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Abstract. We present a study of the gravitational wave form
from pulsars. Typically the observation times will be of the
order of a few months. Due to the rotation and orbital motion
of the Earth, a monochromatic signal becomes frequency and
amplitude modulated. The effect of both these modulations is
to smear out the monochromatic signal into a small bandwidth
about the signal frequency of the wave. However, the effect
on the Fourier transform of the frequency modulation is much
more severe compared to the amplitude modulation in that the
height of the peak is reduced drastically. The Fourier transform
of the pulsar signal, taking into account the rotation of the Earth
for one day observation period is studied. We have obtained an
analytical closed form of the Fourier transform considering the
rotational motion of the Earth only. With the inclusion of orbital
corrections one obtains a double series of Bessel functions.
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1. Introduction

The direct detection of gravitational radiation (GR) from as-
trophysical sources is one of the most outstanding problems in
experimental gravitation today. The rapid variation of spacetime
curvature due to, for example, collisions, pulsations or the co-
herent bulk motion of masses should generate curvature ripples
or gravitational waves (GWs) that travel at the speed of light
and may carry the identity of the graviton. The construction of
large laser interferometric gravitational wave detectors like the
Laser Interferometric Gravitational Wave Observatory (LIGO)
(Abramovici et al. 1992), the French-Italian gravitational wave
observatory VIRGO (Bradaschia et al. 1990; Brillet & Giazotto
1992) and the Australian International Gravitational Observa-
tory (AIGO) (Sandeman et al. 1991) is opening a new window
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for the study of a vast and rich variety of non-linear curvature
phenomena. The network of gravitational wave detectors can in
fact confirm that GW exist and by monitoring gravitational wave
forms give important information on their amplitudes, frequen-
cies and other important physical parameters. Therefore, the
study of different radiative production processes from astro-
physical sources and their GW luminosities and dimensionless
amplitudes is important.

We can broadly classify the astrophysical sources of GR as
continuous, burst type and stochastic. A prototype of a contin-
uous source is a pulsar. If the axis of rotation of a pulsar makes
an angle o with the direction of the angular momentum of the
pulsar, the resultant time dependent mass quadrupole then be-
comes the source of GR from such a pulsar. The amplitude of
GR from these pulsars is probably very weak (< 10~26-10~2,
for galactic pulsars). The GR signal will be buried deep within
the noise of the detector system. The detection of a GR signal
therefore warrants the urgent need of careful data analysis with
the development of analytical methods and problem oriented
algorithms.

In Sect. 2, we briefly outline the nature of the GW signal
from a pulsar, the response of the interferometric detector to
GR from a pulsar and the amplitude modulation (AM) of the
GW signal. The frequency modulation (FM), the Doppler shift
due to rotation and orbital motion of the Earth in the Solar
System Barycentre (SSB) frame, its effect on the total phase
of the received GW signal and the Fourier transform (FT) of
the GW signal are described in Sect. 3. Section 4 contains the
summary and concluding remarks.

2. Gravitational radiation from the pulsar

The amplitude h of the GW is given by the formula (Thorne
1987)

L
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where f is the gravitational wave frequency, r is the distance of
the pulsar from the Earth, and § is the gravitational ellipticity
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in the equatorial plane defined as

6= ——‘7’”’[_'7“’ 2)

with 7z and .7y are the components of quadrupole moment
along the principal axes in its equatorial plane, I;; is the mo-
ment of inertia of the pulsar about its rotation axis respectively
(Thorne 1987). If we assume éceap ~ 6% 1074, vela ~ 3% 1073
then the h is ~ 10725 and ~ 1072 for the Crab and Vela pulsars
respectively. This amplitude is a few orders of magnitude below
the sensitivity of VIRGO/LIGO (expected sensitivity ~ 1072%),
Since the VIRGO/LIGO would make continuous observations
over a time scale of a few months or more, a significant en-
hancement is expected in the signal-to-noise ratio (SNR) by
integrating the data over a long interval of time. It should be
noted that the VIRGO would be more sensitive in the low fre-
quencies bandwidth (10 Hz-100 Hz) relevant for pulsar search.
It offers a much better sensitivity than LIGO. Infact, the latter
one suffers from relatively bad seismic isolation (at least for the
first generation of the LIGO project).

