of propagation of waves of different types in the material. In all studies of 
this nature we are clearly concerned with heterogeneous strains, in other words 
with strains which are not of the same magnitude throughout the solid at any 
given instant; clearly, there could be no wave-propagation if the strains were the 
same everywhere. On the other hand, in the static methods of measuring elastic 
constants the strains may be homogeneous or heterogeneous according to the 
nature of the experiment. The change in volume of a solid under hydrostatic 
pressure is a case of the first kind, while the twisting of a rod by couples applied at 
its two ends is clearly a case of heterogeneous strain. The examples cited are 
sufficient to show that any theory of elastic behaviour has necessarily to concern 
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itself with heterogeneous strains; a theory which restricts itself to the consider- 
ation of homogeneous strains would be fundamentally incomplete. 

The twisting of a rod ,by couples applied at its two ends also serves to illustrate 
certain fundamental aspects of the theory of elasticity. As just mentioned, it is an 
example of heterogeneous strain, and indicates that the movements of the parts of 
the solid in such strains may be angular movements or rotations, the magnitude 
of which varies through the volume of the solid. Thus, we are forced to recognize 
that the strains in a solid cannot, in general, be described solely as elongations but 
may also include twists. Further, in the case qeferred to, the external stresses 
applied to the body are couples. It follows that the internal stresses may also be of 
the same nature. In other words, the stresses in an elastic solid cannot be assumed 
to be exclusively in the nature of tractive forces but may also include torques. 

The arguments in the classical theory of elasticity by which the familiar result 
quoted in the opening sentence of the paper are derived may be summed up 
briefly as follows: that it is sufficient to consider the case of homogeneous strains; 
that any homogeneous strain may be analysed into a "pure strain" and a rotation 
and that the latter should be ignored in formulating the stress-strain relation- 
ships; and finally that the tractive forces assumed to act on elements of area in the 
solid are so related that no torques tending to rotate the volume-elements of the 
solid are present. Everyone of these statements is at variance with the 
considerations set forth above. It follows that the argument with all its 
consequences is unacceptable. 

3. Formulation of the theory 

If now we denote by u,, u,, u, the three components of the displacements of a point 
(x, y, z) of the material and by u, + u:, u, + u;, u, + u: the corresponding 
displacements ofa neighbouring point situated at (x + x', y + y', z + z'), then it is a 
well known result that the strains in the neighbourhood of the point (x, y, z)can be 
represented by the scheme of equations 

Ux. = u,,xt + uxyyl + u,,zl 
U,. = uyxxt + uyyyl + uy,zt (1) 
Uz. = u,,xl + uzyyt + uzzzl \ 

where u, stands, for brevity, for the differential coefficient (aux/ay). 
In view of what has been said in the previous section, all the nine components of 

strain figuring in the equations (1) are required for a complete specification of the 
deformations in which rotations are not ignored. Then the changes in the state of 
a volume element contemplated in (1) can be analysed into (i) changes of volume, 
(ii) changes in shape not involving rotations or alterations of volume, and (iii) 
rotations. 
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Likewise, the stresses in the interior of the solid require nine components for 
their full specification. Denoting by Txv, Tyv and Tzv the components of the 
tractive forces parallel to the three axes of co-ordinates on any elementary area 
whose normal has a specified direction v, these tractions are related to the stresses 
acting on the three co-ordinate planes by means of the relations 

Txv = Txx cos (x, V) + Txy cos (y, V) + Txz cos (z, V) 
Tyv = Tyx cos (x, V) + Tyy cos (y, V) + Tyz cos (z, V) (2) 
TZv = Tzx cos (x, V) + Tzy cos (y, V) + Tzz cos (2, v). 

As mentioned earlier, the three components of the angular momenta of any 
volume element will not vanish in dynamic experiments or for heterogeneous 
strains involving rotations and which accordingly involve torques. We therefore 
retain all the nine stress components in our formulation and do not rpake the 
usual reduction in their number from nine to six. 

At this stage, we introduce a slight change in notation which enables us to pass 
on from symbols with double subscripts to symbols in$olving a single suffix only. 
We use for the stress components 

the symbols 

TI T, T, T4 T, T, T7 T8 T9 

respectively, and similarly write the strain variables 

respectively. 
With this notation the stress-strain relations take a neat form. Since the stresses 

in the solid are dependent on the strain produced in the solid, the stress 
components can be expanded as a power series in the strain variables. If we 
measure the stresses from an initial state corresponding to the undeformed 
condition of the solid and consider infinitesimal strains only, so that squares and 
higher powers of the strain variables can be neglected in comparison with first 
order terms, the stresses at any point of the solid are linear fpnctions of the strain 
components at that point. The stress-strain relations can then be expressed as 

and these involve 81 constants. Here the constant dm, relates the stress T, to the 
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strain un and is the ratio of the two for a deformation in which all strain 
components other than u, vanish. 

