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This article gives an introduction to the princi-
ples of small angle scattering. Some applications
of this technique are also briefly discussed.

Introduction

Small angle X-ray scattering (SAXS) is a widely used
technique to study large scale inhomogeneities in a med-
ium, at length scales much larger than the wavelength
of the X-rays. Such inhomogeneities arise, for example,
when particles or macromolecules are dispersed in a sol-
vent, and from clusters of defects or impurity atoms in a
solid. Although SAXS studies began in the 1930s, in the
early days it was limited to a few laboratories because of
the specialized equipment required (Boz 1). The advent
of powerful synchrotron X-ray sources in recent decades
has made this technique available to a much larger scien-
tific community (Boz 2). It has been put to a variety of
uses, such as, measurement of sizes of particles dispersed
in a solvent, investigation of the structure and conforma-
tional changes of biological macromolecules, determina-
tion of interaction parameters in fluids, and estimation
of internal surface area of porous materials.

SAXS differs from conventional crystallography in the
methods of analysis used and the kind of information
sought. The diffraction pattern of a crystalline material

. consists of a set of sharp peaks, whose positions are given

by the Bragg’s law, and the objective is to obtain the
structure of the material with atomic resolution. On the
other hand, there are no sharp Bragg peaks in SAXS,
and only an intensity profile smoothly varying with the
scattering angle is obtained. The objective is typically
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Box 1. The Kratky Camera
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Specialized equipment is required to study SAXS, where the incident X-ray beam is very

' narrow and sharp. This results in very low X-ray intensities and hence data have to be

| collected over a long time, typically many hours with a laboratory source. The simplest .

" setup consists of two or three sets of slits to collimate the X-ray beam. In the widely
used Kratky camera the collimation is achieved with metal blocks, which results in a

1 narrow beam with an asymmetric intensity profile. On one side the intensity drops down

sharply and data can be collected at very small angles (of the order of 0.02°) close to the

Figure A. Schematic of the
Kratky camera. S is the
source of X-rays, and B1,
B2, B3 are the metal blocks.
Note the asymmetric inten-
sity profile of the beam (I) at
the detector plane (D).

to get the size and shape of the inhomogeneities in the
material at length scales much larger than the X-ray
wavelength, and in some cases to determine their fluid-
like organization.

In order to understand the origin of small angle scatter-
ing let us consider scattering from a particle of radius
R. X-rays are scattered by the electrons in the particle.
In the forward direction all of them scatter in phase, re-
; sulting in maximum intensity (Figure 1). As we move
| to larger scattering angles (26) there is some degree of

[

Figure 1. Scattering of a
plane wave by a collection
o_fpoint scatterers. f’o and
X are the wavevectors of

“the incident and scattered

waves, respectively.
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Box 2. Synchrotron X-ray Sources

Early synchrotron sources were particle accelerators built by high energy physicists, where
the synchrotron radiation was an unwanted byproduct. Later ones were constructed
exclusively as sources of radiation. They are based on the principle that an accelerated
charged particle, such as an electron, emits radiation. In a synchrotron, electrons or
positrons are made to circulate at relativistic speeds in a storage ring, whose diameter is
typically of the order of 100 m, by using a series of so-called bending magnets. This ring
contains some straight segments where an insertion device, such as undulator, is placed.
The undulator comsists of an array of magnets, which forces the particles to execute
small amplitude oscillations in the horizontal plane, which produces the intense beam
of radiation. A monochromator is used to select radiation of a particular wavelength,
which is then focused on the sample. Latest generation of synchrotrons produce very
intense pulsed beams of X-rays, which are about 10'2? times more brilliant than the ones
obtained with laboratory sources. '

“¥. Synchrotron
/1, storageTing

Figure B. Schematic of a
third generation synchro-
tron X-ray source. Typical
dimensions are indicated.

destructive interference between the waves scattered from
-different points in the particle and the intensity de-
creases. We would expect the intensity to be very small
when the path difference between the waves scattered
from the two extreme points in the particle is of the
order of the wavelength A\. This would happen at an
angle 20 ~ A/R. Therefore, it is clear that small angle
scattering occurs for particles whose size is very much
larger than the wavelength. However, if it is extremely
large, the scattering is confined to exceedingly small an-
gles and will not be accessible experimentally. Typical
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length scales probed with SAXS are in the 1-100 nm
range, using X-rays of wavelength of the order of 0.1 nm.
From the above relation it would appear advantageous
to use X-rays of very high wavelength, but their much
higher absorption by matter makes them unsuitable.

