Mon. Not. R. Astron. Soc. 300, 577-582 (1998)
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ABSTRACT

We present here a method to study the distribution of electron density fluctuations in pulsar
directions as well as to estimate pulsar distances. The method, based on a simple two-
component model of the scattering medium discussed by Gwinn, Bartel & Cordes, uses
scintillation and proper motion data in addition to the measurements of angular broadening
and temporal broadening to solve for the model parameters, namely, the fractional distance to a
discrete scatterer and the associated relative scattering strength. We show how this method can
be used to estimate pulsar distances reliably, when the location of a discrete scatterer (e.g. an
Hu region), if any, is known. Considering the specific example of PSR B0736-40, we
illustrate how a simple characterization of the Gum nebula region (using the data on the Vela
pulsar) is possible and can be used along with the temporal broadening measurements to
estimate pulsar distances.
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1 INTRODUCTION

Reliable estimation of pulsar distances forms a crucial input for
many important investigations of pulsar properties, particularly
those concerning spatial distribution, space velocities, birth-rates,
etc. The conventional method for estimation of distances is based on
the measured value of the column density of electrons between
ourselves and the pulsar (i.e. the dispersion measure, DM) com-
bined with our assumption of the distribution of free electrons in the
Milky Way. Other methods, which give the so called independent
distance estimates, are based on pulsar association with a supernova
remnant (or a globular cluster), measurements of annual parallax
for nearby pulsars or the useful limits through Hi1 absorption
measurements (possible for pulsars in the galactic plane). These
‘independent’ estimates provide important constraints for models
describing the distribution of electron density in our galaxy.
Although the model of the electron density distribution based on
pulsar data has received many refinements over the years (e.g.
Prentice & ter Haar 1969; Vivekanand & Narayan 1982; Lyne et al.
1985), the recent comprehensive model by Taylor & Cordes (1993)
represents a major qualitative improvement wherein the spiral-arm
structure has been incorporated explicitly. This model is derived
based on the Hn region distribution, constraints provided by the
‘independent’ estimates of distances, data on scatter broadening of
pulsar signals, the radio continuum emission associated with our
galaxy, etc. Estimation based on this model (and using the disper-
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sion measures of pulsars) has pushed pulsar distances farther by a
factor of 1.5 to 2 compared to earlier similar estimates, particularly
for the ‘local’ pulsars. This has had a serious implication in terms of
a corresponding increase in the estimated velocities of pulsars based
on the measured proper motions.

Although this model is a considerable improvement, some
features are worth noting. The typical uncertainty in most of the
available estimates is believed to be about 20—30 per cent (rms),
while in some cases, distances are uncertain by a factor of 2 or more.
For example, the model is seen to over-estimate by a large factor (in
some cases > 2) the distances to pulsars at high Galactic latitudes.
An analysis of the correlation of the pulsar distribution with the
spiral arm locations (Ramachandran & Deshpande 1994) points out
a possible bias in the estimated pulsar locations towards the spiral
arms. This bias could be understood in terms of a possible under-
estimation of the electron density in the interarm regions. If this is
true, then we estimate that the use of the Taylor & Cordes model
leads to an over-estimation of distances (using DMs) by 30 per cent
or so for the local population of pulsars.

In light of these, the need for a more reliable distance estimator
for pulsars cannot be over-emphasized. In this paper, we explore an
attractive possibility wherein the observables associated with the
interstellar scattering can be used in the distance estimation.

The fluctuation of the electron density in the interstellar medium
gives rise to a variation of the refractive index, which results in the
scintillation of radio signals. The basic analysis of scintillations in
terms of these refractive index fluctuations was presented by
Scheuer (1968). Over the years, many authors have studied this
problem in detail, and have shown that scattering introduces many
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other observable effects like apparent angular broadening, temporal
broadening, intensity scintillations, etc. (Scheuer 1968; Rickett
1969; Alcock & Hatchett 1978; Goodman & Narayan 1985;
Blandford & Narayan 1985).

