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Summary. The small scatter in the luminosities of the brightest galaxies in
clusters has been a topic of much debate. It has been argued that these galaxies
are either special objects or the tail-end of a statistical distribution. In 1928,
Fisher and Tippett derived the general form a distribution of extreme sample
values should take, independent of the parent distribution from which they are
drawn. We compare this asymptotic form with the distribution of first ranked
cluster members and conclude that these galaxies are not the extreme members
of a statistical population. On the other hand, comparison of first ranked
members of ‘loose’ groups with the extreme value distributions shows that
these galaxies are consistent with their being the tail-end of a statistical
distribution.

1 Introduction

The small intrinsic dispersion in the magnitudes of the brightest members of rich clusters has
made them indispensable as ‘standard candles’ in observational cosmology. The dispersion of
these first ranked members is only 0.35 mag (Hoessel, Gunn & Thuan 1980; Schneider, Gunn
& Hoessel 1983). This small scatter in M; was apparent from earlier work (Humason, Mayall
& Sandage 1956; Sandage 1972; Sandage & Hardy 1973) and in addition, the small dispersion
(38 per cent) found in the values of the luminosities of these galaxies has prompted
suggestions that they be endowed with a special status (Peach 1969). Unique creation
mechanisms or evolutionary processes, like ‘cannibalism’, (Ostriker & Tremaine 1975;
Hausman & Ostriker 1978; Tremaine 1981) which would give them a special status have been
suggested. The small scatter in luminosity would also arise if the luminosity function of
galaxies was cut off at the bright end, although there is no strong evidence that this is the case
(Peterson 1970).

On the other hand, luminosities of first ranked galaxies may be drawn randomly from a
universal luminosity function (Scott 1957). Peebles (1968) and Geller & Peebles (1976) have
argued that the distribution of their brightest members is consistent with a statistical model
based on a universal luminosity function. Peebles (1969) points out that the continuity of M,
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with the extreme end of the luminosities for the fainter cluster members supports the
statistical hypothesis, otherwise one would have to attribute this continuity to chance.
Tremaine & Richstone (1977) have discussed tests for a statistical hypothesis that are
independent of the assumed luminosity function and of its variation from cluster to cluster.
Recently, Geller & Postman (1983) have applied these tests to a sample of first ranked
galaxies in groups and conclude that the results are consistent with a statistical model.

Here we present a new test for the first ranked members which allows the statistical
hypothesis to be checked. It uses known results in extreme value statistics. In 1928 Fisher &
Tippett showed that the distribution of the extreme values (smallest or greatest) of subsamples
drawn from a large sample tend to a unique asymptotic form that describes their distribution
independent of the parent sample distribution from which the extremes are drawn. We have
investigated two independent data sets: the list of Hoessel et al. (1980) consisting of 116 first
ranked galaxies in a complete sample of nearby Abell clusters and the data used by Geller &
Postman (1983), which lists first ranked members of groups from the CfA distance-limited
catalogue, corrected for Virgo Flow. In each case we have studied the agreement between the
observed distribution of brightest galaxies and the predicted Fisher—Tippett extreme value
distribution.

We find that the brightest cluster galaxies do not fit the Fisher-Tippett form at the 99 per
cent confidence level. This shows that first ranked members of rich clusters cannot be drawn
from the tail-end of a statistical distribution of galaxies, no matter how steep the luminosity
function. Their luminosities (rather than magnitudes) are consistent with being drawn from a
Gaussian distribution with a dispersion of 32 per cent around the mean luminosity, suggesting
a unique, common mechanism for the origin of these objects. For the brightest galaxies in
groups, the Fisher—Tippett form is a good fit. A universal form can also be predicted for the
frequency distribution of Mj,, the difference in magnitudes of the first and second ranked
galaxies in groups. The agreement of this prediction with the observed distribution is
consistent with the statistical hypothesis. These results show that the brightest group galaxies
are consistent with their being the extreme members of a statistical model in which the
luminosities of all group members are drawn from some luminosity function. We conclude
that a large proportion of first ranked cluster galaxies comprise a special class of objects
whereas the brightest group galaxies are the statistical extremes of a population. The close
agreement of the loose group data with the asymptotic extreme value distributions predicted
theoretically suggests a common mechanism of formation for these groups of galaxies.

