FTI99DARA © Z 2317 “T99D

Astron. Astrophys. 231, 199-201 (1990)

Research Note

ASTRONOMY
AND
ASTROPHYSICS

Statistics of refractive pulsar scintillation: effect of limited data length

A.A. Deshpande and R. Nityananda

Raman Research Institute, Sadashivnagar P. O., Bangalore, 560080, India

Received March 1, accepted September 28, 1989

Abstract. Recent theoretical studies of refractive effects due to
large scale (=10'%cm) electron density fluctuations in the inter-
stellar medium have provided a framework that has been used to
estimate slow variations in the mean intensity, image size, etc. of
pulsars and compact extragalactic sources. Mostly, the estimates
of fluctuations in the various observables resulting from these
studies correspond to observing times (Z,,, ) which are much longer
than the associated refractive time scales, (7). However, in
practice the time span of a set of observations is often not much
longer than the refractive time scales. In this paper we investigate
the dependence of the apparent modulation in observed intensities
on the ratio (f,,/t,er) by direct simulation. The apparent modu-
lation reduces with (z,,/t..¢) as expected. The variance on this
estimate and the effect of using the sample mean rather than the
(not directly available) true mean are both accounted for in our
calculation (this is difficult to do by purely analytical methods).
We suggest that the apparent modulation index should be
corrected suitably to obtain a more meaningful estimate of the
strength of modulation. This correction is particularly relevant to
recent observational studies of pulsar intensity modulation.
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1. Introduction

It has been shown (Sieber, 1982; Rickett et al., 1984) that the
observed slow fluctuations in the intensities of pulsars and
compact extragalactic sources can be attributed to the refractive
effects due to the long-wavelength electron-density fluctuations in
the interstellar medium (ISM). Recent models (e.g. Romani et al.,
1986, hereafter RNB; Coles et al., 1987) adopting power-law
spectra for the density perturbations have been used to compute
the fluctuations in mean intensity, image size, pulse width and
pulse arrival times, along with their cross-correlation and fluctu-
ation time scales. In practice, the observation period may not be
much longer than the typical time scale of the fluctuations. In such
cases, the amount of fluctuation derived from the observations
may grossly underestimate the true strength of fluctuation.
Existing theoretical studies (Rickett et al., 1984; Blandford and
Narayan, 1985) do compute the structure function of intensity
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fluctuations, which is the mean value of (I(¢) — 1(0))>. However,
this cannot be interpreted directly in terms of the modulation
index without the knowledge of the true mean intensity. This can
differ considerably from the sample mean computed using data
from only a limited time stretch. Further, it is useful to estimate the
typical errors on the modulation index estimated in this manner
from a short data stretch. The simulations presented in this paper
are designed to deal with these two issues. If F is the flux density
observed from a pulsar or compact extragalactic source then the
apparent modulation index m, is given by:

1 tobs _ 172
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where the apparent mean intensity is
_ 1 tobs
F=— [ F()d,
tobs 0

and ¢, is the length of time over which observations are available.
When £, > t,r, Where ¢, is the refractive time scale, then F, —» F,
the true mean intensity of the object and m, — m, the true
modulation index.

Our present interest is to find the dependence of m and the
error bars for “m” on (fo/t.r)- Any analytical approach for
realistic models of F(¢), appears quite complex because one is
dealing with the ratio of two fluctuating quantities. Therefore, we
chose to simulate the required input function F(¢) using a suitable
model for the process which is responsible for the refractive
fluctuations. For this purpose, we adopt the approximate model
for refractive fluctuations in intensity used by RNB.

In the RNB model the effects of refractive fluctuations in the
ISM are treated as perturbations of an underlying bundle of rays
scatter-broadened by the diffractive scale inhomogeneities. When
averaged over a much longer time scale than that for diffractive
scintillation, the image of a point source is shown to be essentially
Gaussian with a characteristic angular radius 0. This Gaussian
bundle will be focused, defocused, and tilted by density fluctu-
ations on the scale of the “spot” or image size, 0 = 0L (where L is
the distance of the screen from the observer).

Thus, in this model the intensity received at a general point x
(see Fig. 1) from unit area around x + r on the screen is

F(r,x) = ;[F— exp {— [ﬂﬂ]z} 2
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Fig. 1. A schematic showing the effect of a thin screen with a single long-
wavelength sine-wave perturbation on an incident plane wave

wheren = — % % is the extra refractive bending angle of a ray at

. 0 . .
transverse location (x+r) on the screen, —? is the phase gradient

in the r direction at the screen and A the wavelength of observation.
The phase perturbation at the screen is related to the power
spectrum of the density irregularities as

¢ (S)oc [[d*G1Q (1" exp [ig S +iv (@), ©)

where S = (x, y) is the spatial lag; Q (§) the power spectrum of the
density perturbations; § = (g,, g,) the wave vector and the phases
w (¢) are random for a Gaussian process. Thus, the extra refractive
bending angle 7= (n,,#,) is given by:

o [[[d?7iq.|Q (@I exp (i S +iv),
[1d2qiq,1Q @)1 exp (g S +iy)]
=[[[d*Gexp(igS) @;, [[d*Gexp(igS) &;], @)

where @, =i, |0 (¢)|'"? exp (iy’) and @} =iq, | Q (9" exp (iy) .

