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SUMMARY

Time-dependent models of collisionless stellar systems with harmonic potentials
allowing for an essentially exact analytic description have recently been described.
These include oscillating spheres and spheroids. This paper extends the analysis to
time-dependent elliptic discs. Although restricted to two space dimensions, the
systems are richer in that their parameters form a 10-dimensional phase space (in
contrast to six for the earlier models). Apart from total energy and angular
momentum, two additional conserved quantities emerge naturally. These can be
chosen as the areas of extremal sections of the ellipsoidal region of phase space
occupied by the system (their product gives the conserved volume). The present
paper describes the construction of these models. An application to a tidal encounter
is given which allows one to go beyond the impulse approximation and demonstrates
the effects of rotation of the perturbed system on energy and angular-momentum
transfer. The angular-momentum transfer is shown to scale inversely as the cube of
the encounter velocity for an initial configuration of the perturbed galaxy with zero

quadrupole moment.

1 INTRODUCTION

Collisionless stellar systems are modelled by the collisionless
Boltzmann equation (CBE) whose time-independent solu-
tions are relatively well explored (e.g. the text by Binney &
Tremaine 1987, hereafter BT ), but time-dependent behaviour
is less well understood. Large-scale numerical experiments
have recently been carried out (e.g. Barnes 1989). It is pos-
sible that exact analytical solutions have some role to play in
understanding the time-dependent behaviour of stellar
systems and this paper is concerned with these. An early
solution, due to Kalnajs (1973), describes a slab of uniform
density executing homologous oscillations. Sridhar (1989)
rederived this solution using constants of motion for time-
dependent harmonic oscillators discussed by Lewis (1968).
This method allowed the construction of uniform density
oscillating spheres (Sridhar 1989) and also spheroids (Sridhar
& Nityananda 1989, hereafter SN) with interesting coupled
dynamics for the two independent axes. The equations
governing the parameters of the spheres and spheroids had
earlier been obtained from the virial theorem by Chandra-
sekhar & Elbert (1972) and Som Sunder & Kochhar (1986),
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respectively, but only on presupposing the existence of an
underlying distribution function realizing the assumption of
homologous oscillations.

This paper presents a model planar stellar system which is
the logical time-dependent generalization of a static elliptic
disc described by Freeman (1966) and is hence termed a
generalized Freeman disc (GFD). A simple generalization
would be along the lines suggested in SN and would give a
disc with a and b varying in magnitude but fixed in direction.
The model described in Section 2 of this paper is more
general because, in addition, the directions of the principal
axes change with time and the mean velocity field has
internal circulation. This is, of course, remniscent of
Freeman’s (1966) analytic bars which are in fact a particular
case stationary in a rotating frame. Section 2 also gives the
detailed equations governing the time evolution of the 10
parameters which describe a GFD of a given mass. These
parameters can be chosen as the 10 averages of products of
phase-space variables, e.g. x7, ;v_y etc. The general structure
of the equations requires a quadratic potential which can
include both the self-consistent potential of the disc and any
external potential due to a perturber in the lowest tidal
approximation. Even with the external time-dependent and
non-axisymmetric potential, there are two conserved
quantities. One is related to Liouville’s theorem (invariant
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phase volumes) and the other to Poincaré’s invariant (a suit-
ably defined area of a closed curve in phase space). Section 3
is a brief discussion of these general properties.

Section 4 sets up the problem of a GFD undergoing a tidal
encounter. A point-mass perturber is chosen for simplicity.
Explicit formulae for energy transfer in the impulse approxi-
mation are derived. These are compared with numerical
integrations of the exact equations in Section 5. The
behaviour of co- and counter-rotating systems is drastically
different. Angular-momentum transfer which is zero in the
impulse approximation can be explicitly calculated. The
numerical scheme used is described in the Appendix.

2 KINEMATICS AND DYNAMICS OF A
GENERALIZED FREEMAN DISC (GFD)

We define a GFD by the following distribution function:
f=fl-0"12 for I<1

(1)
=0 for I>1.