In Section 2 we describe the relevant extreme value statistics; in Section 3 we analyse the
cluster data, and in Section 4 the group data before, in Section 5, summarizing our
conclusions.

2 Extreme value statistics

Fisher & Tippett (1928) considered the problem of the extreme values of n samples each of
size m drawn from the same underlying population (since their paper gives no details we
reconstruct their argument here). By noting that the largest value of the whole population of
mn objects, x;, must be equal to the largest of the n largest values taken from the m
subsamples, they are able to show that the probability distribution of the largest value, z,,,,
taken from the mn observations has the same asymptotic form as the probability distribution
of the maximum values in samples of size m whenever such an asymptotic form exists. If we
suppose x; are independent real random variables then

Zmn=MAX(X115 -+ + 5 X1} X215+ - - X2+ -3 X1y -+ - Xpm)

=max(y1, ¥2,- .- ¥n) ¢y
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where y;=max(x;;, . . .x;,); then the cumulative distribution function of z is given by
Fon(x)=P(z,,,<x)

=P[max(yy, . ..y,)<x] (2)
=P"(yi<x)
where we have used the statistical independence. Fisher & Tippett now argue that, if a stable
limiting distribution exists for y as n— it will tend to the same asymptote as that of the

distribution for z. Therefore P(y<x) must have the same form as F,,,(x). Since a linear
transformation does not change the form of a distribution we must have

P(y<sx)=Fn(ax+p) )

with a, B positive constants. Hence, the distribution function of the extreme values™, F(x), is
given by the solution of the non-linear functional equation

[an(x)]n=an(aX+ﬂ) (4)
We can, henceforth, drop the subscript mn on F but we note that the positive constants, a and
B, will in general depend on n so we can rewrite (4) as

[F()]"=F(ax+pB,). ~ (5)

The solutions of (5) fall into two equivalence classes according as (a,, B,) are taken as (1, §3,)
or (a,, 0). In the former case the solution of (5) yields, for the distribution largest valuest

F(x)=exp{—exp[—a(x—xo)]} (6)

where a>0 and x, are constants independent of n and —oo<x<w. For the distribution of
smallest values, we put x——x in (6) with different a and x,. The parameter a is related to the
steepness of fall of the parent distribution; x, is the mode of F'(x).

The Fisher-Tippett asymptote is the distribution of extreme values of samples taken from
underlying distributions that are of exponential type. The underlying probability distribution
dG(x) is said to be of exponential type if (Gnedenko 1941; Gumbel 1966; David 1981)

i 1-G(x) B
[ G |

x—= dx (7)
Thus, all statistical moments exist for exponential-type distributions and they are only defined
for variates that are unbounded to the right or to the left. In particular, this class includes
the exponential, G'(x)=e™*, gamma, G'(x)=[['(A)]"'x*"'e™*, and normal distribution,
G'(x)=(2r) "2 exp(—x*/2), within its domain. We note that (6) reveals that a distribution of
largest values taken from a parent distribution of exponential type is positively skewed. The
other solutions of (5) provide asymptotic forms for the extreme values of distributions whose
variates are bounded [when $,=0 in (5)] and for which only a finite number of moments are
non-zero (Gumbel 1966). These are not of physical relevance in the problems studied here.
We also note that it is not known a priori how large n needs to be for good convergence of the
distribution of subsample extremes to the asymptote (6) although this will not be a problem in
our applications.

* Analogous results apply . for minimum value distributions if we use the fact that
min(yy, ... y,)=—max(—yi,..., —yn).