A detailed analysis of the noise free response of the inter-
ferometric antenna to the GR from pulsars has been given by
Jotania and Dhurandhar (Jotania & Dhurandhar 1994; Jotania
1994). Our work considers the important effects of both FM and
AM in the detection of the GW signal from the pulsar. The GW
incident on the detector is assumed to be a monochromatic plane
wave having arbitrary direction and polarization (itis known that
if the wobble angle between the angular momentum direction
and the rotation axis is small then the radiation will be emitted at
w and 2w where w = Qe — Qpre, lem being the electromagnetic
frequency, and {2 — the precesion rate (Thorne 1987; Jotania
1994), however here we consider the radiation at the dominant
frequency). The response of the detector was calculated using
the formalism developed by Dhurandhar and Tinto (Dhurandhar
& Tinto 1988) which is based on the Newman-Penrose formal-
ism (Newman & Penrose 1962). In this formalism the wave and
the detector are represented by symmetric trace free (STF) ten-
sors and the response is then just the scalar product. Analytic
expressions for the wave and the detector tensors in the SSB
frame have been given in detail (Jotania & Dhurandhar 1994,
Jotania 1994). The response of the detector, denoted as R(t), is
given by,

R(t) = WY - Dy, 3

where W* and D;; are the wave and detector tensors respec-
tively and R(t) is the response of the detector at time £. The R(t)
is a linear combination of the two polarizations,

R(t) = Fihi(t)+ Fxhx (1), 4
where h, = h7% = —hT7, hyx = ALY = AIT are the GW

amplitudes. The antenna pattern F, and F are complicated
functions of the direction of the incoming wave (8, ¢, 1), the
orientation of the detector angles (a, 3,7) (see below), and ¢
which is the angle that the equatorial plane of the Earth makes
with the orbital plane of the Earth respectively.
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The Euler angles (8, ¢, 1) connect wave axes (X, Y, Z) with
the SSB frame axes. The angles (6, ¢) give the incoming direc-
tion of the wave in the SSB frame. The angle 1 is the polarization
angle of the wave, it represents a rotation about the Z-axis (prop-
agation direction of the wave). The angles («, ) give position
of the detéctor on the Earth. The angle « is the angle the line
Jjoining the centre of the Earth to the detector makes with the
spin-axis (zg) of the Earth, measured from the North pole (« is
Jjustco-latitude). The G is the angle between the plane containing
the detector position, the centre of the Earth and spin-axis (zg)
and the (zg, 2g) plane. This angle 3 is just the azimuthal angle in
equatorial plane of the Earth which keeps changing as the Earth
rotates, and  is the angle the bisector of the detector makes with
local meridian. Detailed description about angles can be found
in the work of Jotania & Dhurandhar (Jotania & Dhurandhar
1994; for conventions Schutz & Tinto 1987; Goldstein 1980).

The total response is a function of the position of the source,
the orientation of the detector on the Earth, the orientation of
the spin axis of the Earth and the orientation of the orbital plane.
Since the pulsar signal is weak, long integration times ~ 107 s
will be needed to extract the signal out of the noise. Since the
detector along with the Earth moves in this time, the frequency
of the wave emitted by the source is Doppler shifted. Also the
detector has an anisotropic response, the signal recorded by the
detector is both frequency and amplitude modulated. We discuss
now the two modulations appearing in the response, namely,
(i) frequency modulation : in the context of signal detection
FM plays a very important role (Sect.3), and (ii) amplitude
modulation.

2.1. Amplitude modulation

The detector possesses a quadrupole antenna pattern. For a given
incident wave, a detector in different orientations will record
different amplitudes in the response. The functions F, and F'y
appearing in the expression of the response (Eq.4) completely
characterise AM for the two polarizations (Jotania & Dhurand-
har 1994; Jotania 1994). Since the expressions for F} and F«
are quite complicated, we will consider some special cases to
obtain some idea of AM. For the ideal case when the wave is
optimally incident on the detector F, and Fx can individually
have a maximum value of unity. For a special case when the de-
tector is situated on the equator with arms symmetrically placed
about the North-South direction, i.e. = 5, fo =0, v=0and
the wave given by the parameters 6 = 5, ¢ = 0, ¢ = 0, the
antenna pattern functions F, and F are given by,