The quantity [ is a positive definite quadratic form in the
four phase-space variables which we compress into a column
vector for convenience:

z=(x,y,v,,0,)". (2)

We write [ in terms of the associated real symmetric 4 x 4
matrix Q:

1=3Q,zz;=2"Qz. (3)

Essentially, the stars occupy an ellipsoidal region of phase
space with level surfaces of the phase density on concentric
similar ellipsoids. This projects down to an ellipse on the x-y
plane. In what follows, we will need the phase-space averages
of products like z;z;, since the energy, angular momentum
and shape in real space can all be expressed in terms of these..
A straightforward calculation shows that these second-order
moments are directly given by the elements of P, the matrix
inverse to Q:

Z?j=ﬁl4jfo(1 —1)7'Pz,z;dz=1% P,
One can also choose the 10 parameters differently to bring
out their physical meaning. The shape clearly requires three
parameters (major axis, minor axis, orientation), while the
streaming motions require four parameters (two components
of shear, expansion, and rotation). The peculiar velocities are
again described in terms of three parameters defining an
ellipse in velocity space.

The real space-surface density Z(x, y) is obtained by inte-
grating out the velocities and takes the form

2(x,y)=Z(1-q)"?, (4)

where g is a positive definite quadratic form in x and y. The
density is constant on the ellipses g =constant (< 1), and in a
suitable coordinate system could be written as

IM . yz 12
2x,y)= 1l-——=-=] , 5
(x,y) Znab( pE bz) (5)

with M the total mass and axes a and b. The models given by
Freeman have distribution functions which are particular

cases of (1) and surface density (5), justifying the term GFD.
The corresponding potential is quadratic in x and y within
the ellipse and in the plane (the only region occupied by the
stars)

@(x,y)=% A2x2+§ B2y2, (6)

The force constants A2 and B? are expressed in terms of the
axis ratio parametrized by

k2=1-b2/a? (7)
A= 3(k) - (k) @
a
22 36M (1 -2
= 2R LK) ~(1 =k F(k). (9

E and F denote the two kinds of complete elliptic integrals
defined by

/2
E(k)=J (1-kZ%sin’n) 2 dy (10)
(

2
F(k)=J (1—k?%sin’n)" 2 dy. (11)

In a general coordinate system making an angle @ to the
principal axes, the potential takes the form

@(x,y)=1 ax’+ Bxy+1 yy?, (12)
with

a=A?%cos?0+ B?sin%6

B=(A?—B?)sin 8 cos (13)

y =A?sin?6 + B2 cos?6.

The angle 6 and the axes a and b are easily expressed in
terms of moments x2, xy and y?, i.e. P,,, P,, and P,,,

tan 20=2P,/(P, — P,)
a?=P, cos*@+P,,sin 20+ P,, sin’0
b2=P,, sin’0— P, sin 20+ P,, cos?6.

The accelerations are then given by

o)t 2L =

where the real symmetric restoring force matrix F has been
defined for convenience.

Combining (14) with % =v,, y=uv,, we get the following
matrix form for the equations of motion of a star

dz
—_— KZ,
dt (15)
where
0 1
K= .
2 (16)
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We have written K in terms of 2 X 2 blocks and the restoring
force F is given by (7)—(13).

Coming back to the original distribution function (1), it is
necessary that fand hence / be invariant along phase trajec-
tories (Jeans’ theorem) so that the CBE is satisfied. We
regard the elements of the matrix Q as functions of time, with
evolution so chosen that [ is invariant. This gives the
condition

dl dQ;
E:Z dt/z,.zj+2 QK22+ Q;K;2,2; (17)
ij il
=0
for all z.

We therefore have the matrix equation

da
—=-K'Q-0K. 18
& (18)

Multiplying on both left and right by Q~!, we get the equi-
valent equations for P:

dP
— ~KP+PKT. (19)

Like the original CBE, (19) is non-linear because of self-con-
sistency, since K contains F which depends on P. The appli-
cation to a tidal encounter given in the Section 4 requires the
addition of more terms to the force matrix F but does not
otherwise change the argument just given. The GFD remains
a GFD with parameters evolving according to (19).