On the whole, the distribution of scattering material in the Galaxy
can be represented by high-density localized components associ-
ated with Hu regions and supernova remnants, and a more diffuse
uniformly distributed component. Gwinn, Bartel & Cordes (1993)
discuss in detail how the angular broadening and the temporal
broadening of the pulsar signal can be effectively used to study the
distribution of scattering material along the line of sight. In this
paper, we extend this idea by introducing two more observable
parameters, the diffractive scintillation time-scale #4;; and the
proper motion y, and present a method for distance estimation
using the various observables along with some possible knowledge
about the distance to the scatterer.

Sections 2 and 3 present some basic relations that form the
essence of the paper, connecting angular broadening of sources,
interstellar scintillation time-scales, and other parameters assuming
a reasonably general two-component description for the scattering
material. In Sections 4 and 5, we discuss how this formulation can
be used to estimate distances to pulsars, and, in turn, to study the
distribution of electron density fluctuation in the interstellar
medium. Particularly, as we describe, this method can be used to
probe and model regions of enhanced scattering like the Gum
Nebula, the Cygnus OB complex, etc.

We also discuss the specific case of PSR B0736—40, in Section 6,
where the recent measurement of temporal broadening (Ramachan-
dran et al. 1997) has shown excess scattering attributable to the
Gum Nebula. We estimate the distance to this pulsar to be ~4.5 kpc,
far less than the distance of > 11 kpc derived on the basis of the
model by Taylor & Cordes (1993), reducing significantly the
derived velocity of this pulsar.

2 APPARENTANGULAR BROADENING

The rms angular broadening of a source at a distance D from the
observer is given by (Alcock & Hatchett 1978; Blandford &
Narayan 1985)

2 17,
0 = —=| z dz, 1
2 JO ZY(2) dz (D
where z is the line-of-sight distance coordinate, the value of which is
zero at the location of the pulsar, and D at the observer. () is the
mean scattering rate per unit length. This rms broadening is related
to the FWHM diameter 6y of the source by 0%1 = (41n2) 6>

The mean temporal broadening of the pulse profile is given by
(Blandford & Narayan 1985)

D
Tse = %%JO Z2 (D — 2) Y(2) dz. 2)
The mean temporal broadening is related to the decorrelation band
width (Av) by the uncertainty relation: 2w7,, Ay = 1. As indicated
by the above two equations, the angular broadening of the source is
maximum when the scatterer is close to the observer, and the
temporal broadening is maximum when the scatterer is located
mid-way along the line of sight. Now, let us assume that the
distribution of scattering material in a given line of sight can be
adequately described by two components: a uniformly distributed
component, and a thin screen located at a distance of xD from the
observer. With this assumption, the relations in equations (1) and (2)
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Figure 1. The behaviour of the two ratios Ry (solid line; equation 6) and R,,
(dashed line; equation 10) as function of x and ¥{/Dy.

can be expressed as (Gwinn et al. 1993)
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Here, | & Dy give the mean scattering rate for the discrete thin
screen and the uniform component, respectively. In practice,
measuring the angular broadening of a source requires observations
using very long-baseline interferometry. In principle, it is possible
to estimate the amount of angular broadening from the measured
value of the temporal broadening, if we have the knowledge of the
distribution of scattering material along the line of sight. In the
absence of such knowledge, a simple-minded estimate of the
angular broadening (6,) is possible and can be obtained as
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Although such a simple-minded estimate was originally sug-
gested for a case of thin scatterer midway between the pulsar and
the observer, the constant in the above expression (which comes
through the definition of 7. in equation 2) is such that the 6, and the
0y would match in the case of a uniformly distributed scatterer.
With this, and given the different dependences of the two estimates
of 0 on x, this expression gives an estimate that matches 0 even
when a thin scatterer is included at x = (1/3). Also note, that at
x = (1/3), the ratio of fs becomes independent of the relative
strengths of scattering for the two components (see Fig. 1). Thus,
for consideration of the 6 ratio, a uniformly distributed scatterer can
be replaced by an equivalent thin scatterer at x = (1/3) and vice
versa. Using the expression for 7,. and the above relation, we have

03=4ln2DT% 1+6x(1—x)£ (5)

Dy
Note that 0, is not equal to 0 in general. The difference depends on
the values of x and 1/Dy,. Let us define a parameter Y = (y,/Dy).
This parameter is the ratio of the mean scattering strength of the thin
screen and the distributed component. The ratio of the measured
angular broadening (6y) and the estimated value (i.e. 6,) is given by
(Gwinn et al. 1993)
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Depending on the validity of the assumption that the scattering
material is uniformly distributed along the line of sight, this ratio
will deviate from unity.