+To solve (5) when a,=1 consider [F(x)]™" which leads to the requirement that 8,,=8,+8, so B,=—(logn)/a,
where a is an arbitrary constant. Then take logarithms of (5) twice to obtain (6).

\
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By analogous reasoning it is possible to generalize (6) to obtain the asymptotic distribution
function of the mth extreme, dF,,(x), where m is labelled from the top, as (Gumbel 1966)

mam —
dF ()= ——"— exp[ My —me "] dy,, ' - ®)
(m—1)! .
where
ymEaM(xm—xSm)) (9)

where a,, is the density function (steepness of fall) of the parent distribution at the
characteristic value of the mth ranked member; x{™ is the characteristic value (mode) of the
(mth ranked) distribution. The- Fisher-Tippett distribution (6) for the first ranked members
arises from (8) and (9) in the case m=1 where we have a,=a.

The moments are most easily generated using the moment generating function, ®(¢), for
the distribution of mth extremes, (8), which is

[(m—it) :
d(t)=exp(itlogm) ——. ‘ (10)
I'(m)

To apply (6-10) to the distribution of brightest galaxies in clusters or groups we note that if
M, is the magnitude of the brightest member in a cluster or group (large negative M;<>bright
galaxy) then the asymptotic probability distribution for first ranked magnitudes, M,, will be

dP=aexp{a(M,—Mo)—expla(M,—M,)]} dM, (11)

where M, the mode of the distribution, is a measure of the total mass of the cluster or group
(the total number of objects in the parent distribution). Peebles (1968) had arrived at a
formula of this form for a luminosity function of exponential form

Y(M)=aexpla(M—M)] (12)
from first principles, treating the integrated luminosity function
M,
=] w(M)dM (13)
M,

as a Poisson process. Since non-overlapping magnitude intervals can be assumed to be
statistically independent the probability of n galaxies in [M,, M,] is

(Pab)” XP(—Pop)

n!

Pn(Maa Mb)= (14)
By simply evaluating for the probability of one galaxy in (—%, M,) we obtain (11). However,
as noted above, the distributions (11) and (8) arise in far more general circumstances than
(12).

The mean of the distribution (11) is

0.577
(Mp)=M,— - (15)
where 0.577=-T"(1) is Euler’s constant: the variance is

2
o*(My)= e (16)
and the median m(M,) is
In(In2) 0.367
m(M1)=M0+ =M0—‘ (17)
a

a
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Also useful is the skewness, 8, given by the second and third moments, u, and u3 as (£ is the
Riemann zeta function)

p=—1 = 12;63)@—1.140. (18)

(.L¢2)3/2 T

If B vanishes, a distribution is symmetric. These quantities can all be calculated for the mth
extremes using (8) and y,,— —y,,; we find for the second and mth brightest members that

0.577+In2-1 0.270
(M)=MP - —————=M{ - (19)
a a
1 m—1 1
<Mm>=M8m)— ——[0.577+1n m-— ——] (19a)
Ay, i=1 !
2(M,) 1 (n2 1)_ 0.645 20)
i B\ 6 B a3
1 JT2 m-1 1
P(My)= "2—(—6‘ -2 -_2) (20a)
m i=1 1
B(M,)=—0.780. (21)

From (15)-(18) one can see that since the mode M, can be determined from the
observations by determining the mean value (M), the only free parameter is a, which is a
measure of the steepness of fall in the original (parent) distribution at the extreme end. For
example, with an exponential parent distribution, (12), a is just the logarithmic derivative of
Y(M).