3 SOME GENERAL PROPERTIES

As is clear from equation (15), the phase space variables
undergo a linear transformation for infinitesimal and hence
also finite time steps. This transformation is also canonical
since it is generated by Hamilton’s equations:

z(t) =5(¢) z(0). (20)

(The notions of classical mechanics used in this section are
discussed in detail in several textbooks, e.g. Arnold 1978.)
One way of characterizing such transformations is that they
preserve the following ‘Poincare integral’ taken around a
closed curve J=[Z,p,dq,. An equivalent statement for linear
transformations is that the matrix S must be symplectic, i.e.
must satisfy the property

ST8S=4, (21)
where

0 1
p- (_1 o) (22)

in 2 X 2 block form. The change in the matrix Q (or P) in a
finite time required to keep I invariant is easily worked out,
using I =270z

Q(r)=S7"1(£)Q(0) S~ !(¢) (23)
P(t)=8(¢) P(0)ST(¢). (24)

Since S has 10 parameters (in four variables) and so does Q,
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it might appear from (23) that one could reach any Q(¢) from
a given Q(0) by applying a suitable symplectic transformation
S(¢). This is not true because there are two conserved
quantities C; and C, as can be verified using equations
(21)-(24):

C,=Tr(QB)?
C,=TrQp)*

Higher even powers do not give independent quantities in
four dimensions (by the Cayley-Hamilton theorem). These
two conserved quantities can be interpreted geometrically.
The boundary of the occupied region in phase space is an
ellipsoid which remains one under the linear transformations
of phase-space generated by a quadratic potential (self-
generated plus external). The volume of this ellipsoid is con-
served. In addition, the ‘area’ of any plane section [strictly
speaking the sum of areas projected on to the x-v, and y-v,
planes - see the expression J between equations (20) and
(21)] is conserved. As an alternative to the constants C,
and C,, one could choose the areas of two extremal plane
sections of the ellipsoid whose product is proportional to the
volume. We now have the 10-dimensional GFD space
divided into eight-dimensional regions labelled by C, and
C,. Within each such region, it is possible to define Poisson
brackets and write the equation of motion for P in a
Hamiltonian form. One can further exploit energy and
angular-momentum conservation (if there are no external
potentials). The Hamiltonian form does guarantee that the
solutions for P cannot show relaxing behaviour. Static
models are fixed points of this Hamiltonian while Freeman’s
analytic bars correspond to closed periodic orbits. The
behaviour of an isolated GFD is an interesting topic in its
own right to which we hope to return elsewhere. In this
paper, we discuss the specific case of a tidal encounter.

(25)

4 INCLUDING THE TIDAL FIELD OF A
PERTURBER

We recall (12) that the internal gravitational potential of a
GFD can be written as

@(x,y,1) =§ X+ ﬁxy% y2,

where a, § and y are time-dependent.
From (13) and (14),

(5 )

a=A?cos?’0+ B?sin’0
B=(A?~B?)sin 6 cos 0
y=A?sin?6 + B? cos?6.

A (perturbing) galaxy moving in the plane of the GFD exerts
tidal forces on it. When the variation of this tidal force over
the size of the GFD can be well represented by the first-
order tidal approximation, we note that the addition of these
tidal forces to the self-gravity of the GFD preserves the
linearity of the equations of motion (15). All we need to do is
to add the ‘strengths’ of the time-dependent tidal force to a,
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B and y. The perturber could be the extended halo of
another galaxy which is assumed to have a rigid density dis-
tribution, or it could be another GFD whose structure itself
could be time-varying and coupled to the original GFD. Or
again, for simplicity, the perturber could be a point mass
moving in the plane of the GFD. In any case, the relative
motion between the perturber and the GFD is determined by

acceleration of the acceleration of the
R=| centre of mass of the |—| centre of mass of the |, 26)
perturber by the GFD GFD by the perturber

where R is the separation between the centres of the
perturber and the GFD. We note that (26) contains the back
reaction of the GFD on the orbital motion and allows for
energy and angular-momentum transfer from the orbital
motions of the GFD and the perturber to the internal
motions of stars within the GFD.

In particular, for a point-mass perturber, the addition of its
tidal field changes

_ o ﬂ " (1, ﬂl\)

F_(ﬁ y) tof (ﬂ' v/ 27)
where

a’=a—GM2[3(—I;—'§—)2~—%},

ﬁ'=ﬂ—3GMz[(—W], (28)
y'=r- GMz[i(I;Ty)—%].

The force exerted by the GFD on the point mass depends on
the instantaneous shape, size and orientation of the GFD.
However, to first order in (size/R), this force depends only
on the position of the centre of mass of the GFD. So we write

. GM,+M
R=- _(1_3_i) R, (29)
R
. . [size of GFD
where corrections are second order in —;2—_ .

