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Summary. We use the Lewis invariant of the time-dependent harmonic oscil-
lator to construct exact time-dependent, uniform density solutions of the
collisionless Boltzmann equation. The spatially bound solutions are time-peri-
odic.

1 Introduction

The dynamics of stars in galaxies are governed by the collisionless Boltzmann equation (CBE).
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where f(r, v, t) d3rd>v is the mass in d3rd>v at time=1¢, and ¢(r, #) the gravitational potential
determined self-consistently by the Poisson equation

V2¢=47Gp(r, t) =4nGJf(r, v, 1) d>v. (2)

Many static solutions (and solutions static in a rotating frame) to the CBE are known (e.g.
Binney & Tremaine 1987, hereafter BT, Fridman & Polyachenko 1984, hereafter FP).

While the time-dependent behaviour of solutions of the CBE is poorly understood, there is
a long-standing belief (see Lynden-Bell 1967) - made more precise by Tremaine, Henon &
Lynden-Bell (1986) ~ that most solutions tend to relax to a time-independent state. Although
some numerical simulations (e.g. White 1979) seem to support the conjecture of relaxation,
others show long-lived oscillations (see references in Louis & Gerhard 1988). Louis &
Gerhard (1988) have constructed numerically a self-consistent model of a spherical galaxy
undergoing small but non-linear radial oscillations.

We present an analytic method of constructing time-dependent self-consistent models. The
models all share the property that at any time the density is uniform over some (in general
ellipsoidal) region of space and zero outside. The gravitational potential within the region is
quadratic in the spatial coordinates. The shape and size of the region change with time (while
the region remains ellipsoidal), leading to a time-dependence in the strength of the potential.
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Quadratic time-dependent potentials admit exact integrals of motion. The invariant for the
time-dependent harmonic oscillator (TDHO) was discovered by Lewis (1968).

The left-hand side of equation (1) is the convective derivative of f. Any function of the
isolating integrals of motion (Jeans’ Theorem - see BT) solves equation (1). In particular,
functions of the Lewis invariant/s are solutions of equations (1) and (2) so long as they repro-
duce the time-dependent potential for which the Lewis invariant is an integral of motion. In
Section 2 we use this invariant to construct a time-dependent model in one spatial dimension
(1D). The same approach may be carried over to three dimensions. For simplicity, spherical
models are considered in Section 3.

2 The 1D model
The equation of motion for the TDHO is
i+ w?(t)x=0. (3)

The Lewis invariant,
x2

I(x,v,t)=c5+H&v—ExP, (4)
28

is an integral of motion, where &(¢) is any solution of

o 1

§+w(t)§—g3-=0; E>0. (5)

The reader is referred to Goldstein (1980) and references therein for a comprehensive
discussion.

In 1D the CBE describes the evolution of a self-gravitating system of plane-parallel sheets.
All steady-state models have distribution functions that are functions of energy alone. The
distribution function for a model with uniform density within some interval and zero outside is

f(E)=KO(E,~ E)(E,~ E)™'2, (6)
where K, E, are constants and

2

=3’2-+¢. )

We omit the 6-function in later work, understanding that f=0 when the argument of the
square-root is negative.

The time-dependent model is constructed by replacing E by the Lewis invariant, K and E,
by some other constants K' and I,

flx, v, 8)=K'(I,—I)""2 (8)
The density

p(x,1) =dev=7rJ2K'/§; | x| <&J21,

=0 | x> &J21,
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The potential in the interior is
2
2, X
H=w(t) =
#lx, 1) =(1) 5
where
0¥ (t)=4nGp =4m*GJ2K'|E =A[E (10)

We recall that £ is any solution of equation (5) with w?(¢) given by equation (10). Therefore,

E+A- —1; =0. (11)
13
This equation describes a one-dimensional anharmonic oscillator in a potential [A& + 1/(2&2).
Thus all solutions are periodic functions of time. We have a one-parameter family of oscil-
lating models (with given total mass and energy), where the parameter may be taken as the first
integral of equation (11). In the limit A~ % we recover cold homologous collapse of a system
of sheets.

3 Spherical models

A homogeneous static sphere corresponds to a polytrope of index zero which is not realizable
in a stellar system with isotropic velocity dispersion (Vandervoort 1980). So a distribution
function that is a function of energy alone will not describe a uniform sphere. The simplest
alternative is to seek a function of both E and L? (L is angular momentum =r X v). Given p, the
inversion of the integral equation for f is not unique. Two functions that describe a uniform
sphere are (see FP and references therein)

Lz -1/2
£~ (5;3# #(R) —E)

and

f~6(v,)é[v, ~v(r)

[v(r) is the circular velocity at radius 7]. Any f is a member of a two- (or more) parameter
family of functions characterized by total mass and radius (R). If the interior potential

$(r=wy, (12)

we can take the parameters to be @, and R. We write the distribution function in the form

f=f(E/w0’ Lz; w09 R) (13)
Then
Vg 3w}
=|fd? = = : <R
e Jf Y T4nG 4G T
=(); r>R.
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Therefore, defining v/ =v//w,, r' =r./ w,

” ”
! ! ! 3 !
f E—+—r—, Ir'xv'[*; w,, R|d’v =_J_a_)9; r <RJw,
2 2 4G
(14)
=0; Y>R|w,

Each harmonic oscillator has a Lewis invariant (I,, I, I,). Choosing the same function &(¢) for
all of them, and adding, we define

J=L+IL+I,

Therefore

2
r

]=
28

+3 &v—Er [ (15)

The time-dependent model is constructed by replacing E/w, in equation (13) by J:

f=fUJ, L*; w,, R). (16)
The density
r2
o(r, t)-‘-ff(ﬂ §v—5r|2+2—§7, lrxv[%; wy, R)dv
1 2 2
=ng (T% |axul’; w,, R| du, (17)
where
u=E&v—£r,
(18)
a=r/&.
From equation (14),(17) and (18)
o(r, t)=3]w,/47GE; r<R]wy&
(19)
=0; r>RJw,E.
The interior potential
r2
#r, ) =0 S (20)

Since V2¢ =4 Gp, using equation (19) and (20)
w*(t)= /8. (21)

£ is any solution of equation (5) with w?(¢) given by equation (21). Therefore & satisfies

w0 1
£+ = 0. (22)
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The solutions are either time periodic or those that eventually approach infinity as ¢— .
These correspond to spheres with total energy negative and positive, respectively.

4 Discussion

It is important to note that anharmonicity is absent in these models. It is precisely the lack of
mixing in the angle variables that allowed us to construct these models. Nevertheless, the
models show that time-dependence alone does not necessarily cause relaxation to a steady
state. Numerical simulations of the 1D model have been carried out. They show long-lived
oscillations and no violent instability is apparent. If these models are really stable, then solu-
tions in their vicinity do not relax. The method developed in this paper also applies to other
homogeneous models. Spheroidal systems and the connection between the Virial Theorem
and the equation of motion for & will be discussed in a later paper.
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