Another important collection of general distributions can be derived from (8): the exact
asymptotic forms for the differences between the mth and (m+1)st extremes (where m is
counted from the top). If these distances are written as d,,=0 where

dn=M,,.1—M,,; 1lsm<n-1 (22)

then, so long as nis large and m is small, the probability distribution of the distance d,, tends to the
exponential form, (Gumbel 1966)

f(dm)zmam+l exp(_mdmam+l)' (23)

Note that the distribution is independent of M,, and also that for an exponential-type
distribution the a,, values are very nearly the same for different m. For the exponential
distribution in particular they are identically equal. Henceforth, we write the expressions
dropping the subscript on a. Since (23) is exponential, the mean and standard deviation are
equal®

1
(dn)=0(dy)= P (24)

We shall be particularly interested in the distribution of M;,=M,—M,, the difference
between the first and second ranked members, and we note that M;, corresponds to d; in

*For the pure exponential distribution as the parent population (a,,=1) the distribution (23) is exact for all n, m
and not merely asymptotic.
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(22). Hence, if first and second galaxies in groups and clusters are drawn from a statistical
population we predict

1
(Mip)=0(M1p)= —a—. (25)
Since (M1;)=(M,)—{(M,), from equation (25) we have
1
(My)=(M1)+ — (26)

In general, from (24) and (26), we have
1 m—1
(Myp)=(My)+— > — (27)
i=1

0577 1 ™11
+— > —. (28)

a =1 1

(Mm)=MO_

Comparing with (19a), we see that
1

M{"V=My+ —In(m). (29)
a

The medians are shifted to the right by @' In(m) for the mth ranked galaxy. From (27), the
means are shifted to the right by

3

1 ™l
a i

il
-

i

The difference is:
1 it 1
(M) - M= —[-0.577+ D} i|- —In(m) (30)
a =1 a

—0 as m—x,

Thus the difference decreases and o(M,,) also, by (20a), becomes smaller. Thus, the mth
extremes have a more and more symmetric and peaked distribution as m increases.

Incidentally, this allows us to predict the statistics 7; and 7, introduced by Tremaine &
Richstone (1977) and studied by Geller & Postman (1983). Since these quantities are simply

o(M,)

_ 31
U (M) G1)
_ U(Mlz)
= (Mp)0.677 2

we can use (19)-(29) to determine them exactly for M; and M, chosen from statistical
distributions. We find

T,=1.282 (33)
T,=1.215. (34)
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Remarkably, both T, and T are independent of a. Thus, a test of the statistical hypothesis is
given by conformity of the observations of T; and T, with (33) and (34) and not just with 71 =1 ana
T,=1. This seems to be a more stringent condition than that set by Tremaine & Richstone (1977)
and used by Geller & Postman (1983) in their study of galaxy groups.

We now proceed in Sections 3 and 4 to determine whether or not the observed distributions
of first ranked galaxies in groups and clusters follow the functional forms predicted by
extreme value statistics. A good fit to these theoretical predictions would lend strong support
to the claim that first ranked galaxies are not speci‘al, whereas a failure to observe the extreme
value form in their distributions would imply that they are a special population of objects.

3 The brightest members of rich clusters

The data used for the analysis of first ranked cluster galaxies is from table 1 of Hoessel et al.
(1980, HGT). They give absolute visual intrinsic magnitudes for the brightest galaxies in a
complete sample of 116 nearby Abell clusters and their photometric data is self-consistent to
0.04mag. The mean absolute magnitude for this data set is (M;)=—22.68 mag with a
dispersion o(M;)=0.35 mag.

In Fig 1, we have plotted a histogram showing the magnitude distribution of these 116
galaxies. We compare this distribution of M; with the Fisher-Tippett form to test the
statistical hypothesis. Rewriting equation (11), combined with equation (15), we get

dpP 0.577 0.577
——=exp {a(Ml—-(M1>———)—€XP [G(Ml—(M1>“ )]} (35)
a

dM, a

The only free parameter in this equation is a. The value of (M;) is determined by the
observations. We have plotted equation (35) for three values of ‘a’ as shown in Fig. 1. The
constant a is a measure of the steepness of the luminosity function at the bright end of galaxy
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Figure 1. Histogram of frequencies of absolute intrinsic magnitudes, M, for 116 first ranked cluster galaxies
(Hoesell et al. 1980). The data has mean (M;)=—22.68 mag. The curves display the Fisher-Tippett extreme value
distributions (equation 35) for three values of a=1.8, 3.0, 3.5. The value a=1.8 is consistent with determinations
of the luminosity function at the bright end for rich clusters (see text for discussion).

t 1 It 1
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luminosities. A larger a corresponds to a steeper luminosity function and so a smaller
dispersion in the distribution of M;.