This relation has been derived and used by Gwinn et al. (1993) to
infer values of x along sight-lines to a few pulsars. However, they
use the available estimates of pulsar distance as an input in the
analysis. In the approach we wish to advance, we would like to
invert this problem to solve for the distance to a pulsar, given the
distance to the discrete scatterer. To be able to do so, we need to
know the values for (¥,/Dy) and the scatterer distance d; (= xD).
While in many cases it may be possible to identify a discrete
scattering region along a pulsar sight-line and use the known
distance to such a region, the contrast in the scattering rate Y
remains as one more ‘unknown’, unless this ratio can be assumed to
deviate from unity by a large factor. In the next section, we identity
another similar but independent relation which allows us to in fact
also solve for the value of Y.

3 TRANSVERSE VELOCITIES

The pulsar velocities inferred from the observed decorrelation time-
scales of interstellar scintillations compare well, on the average,
with those estimated from proper motion measurements (Cordes
1986; Gupta, Ricket & Lyne 1994). The reason for possible
disagreements in the values estimated in these two ways is often
attributable to the breakdown of the assumption regarding the
distribution of the scattering medium along the sight-line. Gupta
et al. (1994) give the relevant expressions for the case of a single
thin screen. In this section, we derive a general expression for this
comparison, in terms of x, D, and (y,/Dy), for a two-component
model.

The diffractive scintillation time-scale associated with a screen at
a location x from the observer and having a characteristic irregu-
larity size a, can be expressed as

o] = [

Tavs OV X

fgir(x) = { @)
where A is the observing wavelength, vy is the apparent velocity of
the scintillation pattern across the observer, and v, is the trans-
verse velocity of the pulsar (which can be estimated from proper
motion measurements). It is easy to show, that the effective #4;; value
corresponding to the distributed scattering material is related to the
harmonic mean of the tﬁif values for each of the sub-screens at
different values of x. For our two-component model, the apparent
ty¢ can be expressed as
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With the knowledge of the measured values of 7. and t4; the
transverse velocity (vj) of the pulsar can be estimated as (Cordes
1986; Gupta et al. 1994)

) Dc
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where v is the observing frequency. With equations (3) and (8), the
above equation can be rewritten to define the ratio v,/ as
{1 + 6x(1 — x)Y} 12

D,
R,=2=
1+ 3x%Y

v =
Viss

(10)
In the above discussion, we have ignored the contribution to the
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observed t4;; owing to the observer’s motion and the possible
motion associated with the medium. However, the observed 7y
can be corrected for these in cases where these contributions are
significant. It is also worth mentioning that we have carefully
examined the definitions of the relevant observables and the con-
stants in all of the above equations. Using detail simulations we
have varified them to be consistent with those used by Gupta et al.
(1994).

4 ESTIMATION OF DISTANCES

Fig. 1 shows the behaviour of the two ratios Ry and R, (equations 6
and 10) as a function of the fractional distance x to a discrete
scatterer (from the observer) and the associated relative strength of
scattering Y. Solid lines are for the ratio Ry, and the dash lines for
R,. Note that, except when Y = 0, the two ratios deviate from unity
in general. It is easy to see that, though the two ratios, Ry and R,
show relative behaviour that is anti-symmetric around x = 0.5, they
do provide two independent relations between the quantities of
interest. Hence, these relations can be used together to estimate the
distance to a pulsar as well as the relative strength of scattering Y if
the discrete scatterer distance (dy = xD) is known.

The four observable quantities necessary for this purpose are, (i)
the apparent angular broadening 6y, (ii) the temporal broadening of
the pulse profile 7, (iii) the diffractive scintillation time-scale 74,
and (iv) the proper motion v,,,. While these depend on the pulsar
distance, the two ratios Ry and R, (see equations 6 and 10) are
independent of the pulsar distance. However, in practice, the
estimation of these two ratios based on the four observables
involves assumption of a distance, since 0, < \/1/D, v, = uD,
and v \/l_), such that both the ratios have \/B dependence.