F.= % sin 2¢ cos(wrort), )
Fy = —cos € sin(wyot), ()

where wrq is the rotational frequency of the Earth about its
spin axis. For the above case AM results in about 40% drop in
amplitude of the signal as compared to optimal incidence (i.e.
FoorFy =1).
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3. Study of frequency-modulated pulsar signals

Frequency modulation arises due to translatory motion of the
detector acquired from the motion of the Earth. We have only
considered two motions of the Earth namely, its rotation about
the spin axis and its orbital motion about the Sun. Hence the
response is doubly frequency modulated with one period cor-
responding to one day and the other period corresponding to a
year. The FM smears out a monochromatic signal into a small
bandwidth around the signal frequency of the monochromatic
wave. It also redistributes the power in a small bandwidth. The
study of FM due torotation of the Earth about its spin axis for one
day observation shows that the Doppler spread in the bandwidth
for 1kHz signal will be 1.54 x 1073 Hz. The Doppler spread
in the bandwidth due to orbital motion for one day observation
will be 1.71 x 1072 Hz (Jotania 1994). Since any observation
is likely to last longer than a day it will be very important to
incorporate this effect in the data analysis algorithms.

The monochromatic source is frequency modulated by the
relativistic Doppler shift:

fre = fowo (1+22), @

where vo = 1/4/1 — v2/c? = 1, fo is the emitted frequency, n
is the unit vector from the antenna to the source, v is the relative
velocity of the source and antenna (depends directly on source
location) and fi. is the frequency received. Consider a source
of constant frequency fo, the FM would then be of the form

s (t) = cos (27r fot + K cos 7 fut) ) (8)

where fp, is modulating frequency, and K is the modulation in-
dex of the signal and we have taken the amplitude of the signal
to be unity. The effect of FM on a sinusoidal signal from the
source is to generate a forest of sidebands spaced at the mod-
ulation frequency. The n-th sideband has an amplitude given
by Jn(f/fo), where J,, is a cylindrical Bessel function of the
first kind and the modulation index K = Af/fo, and Af is the
spread in the bandwidth of the signal.

In order to study frequency modulation of a monochromatic
plane wave, one needs to calculate the Doppler shift due to
rotation and orbital motion of the Earth in the SSB frame. For
this, we need to know the relative velocity between the source
and the detector. The Euler angles (6, ¢) give the direction of the
incoming wave in the SSB frame. We characterise the motion
of the Earth (and detector) in a simple manner:

(a) we assume the orbit of the Earth to be circular.

(b) we neglect the effect of the Moon on the motion of the

Earth. v
With these assumptions the radial vector 7 in the SSB frame
is given by,

Tiot (t) = [A €08 (Worpt) + R sin a cos (wryit) ,
Asin (Worpt) + Rsin asin (wit) cose — Rcos asing,

R sin asin (wygt) sine + Rcos a cos a] , )
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Fig. 1. The Doppler shift variation in the SSB frame due to the rotation
and orbital motion of the Earth

where A is distance from the centre of the SSB frame
to the centre of the Earth, R is the radius of the Earth,
and n is the unit vector in the direction of source, n =
(sinfcos ¢, sin G sin ¢, cos §). Here we have assumed that at
initial time ¢y = 0, the longitudinal angle 3 = 0. Therefore, the
total Doppler shift at time ¢ due to rotation and orbital motion
of the Earth in the SSB frame will be,

(t): ' . =

Avery ., .
[ uc)‘) ® Sin@sin (¢ — worbt)

+— sina| sinf { c0S (wrott) COS € sin @
c

— €08 ¢ sin (Wyort) } + €08 (Wroet) SIN € COS 0] } . (10)

In Fig. 1 we display a plot of the Doppler shift velocity variation
(—”—'c'—’—) . The sinusoidal variation is the diurnal variation and down
along the diagonal is the orbital variation which has a periodicity
of one year. The phase ¢(t) of the received signal for a single
direction sky search (6, ¢) is given by,

t
o) =2m Srec (tl) dt’ (11
to

=27 f, /t (1 + % (t’)) dt’

to

12)

=27 f, [t —to+ {é sin @ cos ¢’

R . . . .
+=sin a{ sin 6 sin B’ cos £ sin ¢ + cos ¢ cos 3')
c
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. ;. A . ’
+sin ' sinecos 6} p — ¢ = sin 6§ cos ¢
c
R . . . .
+= sin a{ sin 6 sin B; cos € sin ¢ + cos ¢ cos ()
c

+sin G} sinecosé’}}} 13)

where ¢’ = wont — ¢, B’ = Bo + Wratt, ¢(I) = Worbto — @, ﬂ(/) =
Bo + Wrotto, and [y is the initial azimuthal angle of the detector
at the observation time tg. It can be seen from Eq. (13) that the
Doppler corrections to the phase of the received pulsar signal
depends on the direction of the source in the sky.