The value of a=1.8 used by Peebles (1968), which is also consistent with later
determinations of the luminosity function at the bright end for rich clusters (e.g. see fig. 2 of
Schechter 1976), clearly does not describe the distribution of M;. Peebles (1969) has pointed out
that since the luminosity functio. is not well determined at the bright end a larger value of a would
be consistent with observed dispersions in the value of My and the statistical hypothesis could not
be ruled out. Sandage (1976) comes to the conclusion that a value of a=5.5 is required to explain
another observation: the constancy of M; with cluster richness. In Fig. 1 we have shown therefore
two additional plots of equation (35) with a=3.0 and a=3.5. A y* test shows that all three curves
in Fig. 1 are inconsistent with the data at the 99 per cent confidence level. For larger values of a the
fit to the histogram gets even worse.

A Kolmogorov—Smirnov (K-S) test rejects a fit of the data by an extreme value distribution
of Fisher—Tippett type at the 99 per cent level for a<2 and at the 97 per cent level for a=2.

If, on the other hand, these galaxies were drawn from some standard mould we would
expect their luminosities (rather than their magnitudes) to be distributed as a Gaussian. This
would result in the following distribution function for the magnitudes,

. 0.92 (10~#—=(L))? 6
fMy)= o \/EeXp(—u) exp[————z 2 ] (36)
where

p=0.4(M,;—(My)) (37)

and (L) is the observed mean luminosity in units of L*=10"%%M? and g, is the dispersion in
the same units. The data give (L)=1.046 and 0;=0.32. In Fig. 2 the distribution (36) is plotted
on a smoothed histogram of the data, as in Fig. 1. The K-S test confirms the goodness of fit
and would reject it at only the 5 per cent level.

We have also tested the data of Schneider et al. (1983, SGH) who give values of M, M,
and M; for 83 intermediate distance Abell clusters to see if it fits expected extreme value
distributions. Applying the K-S test to the distribution of M; shows that an extreme value
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Figure 2. Smoothed histogram of the data displayed in Fig. 1. The curve illustrates the expected magnitude
distribution if the luminosities are Gaussian with the observed mean and dispersion.
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distribution with a=3.95 (best fit) is marginally consistent with the data, but a two-sample
K-S test shows that the SGH values for M; are also consistent with the HGT sample to a high
level of confidence. A K-S test rejects the hypothesis that the second ranked galaxies in the
SGH sample (M,) follow an extreme value distribution at the 95 per cent level around
a=2.75+0.3 and at more than 99 per cent for all other values of a. A two-sample test shows
that the distribution of M, is inconsistent with the HGT sample at more than 90 per cent
confidence.

A x? test rules out both M; and M, SGH distributions as following an extreme value
distribution, at least at the 95 per cent level for all a.

4 Brightest members of groups

The data for ‘loose’ groups was supplied by Geller & Postman (private communication), and
gives the distribution of M, for 24 groups. The redshifts for the galaxies in these groups were
obtained from the CfA catalogue, and are corrected for our Galaxy’s infall into Virgo. The
groups are a statistical subset from the catalogue of Geller & Huchra (1983) for which unique
infall solutions into Virgo could be obtained. A distance-limiting procedure was supplied to
avoid biasing M, (see Geller & Postman 1983). After these procedures, most first and second
ranked galaxies in these groups have 10 per cent photometry.