5 PRELIMINARY NUMERICAL STUDIES

We study the response of a GFD to a point mass moving in
its plane by numerically integrating (19):

P=KP+PK'.
K' now is given by
0 1
K'= , , 30
e (30)

where F’, which includes both the self-gravity of the GFD
and the tidal force of the point mass, is given in (28). The
motion of the point mass is governed by (29).

The formalism allows for cases in which the perturber
moves along elliptic or circular trajectories around the GFD.
In this preliminary study we shall, however, only consider
cases when it describes a hyperbola. At time =0 we keep the
point mass far away [R(0)> 50 X GFD size] from the GFD
and choose the GFD itself to be a Kalnajs’ disc. This is a
circular disc in which the ratio of rotational to pressure sup-
port can be varied. Let us recall the form of the phase-space
distribution function of the Kalnajs’ disc (BT),

B 3M
Fy(E, LJ‘L::Z&(Q%-QZJ[I i

= M 1+
Axa Q- Q%)

Using

v\ _ cos B sinf (v, (32)
Uy —sin@ cos6f\v,

in (31), we can immediately write down the matrix Qy as

2AQL,-E)|'"?
a’(Q- Q%)

(2Qrv,—vi—v:— QL) |12 (31)
a’(Q- Q%)

1 Q1 Qr
Q =—5—5—5 , 33
K az(Qg—Qz)(—QJ 1 ) (33)
where
10 0 -1
1= df= : 4
(0 1)an I (1 0) (34)
We can easily invert Qy to get P, =Qg '
2 2
a1 -Qa'f
P.= . 35
K (QaZJ an{/) (35)

Let the point-mass perturber pass by with a distance of
closest approach=s(> a) where its speed is v. Before we
describe our results in the next section let us see what the
impulse +tidal approximation predicts for the changes in
energy and angular momentum of the disc.

5.1 Predictions of the impulse + tidal approximations

When the perturber moves so fast that the encounter time is
significantly smaller than the orbital times for stars within a
galaxy, the impulse approximation (Spitzer 1958) can be
used to estimate changes in gross quantities like energy and
angular momentum of the perturbed galaxy. Further, when
the tidal field of the perturber can be well represented by the
first-order tidal approximation, one obtains a simple and
useful expression for the impulse given to a star at position r
from the centre of the perturbed system (impulse,
Av = change in velocity relative to the perturbed galaxy).

Within the impulse approximation it is consistent to
assume that the perturber moves in a straight line:

R(¢)=(s,vt,0). (36)
Then (see, e.g. BT),

(x,0, —2) (37)
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from which the energy and angular momentum gained by the
disc (which is described by the distribution function in equa-
tion 31) can be computed. The energy change of the Kalnajs’
disc is

2G° MM, —
AE‘imp= S4U§ l rZ’ (38)
while the angular momentum of the disc remains unchanged
in this approximation:

AL;p,=0. (39)

The total energy of the undisturbed Kalnajs’ disc is

M
E= —g Q%az. (40)

Defining dynamical time for the unperturbed disc= f,,=
1/Q, and encounter time=t, =sf/v, we can write the
fractional energy transfer as

2 2 6
Ry
| E | 97[ M disc tdyn $

These are the results in the impulse approximation, which
can be compared to the exact calculation for this model
described below.

At t=0 the system was chosen to be a Kalnajs’ disc of unit
mass and radius. The gravitational constant, G, was set equal
to unity in all cases. Then Q2=37/4 and the only free disc
parameter is €, the angular-rotation velocity. The kinetic and
potential energies of the disc do not depend on Q:

kinetic energy = T=37/20,

. (42)
potential energy W= —2T= —37/10,
while the angular momentum (L ) is proportional to :
2Q
=—. 43
5 (43)

The perturber was chosen to be a point mass with mass
M,=2000. It was set on a (Keplerian) hyperbolic trajectory
with a distance of closest approach, s=20. Since the
perturber is on a hyperbolic trajectory, there is a certain
maximum angle, ¢_.., which its asymptotic velocity at = o
makes with the line joining the centre of the disc and the
point of closest approach:

1
eccentricity

¢max=cosﬁl( ); ¢max>n/2 (44)

for an unbounded orbit.