Let us therefore express Rs = Drg , and Rf, = Drﬁ, where ry and
1, can be treated as the estimated values of Ry and R, respectively if
D were to be equal to 1 kpc. Then, by using equations (6) and (10),
and eliminating (y;/Dy), we get a useful relation between D and x,
as

Drir22x=3x)+Dr22x— D+ GBx—Dx—1) = 0.  (11)

Another independent relation, d, = xD, would be obvious, once the
distance to the discrete scatterer is known. With these equations, the
distance to the pulsar can be estimated, once we know the distance
to the thin screen scatterer and the ratios ry,r,.

As we will discuss later in this paper, it may be possible to
ascertain the distance to a possible discrete scatterer in many cases.
However, as mentioned above, estimation of these two ratios is
possible only if all the four parameters are measured. Though the
measurement of 74;; and 7. is more easy to come by, the measure-
ment of the other two quantities involves very long-baseline
interferometry and therefore, the required measurements are avail-
able for only a few pulsars. For instance, angular broadening
measurements exist for only a handful of pulsars (Gwinn et al.
1993). Reliable measurements of 0y and u are available so far for
only one pulsar, namely the Vela pulsar. At 2.3 GHz, the measured
values of the scattering parameters are, 0y = 1.6 = 0.2 mas,
tgir = 15 s, and the decorrelation bandwidth is 68 = 5 kHz (Desai
et al. 1992). The measured proper motion is 59.4 = 2 mas yr71
(Bailes et al. 1990). Based on these, the corresponding values of r,
and r,, are 0.49 kp(”2 and 0.96 kpcfm, respectively.

The solid line in Fig. 2 shows the relation in equation 11 after
using these ratios. The dashed line in the figure corresponds to the
relation D = (d,/x), where dj, the distance to the discrete scatterer is
assumed to be equal to 400 pc. Although this is one of the estimates
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Figure 2. Estimation of distance to Vela pulsar. Solid line gives the relation
between x and D according to equation (11) (with ry = 0.49 kpc’”2 and
r, =0.96 kpc’”z), and the dashed line is for D = (dy/x) using d; = 400 pc.

of the estimates for the scatterer distance by Desai et al. (1992), our
assumption is based on the following independent argument.
According to the Taylor & Cordes (1993) model for the electron
density distribution, the Gum Nebula is modelled at a distance of
about 500 pc with a radius of about 180 pc. Thus, the mean distance
of the section of the Gum nebula that may be in the foreground of
the Vela pulsar would be in the range 300-500 pc. Hence, we
consider the relevant mean distance to be nominally 400 pc. The
intersection of these two curves in Fig. 2 represents the solution in
terms of x and D. In the present case, the intersection is at x = 0.8
and D = 500 pc, which agrees with the generally accepted distance
to the Vela pulsar. As can be seen from the solid-line curve in Fig. 2,
that an uncertainty of the order of 100 pc in the scatterer distance
will imply very small change in the fractional distance (x). So the
distance to the Vela pulsar would be 500 * 125 pc considering the
worst case error. As we shall see in a following section, an
independent estimation of the distance the Vela pulsar (see
Table 1) also supports our assumtion of the scatterer distance,
remembering that the fractional distance is about 0.8.

It is worth recalling here that Desai et al. (1992) also derive an
effective fractional distance of 0.81 * 0.03, by however assuming a
500 pc distance to the Vela pulsar (Frail & Weisberg 1990),
implying an effective distance of 400 pc to the scatterer. However,
Desai et al. argue that, since the near-edge of the Gum Nebula is at
about 270 pc (Sivan 1974; Reynolds 1976), the scattering observed
in Vela pulsar cannot be as a result of the Gum nebula. When they
consider a uniformly distributed scattering component with
strength close to the Galactic disc (Cordes, Weisberg & Boriakoff
1985), then the fractional distance to the scatterer turns out to be
x = 0.87. Alternatively, they argue that, if the Gum nebula scatters
intrinsically as much as 5 per cent as strongly as the other scattering
screen, then the screen is pushed to a fractional distance of
x = 0.95. However, we have assume an effective fractional distance
of 400 pc as the distance to the scatterer and, by our independent
method, we find a solution the x to be equal to 0.8, implying the
distance to the Vela pulsar as 500 pc. In the framework of our
present two-component model, our results are in excellent agree-
ment with those by Desai et al. (1992).