A power-law spectrum is generally assumed and defined by
0(q) = Q q~*. However, the value of fis still at issue. Theoretical
studies for a range of values of § have been reported (see
Goodman and Narayan, 1985; Roberts and Ables, 1982). These
show that values of f# = 11/3 and 4.3 are both consistent with most
observations, although ff= 4.3 is favoured by the large observed
modulation index. However, some recent observational evidence
(Gwinn et al., 1988) seems to favour = 11/3. In our computation
we will consider both f=11/3 and 4.3.

2. Simulations and results

Our simulations involve the following steps:

(i) Hermitian symmetric spectra corresponding to @, @, are
generated in the range 0 <|§| < ¢, for an assumed value of S,
where the phases y (§) are randomized. The cutoff at g, excludes
the short-wavelength scales which are already accounted for in
diffraction broadening of the image.

(ii) The spectra are then Fourier transformed to obtain the two
components of the extra refractive bending angles (77) at the screen.

(iii) The magnitude of 77 (w.r.t. ¢) is adjusted, so as to satisfy the
relation derived by RNB between the structure function of 7 and
the parameter ¢. This is given by:

r =
ERCINETIO

k(3 wra—, S 5
K(G) [ ora-ne o] -y ]e ©
where J; is the Bessel function.

(iv) Instead of computing the F(x, y) using Eq. (2), we do the
following to reduce the number of computations. We first find the
intensity that would have been observed if the diffraction
broadening of the image were neglected. This intensity distri-
bution is then convolved with a Gaussian corresponding to the
diffraction-broadened image. This procedure gives the same result
as would be obtained from Eq. (2), following integration over r.

(v) This simulated intensity pattern in the plane of the observer
can now be used to find m over all possible cuts in the plane as a
function of (S,../0*), where S,,, is the spatial extent of the
observed intensity pattern and o* is defined as the lag at which the
normalized structure function has a value of 0.5. The o* is related
to o by (6*/0)=1.16 and (6*/0) =1.46 for f=11/3 and 4.3
respectively. It is easy to see that

(Sobs/a-*) = (tobs/[ref) (6)

as t,.c = o*/v, where v is the speed of the observer relative to the
intensity pattern.
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Fig. 2a and b. An arbitrary cut through the simulated F distribution: a for
p=11/3; b for =43
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Fig.3a and b. The dependence of (m,/m) on (t,/t.¢) inferred from the
simulations. The continuous curve corresponds to the mean value of (m,/m)
[also (m5F/m)]. The dotted and dashed curves indicate the rms deviations on
either side for (m,/m) and (m5F/m) respectively: a for f=11/3; b for f=4.3

Following the above procedure, simulations were performed
using a 256 x 256-point grid for the distribution. Figure 2 shows
an arbitrary cut of the F distribution for the two values of . Here,
we assume L =41=C_, =1, where C_, is the turbulence level as
defined by RNB and L and 4 are in kpc and meters respectively.

The dependence of (m,/m) on (£,y/t,e¢) is shown in Fig. 3. For
comparison, we also computed the dependence of (wS¥/m) on
(ops/tres) (se€ Fig. 3) where mSF = m, F,/F is the modulation index
as implied by the structure function of F. The number of
independent cuts of the F distribution used in these computations
ranged from 16 for the longest data stretch to 4000 for the shortest
data stretch.

3. Discussion

Our results clearly demonstrate the effect of short observation
periods on the apparent modulation index. It is worth noting that
the variations of (m,/m) with (f,,/t..s) Obtained for the values
B =11/3 and 4.3 are rather similar. The values of the modulation
indices are however different in the two cases (see Fig. 2). The
relation between (m,/m) and (Z,,s/t.;) can be used to obtain
estimates of the true modulation index from an apparent modu-
lation index derived from observations over short periods. Such a
correction is essential, particularly in those cases where the
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apparent modulation indices are to be used for further analysis.
For example, the variability data obtained by Slee et al. (1986)
may be affected by the effect discussed here. This may change the
conclusions to be drawn from their data. It is significant that the
comparison of the results for m, and mSF show that their mean
values depend on (¢,ys/,.¢) in the same way. The distribution of m,
around its mean value is generally asymmetric. To bring out such
an asymmetry clearly, we compute the rms deviations for the
modulation index values above and below the average value
separately. Such rms deviations in the two cases (m, and #SF) are
similar when f=11/3 (see Fig.3a). This is not surprising as
B =11/3 corresponds to a weak modulation case, where F, is not
too different from F. However, the “upper-side” rms deviation of
mSF differs noticeably, though not considerably, from that of m,,
when = 4.3 (see Fig. 3b). This can be explained if the event that

mSF > mSF for a data stretch has some correlation with F, > F.
Such a correlation is quite natural for a variation of F(¢), as seen in
Fig. 2b, with large positive spikes (large values of F tend to be
accompanied by steep variations).

Thus, we conclude that the structure function computations
can be used confidently to obtain the required correction depend-
Ing on (Zy6/2r), €ven in a case with strong modulation (such as for
B =4.3) where the sample mean is not the true mean. The results
presented here also make it possible to assign error bars to the
corrected modulation index derived in this way.

In most theoretical studies, the estimates of the refractive
fluctuations in other observables e.g. source size, pulse width,
decorrelation bandwidth, etc. also correspond to an infinite
observing period. Therefore, it is also desirable to estimate the
effect of short observing periods on the mean and variance of
fluctuations in these quantities. It should be possible to study this
effect for other observables using direct simulations similar to
those employed here.
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