Since X-rays are scattered by the electrons in a material,
the scattered intensity depends on its electron density
p(7), which gives the number of electrons per unit vol-
ume at each point in the material. p(7) is a spatially
varying function at length scales comparable to inter-
atomic separations, reflecting the atomic structure of
the material. However, in SAXS we are interested in
much larger length scales and these short length scale
fluctuations in p(7) are irrelevant, and we can take it to
be a smooth function of 7. The amplitude of the scat-
tered wave is then proportional to the Fourier transform

of p(7) (see Boz 3), i.e.,

Small angle X-ray
scatteering is
produced by ™
inhomogeneities in
the electron density
of a material at
length scales much
larger than the X-ray
wavelength.

Box 3. Scattering by a Collection of Particles

Consider a plane electromagnetic wave, ¢; = ¢, e:cp(ik—; -7) incident on a point scatterer
placed at the origin (Figure 1). The scattered radiation is spherically symmetric and its
amplitude at the observation point R is given by ¢, = (¢, .a/R) exp(ikR), where a is the
scattering strength of the point scatterer. If the point is at a distance 7 from the origin
a phase difference of (k — ko) - 7 has to be introduced, and the amplitude of the scattered
wave is ¢ = (¢o a/R) exp(ikR)exp(—iq - 7), where ¢ = k — k, is the-scattering vector.
If there are N scatterers at positions 7; (i=1,2,..N) the total scattered amplitude is

N
‘¢s = (o a/R) exp(ikR) Zemp(—icf- ). (1)

i=1

If we want to treat the scattering medium as a continuum, instead of a collection of
distinct point scatterers, we can introduce the density function p(7) = _ §(7—73), which
consists of delta functions at the positions of the scatterers. Then the scattered amplitude
can be written as the Fourier transform of the density function

s -k [ " p(Peap(~iq- F)dF, (2)

Where K = (¢, a/R)exp(ikR).
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A(Q) = K/ p(F) exp(—iq - 7)dr, (1)

where the scattering vector § = k— 15;, k, and k be-
ing the wavevectors of the incident and scattered waves,
respectively. K is a g-independent factor depending on
the details of the experimental set-up. The scattering
is elastic, so that |k| = |k,|. In terms of the scattering
angle 26 (the angle between k and ko) the magnitude of
q is given by ¢ = (4n/A\)sind. In principle, if we know

A(q), which is in general a complex function, we can ob-.

tain p(7) by inverting the above relation, and thus get
the structure of the material. However, the intensity of
the scattered wave I(q) = |A(3)|?, and hence only the
magnitude of A can be obtained from the experiment.
Therefore, the phase information that is lost has to be
restored in some way before the structure can be deter-

‘mined. In SAXS studies this problem is often circum-
vented by using a model for p(7) with a few adjustable -

parameters that describe the unknown features of the
system. The scattered intensity is calculated from the
model using (1) and the values of the model parame-
ters are adjusted to get the best fit with the observed
intensity. If a good fit can be obtained the model can
be taken to be a fairly accurate representation of the
electron density of the material.

Scattering by a Particle

Let us now discuss SAXS by taking a simple example
of a colloidal particle of uniform electron density p,,
suspended in a solvent of electron density p,. For a
spherical particle of radius R the electron den31ty can
be written as

p(r) = poy T<R _ (2)
= 0, »r>R.