The histogram in Fig. 3 shows the distribution of absolute B(0) magnitudes for M, in the 24
groups. The histogram is compared to the Fisher-Tippett form given by (35). The observed
(M) is —19.88 (Geller & Postman, private communication) and is used to determine (M;) in
(35). A value of a=1.44 achieves the best K-S test fit of (35) with the data and is consistent
with the luminosity function for group galaxies (see Fig. 1 in Turner & Gott 1976). The K-S
test rejects the fit at only 8.6 per cent confidence (all values of a outside the range 0.7<a<2.6
are rejected with 90 per cent confidence). This test is preferred by us for the best fit to this
small data set because it does not depend on the binning of the data. A y? test shows that the
fit to (35) is consistent with the data being drawn from the parent distribution plotted by the
curve.

T T T T T T lt T T T T T

- GROUPS <My 4

No. OF GALAXIES
o~
T
U
1

| WYL
1 1 1 1

1 1
3 22 71 20 g 18
M, (ABS. B(o) MAGNITUDE)
Figure 3. Histogram of frequencies of absolute B(0) magnitudes (corrected for Virgo infall) for 24 first ranked
galaxies in groups. This data is a subset of the CfA group catalogue and are groups for which no M, bias is.

known and has mean (M;)=—19.89. Also shown is the best-fit Fisher-Tippett extreme value distribution with
a=1.44.
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Table 1. Comparison of theoretical extreme value parameters with data.

(My) o(M;) BM,y) (M) o(My2) T T,
(eqn 26) (eqn 27)

Extreme value

theory e 3
(eqn 35) - /a6 ps/o® 1/a 1/a /6 1/,0.677
for a=1.44 - 0.89 -1.14 0.69 0.69 1.282 1.215

Samples from Geller—Postman group data

Total (24)* —-19.885 1.02 -1.15 0.99 1.12 1.03 1.38
Excluding

possible

discrepant

group (23)* —19.767 0.86 —1.00 0.80 0.69 1.08 1.05

Groups with
= 5 members

15)* —-20.01 0.82 -1.38 0.75 0.68 1.21 1.10
Groups with
<5 members

(13)* -19.51 0.76 —0.64 1.06 0.71 0.72 0.81

* number of groups in sample

Table 1 shows the comparison of theoretical values for the dispersion o(M;), skewness (M),
(M), 0(Myy), Ty and T, [equations (16), (18), (25), (31) and (32) respectively], with the
observations. The first row in Table 1 gives the theoretical values for these quantities, the second
row the corresponding numerical values when a=1.44, (8, T, and T, are independent of a). The
third row of numbers gives the observed values for the full data set of the 24 first ranked galaxies.
The fourth row gives the same values when one of the groups has been removed from the total
sample. This group has an unusually large value for M, (5.29 mag). The chance of M, lying
between 5.0 and 5.5 mag in a sample of 24 galaxies with the observed extreme value distribution is
only 8x1073. Therefore, we feel justified in removing this possibility discrepant group from the
sample. The values of the statistical parameters, once this group has been removed, fit the theory
quite well. The best-fit extreme-value curve has a=1.50.

This data for M; is from groups of different sizes. Equation (35) is a valid first
approximation to the distribution of M;. The exact distribution would involve a convolution of
equation (35) with the group multiplicity function. This involves introducing two more
parameters (the ‘slope’ and characteristic M* for the multiplicity function used) and is not a
worthwhile exercise in view of our small data set. The freedom allowed is too great and a better
‘fit’ than obtained with equation (35) would not give us any further insight.

It is more instructive to check for the quantitative trends that we would expect if the first
ranked galaxies were indeed statistical extremes derived from a parent sample of varying size.
To check this in its simplest form we have divided the data of the 23 galaxies into two subsets.
Sample G1 of groups with =5 members and sample G2 of groups with <5 members. The
groups with 5 members are included in both samples as the division into these two subsamples
is quite arbitrary and chosen so as to get more or less equal numbers of data points in each
sample. When histograms of G1 and G2 are plotted they separate distinctly into two
distributions. The shift in (M,) has the right direction and the other statistical parameters
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shown in rows 5 and 6 of Table 1 for G1 and G2 respectively can be compared with the theory.
Furthermore, a K-S test shows that each subsample is consistent with an extreme value
distribution, with best fits obtained at a=1.78 for G1 and a=1.61 for G2. Levels of consistency of
these fits are as good as that for the total sample. The trend in the value of a, for the samples G1
and G2 individually and the composite sample (for which a=1.50) is also in the right direction
since we would expect the curve to get stretched and flattened due to the superposition of several
extreme value distributions displaced slightly from each other. Thus the best-fit values obtained
for a are all lower limits and a value of a=1.8 consistent also with the luminosity function of
galaxies seems consistent also with the distribution of M;.