At t=0, the perturber was chosen to be at (—0.9¢,.,,).
The speed at closest approach was varied from its minimum
allowed value (v,,,=[2G(M, + M,)/s]'> = 14.14) - for para-
bolic orbits - to quite large values. The response of the disc
was monitored by solving (30) numerically for a period of
time in which the perturber moved from ¢=-09¢_,, to
¢=+0.94¢,... The program that solves (30) numerically is
described in the Appendix where now the tidal field of the
perturber is also included.

We have performed numerical experiments for the cases
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Q= +0.5,0 and —0.5. While the behaviour of the disc itself
is an interesting problem that remains to be understood, we
discuss here only the energy and angular-momentum
changes. Using equations (40) and (41) we note that the
(impulse plus tidal) approximation predicts

AE; 1

== = (.0225158( (45a)
|E| T

AL,,,=0, (45b)

where

T= tdyn/tenr::U/SQO (45C)

is a dimensionless measure of v.

5.2 Energy and angular momentum transfer

Fig. 1 shows the results for the fractional energy transfer as a
function of the parameter 7 for three values of the angular
velocity @=0.5, 0, —0.5. The ordinate Y (plotted on a log
scale) has been defined as follows:

=I?I T2 (46)

The impulse approximation would predict
Y=Y,,,=0.022 5158 for all =. The curves thus give a clear
idea of deviations from impulsive behaviour. The parameter
7 ranges from its minimum value 7,;, corresponding to a par-
abolic orbit 7, = v,,;,/s2,=0.4608 to about 2.5. It is clear
that the results approach Y, for fast encounters, i.e. with

Y
10"
B Q=-05
Yimp =0.0225
152 l ! | | |
0.40 062 1 1.6 2.56
T

Figure 1. Deviations from the impulse approximation measured by
Y (equation 46) as a function of the encounter speed measured by t
(equation 45c¢) for three Kalnajs’ discs with angular velocities
Q=0.5, 0, —0.5. Note the line corresponding to disruption, i.e.
AE/|E|=1, and the impulse limit Y, =0.022 515 8.

© Royal Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1990MNRAS.245..713S

718 . Sridhar and R. Nityananda

increasing 7. This is confirmed by simulations (not shown in
Fig. 1) for much larger values of 7. The energy transfer is
largest in the corotating case Q= +0.5, and in fact
approaches the case of disruption AE /| E| =1 for the slowest
encounters (7~ 0.5). Even in this case, a check of parameters
of the GFD confirms that the tidal approximation is still
* valid. The energy transfer in the counter-rotating case
Q= —0.5 remains small and even goes below Y; . This can
be understood in qualitative terms - the tidal field of the
perturber follows a good fraction of the stellar orbits only in
the corotating case. The Q =0 case is intermediate.

It should be mentioned that an isolated GFD showed
energy and angular-momentum changes of less than 1074,
showing that the numerical scheme was adequate. Another
satisfying check was that the bar instability discussed by
Kalnajs (1972) was shown in the simulations at around
Q=0.75 as expected (in fact the non-linear behaviour can be
followed in this case). Fig. 2 shows the angular-momentum
transfer as a function of 7 in the same three cases, Q2 =0.5, 0,
—0.5. As before, the effects are largest in the co-rotating
case, reaching AL of the same order as L (=0.2 for Q =0.5).
The rather rapid onset of strong energy and angular-momen-
tum transfer as the encounter becomes slower, reflects the
increasing responsiveness of an already distended and elon-
gated disc to further tidal forces/torques. This non-linear
feedback effect (within the tidal approximation) is included
self-consistently in the treatment given here and is illustrated
in Fig. 3. The approximate 7~ behaviour at large 7 of the
angular-momentum transfer AL (Fig. 2) is rather striking.

[TOROMIRAS 745, “T135

__) ﬂ
10
ALF
-2
10 —
10"3 | ] | ] ] 1 1 1 |
0.40 0.62 1 1.6 2.56

T

Figure 2. Angular-momentum transfer AL as a function of en-
counter speed 7 for the same three cases as in Fig. 1. Note the
approximate 7~ 3 decrease.