The 81 constants figuring in (3) are not all independent, but reduce in the first 
instance to forty-five for all solids in view of the relations 

These relations follow from the well known theorem of reciprocity relating forces 
and the corresponding displacements in dynamical systems4. The reciprocity 
relations further enable us to write down the expression for the deformation 
energy per unit volume in the neighbourhood of any point and this is given by 

4. The three elastic constants of isotropic solids 

The isotropic nature of a body results in a great reduction of the number of 
independent constants occurring in the stress-strain relationships. Most of these 
constants in fact are zero and the others become equal to each other in sets for 
isotropic materials. Some of these relations can be deduced easily from simple 
symmetry considerations, without going into the full details of the analytic 
apparatus needed to derive them. For example, the cubic symmetry possessed by 
the material endows it with the same property for all the three directions of the 
axes of co-ordinates and therefore the stress-relationships should remain 
invariant under any permutation of the symbols x, y, z in both the strain variables 
(u,) as well as in the stress components T,. We thus get 

Again, the operations of reflection about any plane in space do not produce 
observable changes in the properties of isotropic bodies. In the simple case of a 
reflection about the xy plane, the z co-ordinate of any point changes its sign while 
its x and y co-ordinates are unaffected. Hence all the strain components like 
uyz(u4), u,,,(uS), U,,(U~), u,,(u,) in which z occurs once only as a suffix change their 
sign whereas the other strain variables are unaltered. If therefore we substitute 
these new values of the strain variables in the energy expression and equate it to . 
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the original one, we get 

Similarly by considering reflections about the planes x = 0, and y = 0, we could 
show that 

dl, = d19 = d28 = d2, = = d3, =d46 = d47 = d56 = d57 = 0. (8) 

Simple symmetry considerations thus reduce the number of non-zero and 
independent constants to four. Even these constants i.e., dl,, dl,, d4, and d4, 
however are not independent but are connected to each other by means of a linear 
relation. To obtain this, we use the special symmetry property possessed by 
isotropic solids alone, namely invariance in behaviour under all rotations in 
space. Considering a rotation about the z-axis through an angle 8, this operation 
changes the strain variables into a new set of quantities u;, u; . . . ub related to the 
original ones in accordance with the following scheme: 

u; = u, cos2 8 + (u, + u,) sin 8 cos 8 + u, sin2 8; 
u; = u1 sin2 8 - (us + u,) sin 8 cos 8 + u, cos2 8; 
u; = u,; (9) 
u;=u4costJ -u7sin0; 

u', = u4sin8 + u7cos8; 
u', = (u, - u,) sin 8 cos 8 + (u, cos2 0 - U, sin2 8); 
ub = (u, - u,) sin 8 cos 8 + (u, cos2 0 - us sin2 8). 

Hence under the operation of a rotation about the z-axis by an amount 8, the 
energy expression (5) changes into 

2U = d, ,u$ + dl, (ul cos2 8 +'(us + u9)sin 8cos 8 + u2 sin2 8), 

+ dl ,(u, sin2 O'-(U, + u,) sin 8 ~ 0 s  8 + U, cos2 el2 
+ 2d12(u, + u2)u3 
+ 2d1 ,{ul cos2 8 + (us + u,) sin 8 cos 8 + u2 sin2 8) 

x {u, sin2 8 - (u, + 1.4,) sin 8 cos 8 + u, cos2 8) 
+ d4,{(u, - u,) sin 8 cos 8 + u, cos2 8 - u, sin2 81, 
+ d44((u2 - ul) sin 8cos 8 + u, cos2 8 - U, sin2 B), 
+ de4(u; + U: + U; + u:) + 2d45(u4u5 + u6u7) 
+ 2d45((u2 - u,) sin 8cos 8 + u, cos2 8 - u, sin2 8) 

x ((2.4, - u,) sin 8 cos 8 + u, cos2 8 - u, sin2 8). (10) 
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Comparing this with the expression 

'-we get 
dl 1 = dl2 + d44 + d45 

Rotations about the x- and y-axes through aqy angle should also necessarily 
lead to the same equation (12). A general rotation about any axis can be effected 
by a superposition of rotations through different angles about the x, y and z 
axes. We have thus exhausted all the symmetry operations permissible for iso- 
tropic solids. It follows therefore that the elastic behaviour of isotropic solids 
requires three independent constants for its description, which may be denoted by 
all, d12 and d4,. 