Let us also quantify the shift in (M) when the size of the parent population from which M,
is drawn varies. Theoretically, for a larger parent sample with the same underlying
distribution (luminosity function in this case), equation (35) maintains its form but shifts
towards larger negative values of M; proportional to In N, where N is the number of members
in the parent sample. Thus if AM is the shift in (M) and the two distributions of M; come from
parent samples of size N; and N, then

1 M
AM=—In—. (38)
a N,
Thus the ratio of the sizes of the parent populations is given by exp(aAM). Taking as
representative the two largest groups of 248 members (Virgo) and 170 members (the third
largest group has 23 members) and the five smallest groups of three members each, we find
the following: (M)iargest=—21.64, (M)smanest=—19.31; therefore AM=2.33mag; for a=1.8
this corresponds to a ratio of 66 in the sizes of the two extreme parent populations. The actual
ratio in the number of members in the two samples is (248+170)/3=209/3=69.
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Figure 4. Histogram of frequency of M,=M,—M, for the 24 groups in the data set of Fig. 3 (excluding one point

at M,=5.29 which lies outside the frame and involves the brightest galaxy, M;=-22.68 in Fig." 3. The
continuous curve is the Fisher—-Tippett asymptote for a=1.44 corresponding to the M; extreme curve of Fig. 3.
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We also compared the observed distribution of M;; for groups with the exponential form
predicted by the extreme value statistic, (23), which is

f(M12)=144 exp(—1.44 Ml?,)- (39)

This is plotted on the data in Fig. 4.

We conclude that the brightest members of groups are consistent with having been drawn
from the extreme end of a statistical distribution of galaxies. The fact that first ranked group
members are consistent with a statistical hypothesis makes them useful as distance estimators
as suggested by Schechter & Press (1976).

5 Conclusions

The distribution of extremes of a large number of subsamples drawn from a single population
has, in general, a universal asymptotic probability distribution which is independent of the
underlying population. Using this result we have investigated whether the first ranked members
of galaxy clusters and groups possess these predicted universal distributions. The distributions are
uniquely specified by the mean value of the brightest members and are positively skewed.

The distribution of magnitudes of first ranked galaxies in clusters rules out the hypothesis
that they are the extremes of a statistical distribution at 95-99 per cent confidence (depending
on the slope of the luminosity function). Even if the slope of the luminosity function increases
at the bright end, as suggested by Peebles (1969), the distribution of M, is inconsistent with a
statistical hypothesis, as is the distribution of M,. The magnitudes of first ranked cluster
galaxies (Hoessel et al. 1980) are consistent with having been drawn from a Gaussian
distribution of luminosities with a dispersion equal to 0.32 of the mean luminosity. The first
ranked members of groups are found to be consistent with the hypothesis that they are
extreme members of a statistical population of galaxies. Our results are derived using B(0)
magnitudes; [for a discussion of possible colour-dependent biases see Geller & Postman
(1983)]. We also find that the distribution of My, in groups follow the predicted universal
extreme value distribution.

These results support the idea that first ranked cluster members are an independent
population of objects or have been influenced by evolutionary effects like mergers and weigh
strongly against the claim that they are statistical extremes. In contrast, they support the
hypothesis that the first and second ranked galaxies of the loose groups we studied are simply
statistical extremes and have not been strongly influenced by evolution or cannibalism.
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