Although, in practice, the above procedure is convenient to use, it is

Table 1. Distances (for B0736—40 and the Vela pulsar) estimated by
changing the electron density for the Gum nebula component in the model
of Taylor & Cordes (1993), and the corresponding fluctuation parameter
implied by the observed temporal broadening. The first column gives the
‘enhancement factor’ for the assumed electron density, the second and
fourth columns give the values of the fluctuation parameter and the third and
the fifth columns give the corresponding distances in the two cases.

n 0736-40 Vela pulsar
x0.2 cm™> f D (kpc) f D (kpc)
1.0 153 11.0 7.3 0.61
1.1 12.8 11.0 7.0 0.59
12 10.6 9.1 6.85 0.57
1.3 8.75 7.1 6.75 0.55
1.4 7.45 5.9 6.6 0.53
15 6.40 5.1 6.5 0.52
1.6 5.65 4.4 6.4 0.51
1.7 5.00 3.8 6.3 0.50
1.8 445 33 6.3 0.49
1.9 4.00 2.9 6.2 0.48
2.0 3.65 2.5 6.2 0.48

instructive to express the dependences of the two ratios Ry and R, on
x and ¥,/Dy in a general form as shown in Fig. 3. The two sets of
curves indicated by the continuous and the broken (dashed) lines
correspond to different constant values of ¥ = (y;/Dy) and x
respectively. The dot (with the error bars) represents the data on the
Vela pulsar using the above derived distance. The relative scattering
strength Y of the discrete scatterer, as seen from the diagram, is very
high as would be expected from the known anomalous scattering in
this direction.

Given the measurements of the four required observables, the
possible combinations of D, x and Y can be represented on this log—
log plot by a straight line of 45° slope parallel to the line
corresponding to ¥ = oo. Each point on such a line will correspond
to a distinct value of the pulsar distance (depending on ry, ), and in
general, would imply a unique combination of x and Y. The correct
distance would correspond to one such point, for which the implied
value of x is consistent with our knowledge of d;.

There are some prohibited areas in this diagram, namely, the
lower-right square ( Ry >1>R,) and the upper-left triangle
(ro/rg > 2). For example, the range of distances corresponding to
the sections through the lower-right square can be rejected. When
such a rejectable range is large, it would imply that the discrete
scatterer is dominant and that it is quite close to either the pulsar or
the observer. In such cases, some other rather simple considerations
may be enough to yield useful limits on the pulsar distance. On the
other hand, the ‘impossibility’ of r,/ry >2 in the present two-
component model, may be utilized to constrain the values of
some of the observables that may not be known or have large
uncertainties. Similar considerations would also apply for the other
‘prohibited’ square region.

In certain cases, when it is possible to assume absence of any
discrete component of enhanced scattering along a sight-line, the
region of interest is confined to the central part of the diagram that is
bounded by, say, ¥ = 0.5. This makes it possible then to estimate
the pulsar distance within an uncertainty of 20 per cent or so, even
when only one of the two ratios, ry or r,, may be known. It is worth
remembering that in such cases the parameter x is not important.

In certain other cases, it may be clear that a discrete screen is the
dominant scatterer (e.g. like the Gum nebula in the case of the Vela
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Figure 3. A combined description of the dependences of the ratios Ry and R,,
on x and Y(= y,/Dy,) corresponding to the two-component model for
scattering. The solid and the dashed curves show the relation between the
two (velocity and the angular size) ratios for different constant values of Y
and x respectively. The dot and the error bars correspond to the data on the
Vela pulsar. (See text for more details.)

pulsar). Then, the relation in equation (11) can be approximated to
assume simple forms where the ratios ry and r, can be decoupled.
The two resultant relations can then be expressed in terms of d, as

1
x=1-2s2 or x=1-— zdsrg. (12)

In this regime, the fractional distance x and the pulsar distance can
be estimated reasonably accurately even when only one of the ratios
is known, provided the ‘true’ value of x is not very small (i.e. not
<0.1). Otherwise, both the ratios need to be known so as to avoid a
large error in the distance estimation. In general, the low—low and
the high—high combinations of the Ry.R, values [as also when
(Ry/R,) is nearly equal to 2] definitely indicate the presence of a
dominant discrete scatterer. Therefore, when the presence of a
dominant discrete scatterer can be assumed, this connection
between R, and R, can be exploited suitably when only one of
two ratios is known, and the other ratio is required to be estimated.