5. Relations between the various constants 

With the aid of the relations (6), (7), (8) and (12), the stress-strain relationships 
described by (12) can be rewritten. The expressidns for the three stretches TI, T2 
and T, become 

Tl = dllUl+ d12(u2 + ~ 3 )  

T2 =d11u2 +u1) (13) 
T3 + ~ 2 )  

whereas the shearing stresses are given by 

and four similar equations. 
We shall now evaluate some of the important elastic constants, viz., the 

compressibility or b,ulk modulus, Young's modulus and Poisson's ratio in terms 
of these new constants. Consider first the case of a uniform hydrostatic pressure 
acting at all points on the surface of the body. The state of stress produced by such 
a compression of the solid is described by TI = T2 = T, = - p; T4 = T, = . . . . 
= Tg = 0. Hence adding all the three equations in (13), we get 

where A denotes the cubical compression - (u, + u2 + u,). The bulk modulus 
therefore is given by 

Similarly by considering the case of an isotropic body in the form of a 
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cylindrical rod subjected to a tension T which is uniform over its plane ends, we 
could show that the Young's modulus E and Poisson's ratio a are related to dl, 
and dl, in accordance with the equations 

These expressions are in the same form as the corresponding ones for k, E and a 
of the classical theory expressed in terms of the well known constants cll and c, ,. 
The relations among the Young's modulus, bulk modulus, and Poisson's ratio are 
therefore the same both in the two-constant as well as in the three-constant 
theories. We emphasize the fact that all the three equations (16), (17) and (18) 
contain the constants dl, and dl, only, and none of them involves d,, explicitly. 
This is because all these moduli are determinable from static homogeneous 
strains alone, whereas d,,, being a constant involving rotations of the volyme 
elements requires experiments involving twists for its evaluation. 

It may be pointed out here that the relation (12) may be derived directly from 
very simple considerations. A cube which is subject to normal tractions on a pair 
of opposing faces and normal pressures of equal magnitude on an adjacent pair of 
faces would suffer no change of volume, but would expand and contract 
respectively in the direction of the two normals to the faces by an amount of 
which (dl, - dl,) is a measure. Likewise, if a pair of opposing faces of a cube are 
subject to tadgential tractions forming a couple and an adjacent pair also subject 
to tangential tractions which form a balancing couple, the cube would suffer no 
change of volume but would undergo a change of shape without rotation of 
which (d,, + d,,) is readily seen to be a measure. The two systems of stresses and 
the resulting strains can readily be shown to be equivalent and it follows that 
(dl 1 - 42)  = (d44 + d45). 

6. Velocity of propagation of waves in the solid 

In the absence of body forces, the general equations of motion of an elastic body 
are given by 
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where p is the density of the material, For an isotropic solid, the stress-strain 
relations are given by equations (13) and (14). Adopting once again the primitive 
notation of writing differential coefficients au jax,  . . . au,/az. . .for the strain 

i 
components ul,  . . . u,, . . . etc., we get on substituting (13) and (14) in (19) that 

and two similar equations for the displacements in the y and z directions. In the 
above, A denotes the dilatation 

or simply divergence u where u is the vector whose components parallel to the 
axes are u,, u, and u, respectively. The three equations in (20) can be combined 
together and written as a single equation in the form 

a2u 
p p = ( d l l  -d12)V2u +d12 grad divu 

+ (dl - dl - d4,) curl curl u (21) 

Since curl curl u = grad div u - V2u, (21) alternatively becomes 

a2u 
p - = d4,V2u + (dl ,  - d,,) grad div u. 

at2 

We shall now take the divergence of both sides of (22). This gives us 

The above is in fact the equation of wave propagation in the medium. 
Compressional waves are therefore propagated in the solid with the velocity 

Jrn 
Performing next the operation of curl on both sides of (22), and writing w for 

curl u, one gets 

equation (24) therefore shows that equivoluminal or distortional waves are 
propagated in the medium with the velocity 

It will be noticed that the velocities of propagation of both the longitudinal and 
transverse waves determine the constants 4,  and d4, only, and do not involve the 
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constant d l ,  at all. On the other hand, d4, does not make it$ appearance in the 
moduli determinable by static homogeneous strains. 

7. Summary 

The notions regarding stresses and strains adopted in the classical theory of 
elasticity a n  critically examined. The neglect of rotations in the analysis of strain 
and of torques in the analysis of stress oharactpistic of that theory is shown to be 
unjustifiable. A reformulation of the stress-strain relationships taking account of 
these factors leads to the result that an isotropic solid has three independent 
elastic constants and not two as hitherto supposed. Two of these three constants 
determine the velocities of propagation respectively of longitudinal and trans- 
verse waves in the solid. The latter of them does not make its appearance in any 
observations involving only homogeneous strains nor does it appear in the 
formulae for the bulk modulus, Young's modulus and Poisson's ratio obtained in 
the present paper. 

References 

1. Love A E H The Mathematical Theory of Elasticity. 
2. Webster A G The Dynamics of Particles ahd of auld ,  Elastic and Fluid Bodies. 
3. Poynting J H and Thompson J J A Text Book of Physics: Properties of Matter. 
4. Southwell R V An Introduction to the Theory of Elasticity (Oxford 1936) (Chapters I, VIII, IX 

and X). 


	~LWF0120.pdf
	~LWF0121.pdf
	~LWF0122.pdf
	~LWF0124.pdf
	~LWF0125.pdf
	~LWF0126.pdf
	~LWF0127.pdf
	~LWF0129.pdf
	~LWF0130.pdf