3.1. Fourier transform analysis of the FM signal
due to the rotational motion of the Earth

It is instructive to analyse the Fourier transform (FT) of the
frequency modulated signal and to study the extent to which the
peak of the FT is smudged and how much the FT spreads in the
frequency space. This type of study would be useful from the
point of view of data analysis and for applying such schemes
as stepping around the sky method (Schutz 1991) which relies
on the FT. However, our aim here is modest in that we neglect
the Doppler shift due to the orbital motion in studying the FT.
Thus a data train up to one day is sufficient for our purpose. We
consider the case when the Doppler effect due to the rotation of
the Earth is maximal. This is so when the detector is situated on
the equator and the direction of the wave is normal to the axis
of rotation of the Earth.

When the detector is put on the equator with the arms sym-
metrically placed about the North-South direction, i.e. o =
m/2, Bo = 0, v = 0, and the wave parameters given by
6 =m/2, ¢ =1 = 0. The phase ¢ (t) is calculated from Eq. (13),

¢ t)=2mfot — x [(1 — cos (w,mt))] , (14)

where x = 2—’%’—3 and we have chosen the initial time instant
to = 0. Here X plays the role of a modulation index similar to K
in the theory of modulation. The modulation index depends on
the frequency of the pulsar signal. If we consider only the fre-
quency modulated output of the signal, the output of amplitude
unity is given as follows,
h(t) =cos(¢(@)). s)
We now consider the h (¢) to be given on a finite time interval
[0, T] which is assumed to be the observation period. In our
analysis we have assumed 7" to be one day. The Fourier trans-
form of the signal A (t) is given by,

T
h(f)= / h(t)e 27ftdt. (16)
0

We find it is convenient to use a time coordinate £ = wy;t Which
for a period of a day is of the order of unity, i.e. when T = 1day
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= 86400 s, then &1 = wyoL" = 27. From Egs. (15) and (16), we
get,

1
h(v)= [Tw,x)+1(V,x)], a7
2Wror
where
&r
Twx)= [ efext-molge, (18)
0
&r o,
I (V,,X) - / el{l/ §—x(1—cos§)}d€7 (19)
0
with
_ Wy — W
Wrot ’
;) wWFwo
V= —,
Wrot

where w s are related to the corresponding f s by the 27 factor
(w = 27 f). We study the Fourier transform of the frequency
modulated signal by three different methods:

(1) Discrete Fourier Transform (DFT) at low frequencies
up to S0Hz. This is due to the limitation of the available core
memory on the computer.

(ii) Gaussian quadrature (Gauss-Legendre): This is a nu-
merical integration technique; the limited length of the data
train (one day) does not allow fine resolution in the frequency
domain. This technique allows us to compute the FT at any
desired frequency.

(iii) The analytical approximation: We obtain an approxi-
mate expression for the FT.

3.1.1. Discrete Fourier transform

Consider a signal h(t) in the interval [0, T] which is sampled
uniformly at IV points with sampling interval A . The samples
are
he=h(ty), k=0,1,...,N—1, (20)
where t;, = kA and T = N A. The DFT of the data train is given
by

gl 27kn
Hn=thexp(l ~ ) 0<n<N-1 @1

k=1

The H,, comprise the DFT of the function k. The FT h (f)
is related to the DFT by the relation h(f,) ~ AfI;{ where
fn = n/T are the frequencies at which the DFT is defined
and * denotes complex conjugation. The complex conjugate
appears because our convention for the FT is opposite to that of
Numerical Recipes (Press et al. 1986) whose routines we have
used in our numerical analysis.