It is easy to note from the diagram (as also from equation 11) that
the distance estimation becomes independent of one of the two
ratios (ry or r,,) when x=0, (1/3), (2/3) or 1, while that ratio will be
important only for the determination of Y. A nearly similar
behaviour is also evident when Y >>1. For example, the
distance determination would be less sensitive to uncertainties
in Ry (R,) when x> (2/3) [x < (1/3)]. This should dictate the
choice of the measurement and the corresponding relation to be
used (of the two in equation 12, for example) for determining x
and D.

This diagram thus provides us a useful and a nearly complete
description in terms of the dependence of the two observable
ratios on the two model parameters x and Y, which represent the
fractional distance and the relative strength of scattering respec-
tively for the discrete scatterer in the assumed two-component
model.
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6 ANOMALOUS SCATTERING AND
DISTANCE TO PSR B0736-40

In some cases, a dominant discrete scatterer may be common to
sight-lines to a number of pulsars. In such a case, characterization of
the scattering region can be attempted using the data on the four
observables which may be available for only a few pulsars and the
results could be used in determining distances to the other pulsars
with nearby sight-lines. This relaxes the requirement that all four
observables be available for the rest of the pulsars in the set and, in
fact, the knowledge of DM and temporal scatter broadening alone
suffices for distance determination. We illustrate this possibility by
considering the Gum nebula region as a common scatterer for a
number of pulsar sight-lines.

Taylor & Cordes (1993) do include the enhanced electron density
in the Gum nebula region in their model, but state that the modelling
of this component is far from complete since a proper modelling
would require many more constraints (for both the dispersion and
the scattering) than are presently available. They have, therefore,
assumed the fluctuation parameter (which quantifies the amount of
scattering in the medium, given the value for the electron density)
associated with the Gum nebula to be equal to zero. In the following
part of this section, we show that the data on the Vela pulsar can be
exploited to calibrate this fluctuation parameter (as defined in the
Taylor & Cordes model).

In a simple exercise, we varied the assumed number density and
the fluctuation parameter associated with the Gum nebula in the
framework of the Taylor & Cordes model to obtain values of these
parameters that would be consistent with the known DM (69 pc
cm ™) and 7, (8.25 ms at 327 MHz) as well as the derived distance
(500 pc) to the Vela pulsar. As shown in Table 1 (columns 1, 4 and
5), the electron density in the Gum nebula region needs to be about
60 per cent higher than that suggested in the Taylor & Cordes
model. The value of the fluctuation parameter is about 6.3, close to
that for the spiral arm component in the Taylor & Cordes model.
Although the Gum nebula is quite complicated in its structure and
morphology, it may not be unreasonable to assume that the above
estimates would be more or less valid for other sight-lines through
the Gum region.

With this view, we consider another pulsar B0736-40
(I =254°2, b = —9°2 and DM = 160.8 pc cm ™), for which the
estimated distance on the basis of the Taylor & Cordes (1993)
model is > 11 kpc (and therefore would be placed beyond the
‘outer’ spiral arm). As part of our survey (in 1996) to measure the
temporal broadening of pulse profiles at 327 MHz (Ramachandran
et al. 1997), we observed this object and measured the temporal
broadening to be 76 = 3 ms. Assuming the excess scattering is
owing to the Gum nebula, we again seek a combination of the
electron density and the fluctuation parameter that would be
consistent with the DM and 7,. values, and the distance estimate
associated with it. As can be seen from Table 1, both the cases, the
Vela pulsar and B0736—40, are consistent with the electron density
and the fluctuation parameter values of 0.32 cm™> and ~6.3
respectively. This, therefore, allows us to derive a distance to
B0736-40 as ~4.5 kpc (with an uncertainty of about 0.8 kpc)
based on our measurement of the temporal broadening and the
calibration from the Vela pulsar data.