X ] X
Figure 3. Variation of the galaxy shape during a strong encounter
leading to disruption. The dimensions of the galaxy relative to those

of its orbit have been exaggerated by a factor of 10. The parameters
are 7=0.49(v =5 at infinity), 2 =0.5.

The following argument suggests that it is not unexpected.
The impulse approximation neglects the movement of the
stars during the encounter. Denoting the accelerations
caused by the perturber by a, these displacements are of
order at?,.. (The larger displacements vAr caused by the
unperturbed motions in the galaxy do not change its distribu-
tion function and can be ignored.) The perturbing torques act
on this distortion for a time ¢,,, giving AL ~ £3 ., ie. 77°.

6 DISCUSSION

In a different context, Subramanian (1989) considered the
response of a maximally rotating Kalnajs’ disc to the tidal
field of a perturber (in the first-order tidal approximation)
moving in its plane. The disc itself was assumed to be
embedded in a rigid, homogeneous spherical halo. Such a
halo introduces an additional potential ¢, =3Q%x2+y?)
which can be incorporated in the formalism we have used to
describe GFDs. The Kalnajs’ disc problem studied by
Subramanian turns out to be a particular cold case of the
interactions of GFDs discussed in this paper.

Palmer & Papaloizou (1982) studied the effect of a slow
encounter on a rotating disc in an approximation that went
beyond the impulse approximation, but one which neglected
the changes in the self-gravity of the disc during the en-
counter. The present work goes beyond their analysis in that
the fully self-consistent response of the GFD is retained,
although we are restricted to harmonic potentials.

The formalism we have set up allows a wide range of in-
teresting situations which are yet to be explored in full.
Energy and angular-momentum transfer, heating, and disrup-
tion of a model galaxy by an encounter, can be studied. It
should be mentioned that theie is no post-encounter relaxa-
tion in this model. A more realistic model would presumably
relax. However, some aspects of encounters involve behavi-
our on at most a few dynamical time-scales and we are opti-
mistic that the model described in this paper will prove to be
a useful guide to the behaviour of more realistic systems. For
example, features like the range of validity of the impulse
approximation, the nature and size of the corrections to it,
and their scaling with encounter speed are likely to be robust.

The present models, being based on a harmonic potential,
are characterized by a single time-scale that might make
them exceptionally susceptible to disruption by tidal forces.
More realistic models have a range of orbital time-scales
present and, in these, only some orbits may undergo violent
perturbations in a given encounter. This must be borne in
mind when assessing the implications of the results presented
in this paper.
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APPENDIX: NUMERICAL SCHEME USED FOR
GFDs

We outline the basic features of the numerical scheme used
to solve equation (19) self-consistency. We recall that

P=KP+PK7, (A1)
where
1
K=( 0 ) (A2)
-F 0

F is the 2x 2 matrix given by equations (13) and (14). F
depends on P, P,,, P,, and this is what makes (A1) non-
linear and self-consistent. When (A1) is to be solved numeri-
cally, one has to use a finite difference scheme. We use the
‘finite’ version of the evolution equations as given in (24)

P(1,)=8P(1,) ST, (A3)
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instead of writing down a naive finite difference approxima-
tion to (A1) itself. The advantage of evolving by (A3) is that
symplectic properties (like conservation of C;, C,) are auto-
matically preserved up to machine accuracy. S is that
symplectic matrix which takes z(¢,) to z(¢,):

z(t,)=Sx(1)). (A4)

This is just the evolution equation (in finite difference form)
for two coupled harmonic oscillations. A simple leap-frog
scheme (update coordinates and then momenta with forces
computed from the new coordinates) will guarantee pre-
servation of the symplectic nature of the equations as well as
numerical accuracy to second order in Az. The matrix that
updates coordinates is

1 AA

S, = : (AS)
01
while the matrix that updates momenta is
0

s=| . (A6)

—AF 1
We write

1 N
~A— ~A

$=8,,,,S,S,...5,8,)8,,, (A7)

where the time interval (¢, —¢,) has been subdivided into N
equal intervals,

At=(t,—1,)/N. (A7)

S,,, and S, are the updates over times At/2; this is
required by any leap-frog scheme. Since we are dealing with
a self-consistent problem, S, at each stage is calculated from
the current value of P.

The addition of the tidal field of a perturber just adds
terms to F and the whole scheme outlined above goes
through.
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