There are excellent routines available in the literature to
compute the DFT and we make use of these in our analysis.
There is the Fast Fourier Transform (FFT) routine based on
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Fig. 3. Normalized DFT of cos ¢ (t) for fo =20Hz

Cooley-Tukey algorithm (Press et al. 1986; Brigham 1988).
Since our function is real we use the REALFT routine of Numer-
ical recipes which is appropriate for real functions as compared
to the usual FFT routine which is more generally applicable.
We consider the detector orientation and the direction of
the wave as mentioned above and take the pulsar signal of fre-
quencies 10.0, 20.0, 40.0 Hz. The corresponding values of x for
these frequencies are 1.34, 2.68, 5.36 respectively. In Figs. 24,
we have plotted the real part of the normalised DFT ¥ (v), as a
function of v and for v > 0 (There is also a negative frequency

321
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Fig. 4. Normalized DFT of cos ¢ (t) for fo = 40Hz

part which is just the mirror image of the positive frequency
part). The scale on the vertical axis corresponds to the maxi-
mum of the real part of the DFT of the unmodulated signal be-
ing unity, i.e. we divide the DFT by the factor N/2. The figures
showing the normalised FT ¥ () are almost symmetric about
v = 0. It is clear that the frequency resolution offered by the
DFT is not adequate. At higher frequency, bands generated by
Doppler modulation become prominent and thus demand better
frequency resolution.

We observe from the figures that the Fourier transform is
nonzero only for a small interval of width 2Av around v = 0 and
rapidly falls to zero outside this interval, v = 0 correspond to the
signal frequency fy. Also the spread in the Fourier transform is
more or less symmetrical about v = 0. The maximum amplitude
of ¥ (v) is seen to decrease from that of the unmodulated signal.
We find that the ¥ (v) is oscillatory in nature and maintains
roughly a constant amplitude in the interval [—Av, Av]. The
frequency of the oscillation is roughly 0.5. We find from the
figures, that 2Av ~ 3.5 for 10Hz, 2Av ~ 5.8 for 20 Hz and
2Av ~ 11.0 for 40 Hz. We observe that the spread Av ~ Xx.

One finds that the curves in the figures are not very smooth
and one would desire a better frequency resolution when plotting
the FT. The frequency resolution of the DFT is Af = 1/T =
1/86400 Hz which on the v-axis corresponds to Av = 1/2n.
But this is exactly the scale on which the DFT oscillates as is
seen from the figures. Also the scale on the v axis, Av = 1
correspond to Aw = wyer. Therefore, this resolution on the v-
axis is not adequate to visualise the FT. In order to get a better
resolution one could have increased 7" but this would mean
more computational requirements. Instead we choose to use
other integration methods for evaluating the FT. We resort to
the Gauss-Legendre method which is described in the following
subsection.
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3.1.2. Gaussian quadrature

The basic idea behind Gaussian quadrature is to find an integra-
tion formula of the form (Abramowitz & Stegun 1972; Atkinson
1978)

n b
Li(f)=Y wf (z;) ~ / w@ f@dz=I1(f). @2

J=1

The weights w; and nodes x; are to be real and the nodes must
belong to the interval of integration [a, b]. The weight function
w (x) should be non-negative, finitely integrable and the integral
should be finite. The resulting formulas are extremely accurate
and highly reliable. For w () = 1 on the interval [—1, 1] the
Eq. (22) reduces to,

1 n
/lf(fv) ~ ijf (z5),
- e

where x;’s are the zeros of the Legendre polynomial P, (z),
and the weights are

(23)

-2
T (n+ 1) P (z:) Pt (is1)’

w; =1,2,...,n. 24)

Eq. (23) is the Gauss-Legendre integration formula. This is
a widely known form of Gaussian quadrature integration for-
mula (Abramowitz & Stegun 1972; Atkinson 1978; Press et
al. 1986). We use Eq.(14) and GAUSS-LEG routine of Nu-
merical recipes to calculate the FT of the frequency modulated
signal. This method has the advantage that one can increase
the signal frequency to astrophysically interesting values like
fo =~ 1kHz without straining the computability requirements.
To perform a DFT for example for a one day observation pe-
riod the number of points in the data train would have to be at
least 86400 x 2000 ~ 1.7 x 108. This entails a core memory of
hundreds of Megabytes. If we restrict our attention to the inter-
val 2Av over which the FT is appreciable the Gauss-Legendre
method requires less time for computation. Also as seen from
the DFT the FT oscillates with a period on the scale of the fre-
quency bins. This method allows us to compute the FT at any
desired frequency v.