We also find that the excess temporal broadening cannot be
accounted for by even a large increase in the electron density
associated with the ‘outer’ spiral arm component. The z-height of
about 700 pc, based on our new estimate, implies that the ‘true’
distance could be even shorter given the possibility that the effective
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scaleheight of the electron distribution may be somewhat under-
estimated in the Taylor & Cordes model. As one of the important
implications of this distance determination, the estimated velocity
of the pulsar would now be less than 1600 km s~' (using a proper
motion of about 72.5 mas yrfl) rather than a value > 3780 km s~
as was implied by the earlier distance estimate.

Any more detailed modelling of the distribution of electron
density and its fluctuation across the Gum nebula region is
beyond the scope of this paper, and needs new measurements of
scattering parameters of a number of pulsars that could be behind
this region. We, however, have shown how distance estimates for
many such pulsars could be refined already with the help of the
scatter broadening measurements.

7 DISCUSSION AND CONCLUSIONS

We have described in this paper a method to study effectively the
distribution of the electron density fluctuations in the interstellar
medium by assuming a simple model that seems consistent in most
cases. Essentially, suitable combinations of four measurable quan-
tities for pulsars, namely the temporal broadening of pulse profiles,
angular broadening of the source, diffractive scintillation time-
scale, and the proper motion, allow us to solve for the parameters of
the scatterer as well as for the pulsar distance. The important
simplifying assumption that has gone into this analysis is that the
scattering along the sight-line can be adequately modelled in terms
of just two components, a thin screen scatterer and a uniformly
distributed component. It is clear that for lines of sight which pass
through, say, two spiral arms, this simple picture would need to be
modified. However, for a large number of pulsars, our present
assumption can be justified (Gwinn et al. 1993). One would
naturally attempt to model the local medium first and use that
knowledge while probing progressively the farther section. In such
a case, it is easy to see that the number of unknowns in the problem
at any stage would not be too many to handle.

One of the important ingredients in our method is the knowledge
of the distance to the discrete scatterer, particularly if such a
scatterer is the dominant source of scattering. For most nearby
pulsars (within 2 kpc or so) such a scatterer, if any, should be
identifiable as an Hu region or the Stromgren region of some OB
stars or as a region associated with a supernova remnant. It is
therefore reasonable to assume that, in most such cases, the scatterer
distance would be available (see, for example, Prentice & ter Haar,
1969). For pulsars at high galactic latitudes, it may be possible to
assume that the dominant scatterer is at a z-height defined by the
scaleheight of the Hu region distribution in the disc of the galaxy.
For somewhat distant pulsars well within the disc, the discrete
scatterer may be identifiable with a spiral arm component. (In such
cases, the distance limits that may be available from H1 absorption
measurements can be incorporated in the analysis as additional
constraints.) We therefore do not consider the scatterer distance as a
difficult ingredient to supply.

The method we have proposed can therefore be used for reliable
determination of distances to a large number of pulsars as well as for
probing a usefully large volume of the galaxy for its electron density
distribution. A systematic and intensive observational program to

measure the scattering effects and proper motions of pulsars would
be extremely fruitful. In cases with dominant discrete scatterers, it
may enough to measure quantities related to only one of the two
ratios. Since the data on temporal broadening are already available
for a number of pulsars, extending the VLBI measurements of
angular broadening (e.g. Gwinn et al. 1993) to a corresponding set
of pulsars will be worthwhile. Such measurements, unlike the
proper motion measurements, do not need long time-baselines or
phase-referencing.

Our simple-minded analysis related to the Gum nebula region
illustrates how even a less elaborate characterization of such
extended scatterers using a few calibrators is useful in estimating
the distance to pulsars with limited data on scattering. The present
example also shows how such information can be used in the
framework of the Taylor & Cordes model. The particular case of
B0736-40 amply emphasizes the importance of reliable distances
in the estimation of pulsar velocities, and we would like to stress
that there could be many such cases, particularly amongst the high
galactic latitude pulsars.

To conclude, the method presented here suggests an attractive
possibility for distance estimation based on observables related to
the interstellar scattering and scintillations. Such estimations would
then play an important role in refining the present model for the
distribution of electrons in our galaxy.
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