We find that to obtain sufficient accuracy for the FT by this
method the degree n of the Legendre polynomial P, (z) should
be sufficiently high. The degree n depends on the modulation
index x and we find that n should be ~ 4x to get adequate
results.

We give below a table (see Table 1) for x,2Av, and
max |Y (v) | for the signal frequencies 10 Hz, 100 Hz and 1 kHz.

We observe from the table that as the signal frequency in-
creases, the spread 2Av increases and the height of the FT de-
creases. The general trend is that Av ~ x and max|V (v)|
falls off rapidly. The results of the Gauss-Legendre method are
displayed in Figs.5-9. It can be seen that this method offers
adequate frequency resolution for an astrophysically interest-
ing range of frequencies. Numerical results show that for 1 kHz
signal and one day observation time, the signal is spread into
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Table 1. Gauss-Legendre method

Frequency X 2Av max|Y ()|
10 Hz 1.34 3.1 04777
100 Hz 13.4 27 0.273
1 kHz 134 270 0.091
L LA T T T X1
05 -
J
S
= o 4
3
[
05 -
I
1 ) I VR RN T U SN TSN SR W S | SR |
o0 -5 0 5 10
2

Fig. 5. Normalized DFT of cos ¢ (t) by Gaussian quadrature method
for fo=10Hz

about 100 bands. It is easy to calculate the number of bands and
the reduction in amplitude of the FT using this method. The drop
in the amplitude of the FT is roughly proportional to x /2.
In the following subsection we obtain an approximate ana-
lytical expression which bears out the above observations.

3.1.3. Analytical approximation

We start with Eqgs. (17), (18) and (19). Only Eq. (18) will con-
tribute to the Fourier transform of the Eq. (17). The second term
in Eq. (17) will oscillate very fast in the integration limit and it
will have very little contribution to the Fourier transform. We
have checked numerically the relative contribution of Eq. (19)
to the FT. Dropping this term we have,

A= — Real{e‘ix
2wrot
X [/ (elvEeiX cos€ . giveemiX cose-ivm) d&] } @
0
Using the identity,
e X st = o (£x)+2 Y iFJk (£x) cos ke, (26)

k=1
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Fig. 6. Normalized DFT of cos ¢ (t) by Gaussian quadrature method
for fo = 100Hz
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Fig. 7. Normalized DFT of cos ¢ (t) by Gaussian quadrature method
for fo = 1kHz

where Ji(X), k=1,2,...,00, is the first kind of Bessel func-
tion of integer order k. We have the expression,

By~ TS0 cos x
Wit VT
> 3 V2
+2; Jk(X)COS <X - Ekﬂ') m], (27)

323

X=134.04 |

Real( Y(v) ).

" 1 L L s . 1 L ' " "

-100 -50 0

-150

Fig. 8. Normalized DFT of cos ¢ (t) by Gaussian quadrature method
for fo = 1 kHz, Part I
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Fig. 9. Normalized DFT of cos ¢ () by Gaussian quadrature method
for fo = 1kHz, Part II

where we have neglected the fast oscillating term. For k < X,
(Abramowitz & Stegun 1972),

Jk(X) ~ \/-'72;(X2 _ kZ)—1/4

2 1/2
X COS (x/x2 — k2 — ktan™! (% - 1) - %) . (28)

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1996A%26A...306..317J&amp;db_key=AST

FTI9BARA ~ -306. —31735

324
For k > x,
k k2 eV -X
Je(X)~ [—+ — -1 77 29)

For k > x, the Jx(x) decrease very rapidly. Hence the summa-
tion in Eq. (27) becomes essentially finite and reduces to,

f @)~ T Sinem) {Jo(x)cosx
wrot vm
[X] 2
n-1/4 vV 3
+ZZ\/7 k) 2_k2cos(x—§kﬂ'>
(% 2
x cos [ v x2 — k% — ktan ﬁ -1 710

(30)

where [x] is the integer part of X. From this equation it is seen
that the amplitude of the Fourier transform drops as x ~!/2. For
the particular values of v = k, k =0, 1,2,. .. from Eq. (27), we
get,

Hw) =

T Jo (X) cos (x - E) . 3D

Wrot 2

The maximum height of the FT of the unmodulated signal is
7 Jwror = T The factor Jo (x) cos (x — km/2) gives the reduc-
tion in the height. Hence this analytical approximation explains
to a reasonable extent the drop in the amplitude of the FT and
spread in the bandwidth due to frequency modulation.

Our ongoing study shows that it is possible to get a closed
form of the Fourier transform Eq. (25). It is given by

ﬁ(l/)z 1 Re{e—'ixg (1 +e—i2u1r) [M]

2Wrot cos (4F)

+2e_i(X+,,7r) [Ju(_x) + J—V(—X):l

cos ()

T i(Z-X) —izemy | Jp(X) =0 (X)
+7¢ (1+e72m) [ Sn (Z)

\(5-X—vm) [Ju(—x) - J_,,(—x>}

sin (%)
(Z-X)(1 _ a—i2vm - 1 @0
e (1 © ){§m+l/ m!

X2 F, (—m,l,l - (”;m) %)

[T T,00)+e7 T (-x)] }}, (32)

sin (vm)

where J, (Xx) is the Anger function and 2F) is the hypergeo-
metric series. The details about these functions can be found in
literature (Abramowitz & Stegun 1972). To obtain Eq. (32), the
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Fig. 10. Smearing of the FT of the frequency modulated signal
cos ¢ (t) . Here the orbital motion of the Earth has been taken into
account

Hansen integrals (Erdélyi et al. 1953) have been studied. It is
worthwhile mentioning that the integrals of this generic form
with X — —ix have arisen in the theory of X-ray absorption in
a magnetic field (Takeuchi 1920). This closed analytical form
of the Fourier transform is a significant contribution to pulsar
data analysis and reduces computational demands.

If we include the orbital motion in our analysis, the FT be-
comes more complex and one obtains a double series of Bessel
functions. We need to define the following quantities

27 foA _ Worb 1
¢ v and b= o

Wrot
In terms of the above quantities the FT is given by

27
h(v)=e®-% /

0

Y = ~3x 1073,

et { Jo (x) Jo (v)

+2J0 (v) > i*Jk (x) cos (k€)

k=1

+2J5 (X)) i Jom (=¥ cos (mb€)

m=1

+4 >N "M (X) Jm (—¥) cos (K€) cos (mbg) }dg.
k=1 m=1

(33)

Figure 10 shows the Fourier transform of the pulsar signal in-
cluding the orbital motion besides the Earth’s rotation about its
axis. The distinct bands of the spectrum are clearly seen. Prelim-
inary efforts to look for a closed form expression of the double
series indicate that it might be possible.
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4. Conclusion

In this paper we have studied the gravitational wave form of
a pulsar from the point of view of data analysis. Due to the
rotation and orbital motion of the Earth, a monochromatic pul-
sar signal becomes frequency and amplitude modulated. The
effects of these modulations are discussed. The drop in the am-
plitude of the signal due to the amplitude modulation is about
40% compared to optimal incidence. The effect on the FT of the
FM signal is much more severe compared to the AM signal in
that the height of the peak is reduced drastically. For example
in the case of 1kHz signal observed for one day, the drop in
amplitude of the FT of the signal is 91% (see Table 1). The FM
smears out the pulsar signal into a small bandwidth about the
signal frequency of the wave. We have studied this frequency
modulation of the pulsar signal by three different methods. We
have obtained a closed form of the Fourier transform of the fre-
quency modulated pulsar signal due to the rotational motion of
the Earth about its spin axis. With the inclusion of orbital cor-
rections one obtains a double series in terms of Bessel functions.
This work is a precursor to the all-sky, all-frequency search of
pulsars. It would be useful for a scheme like the stepping around
the sky method suggested by Schutz (Schutz 1991). Frequency
heterodyning is also an important technique to be considered.
The number of patches on the sky in the search for pulsars has
been estimated (Schutz 1991) to be &~ 10'3. The sensitivity that
can be achieved in an all-sky, all-frequency search is limited
by computer technology. Efforts are being made to reduce the
number of patches by appropriate analytical methods and initial
results are encouraging. A detailed investigation of this problem
is presently under study (Srivastva et al. 1995).
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