The internal structure of the particles leads to diffrac-
tion peaks (sharp or broad, depending on whether it is

28

W : RESONANCE | June 2005




GENERAL | ARTICLE

crystalline or amorphous, respectively) at large angles,
since the typical interatomic distances are comparable
to the wavelength of X-rays. For the scattering at small
angles p(7) in (1) has to be replaced by p(7) — ps, as
only the contrast between the particle and the solvent
can lead to a non-zero scattered intensity. In a dilute so-
lution different particles scatter independently and the
total scattered intensity is just the sum of those scat-
tered by each particle, i.e.,

I(7) = nK*P(q)

=i | [“4otr) = .} con(-iq-Aar] (3

where 7 is the number density of particles and the form
factor P(q) represents the scattering from one particle.

As mentioned earlier, p() can be obtained from a de-
tailed analysis of the observed intensity /(7). However,
certain features of the particles can be obtained directly
from the scattering data. Some of these are discussed
below.

Mass of the Particle: In the limit of ¢ — 0, (3)
reduces to I(0) = nK?[v(p,—ps)]?, where v is the volume
of the particle. In terms of the mass m of the particle
and the mass concentration ¢ of the solution, the above
relation can be written as, I1(0) = K [u(p, — ps)]*mcV,
where u is its volume per unit mass and V' the volume
of the solution. The factor K can be determined using a
standard scatterer. Hence if the electron density of the
particles is known, their mass can be estimated.

Radius of Gyration: The radius of gyration R, of a
particle is defined as '

¢ fop(r)dv
where v is the volume of the particle. It can be shown
that at very small ¢, I(q) « exp(—R, ¢*/3). This re-
lation is known as the Guinier law and is, in general,

The decay in the
scattered intensity
in the low-q limit is
described by the
Guinier law.
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Figure 2. Calculated scat-
tered intensity from a
sphere of 20 nmradius (dot-
tedline), acylinderoflength
100 nm and radius 2 nm
(dashed line), and from a
disc of radius 100 nm and
thickness 1 nm (solid line).
Note the quadratic decay
of log(l) at small q in all the
three cases, as predicted
by the Guinier law.

___________

log(l) {arb. units]

1 L L 1
0 0.2 0.4 0.6 0.8
alt/nm]

valid for ¢ << R;'. R, can be related to the geometric
parameters of the particle. For example, for a spherical
particle of radius R, R? = (3/5)R?. Therefore, by mea-
suring the decay of I(q) at small ¢, the particle size can
be estimated.

Shapes of Particles: For a spherical particle of radius
R, the integral in (3) can be carried out analytically to
give

I(q) = K*[3(p, — ps) {sin(qR) — gR cos(qR)}/ (qR)3(]25

5
I(q) goes to zero at specific values of gR. For example,
the first two zeros occur at gR = 4.49 and 7.73 (Figure
2). Therefore, from the minima in I(q) the radius of the
sphere can be estimated.

Certain other shapes can also be deduced from the l':)e-“

haviour of I(g) at intermediate values of ¢q. For example,
for cylindrical particles it can be shown that I(g) ~ ¢g~*
in a range of g between ¢; ~ 1/L and ¢2 ~ 1/R,, where
L and R, are the length and radius of the cylinder, re-
spectively. In the case of a long flexible cylinder, L has
to be replaced by the persistence length L,, which is the
length scale over which the cylinder can be taken to be
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a stiff rod. In the case of disc-like objects, I(g) ~ g2
in a range between q; ~ 1/D and ¢g» ~ 1/t, where D
and t are the diameter and thickness of the disc, respec-
tively. Again, in the case of a flexible sheet, D has to
be replaced by the persistence length D,, over which it
can be taken as stiff. Thus from the limits of the g¢-
range over which the characteristic variation of I(g) is
observed, the geometric parameters of the particles can
be estimated. The ¢~' dependence of the intensity is

" .. unique ‘to rods, whereas the ¢7? dependence is also seen

in some other systems, such as random coils. Therefore,
some care has to be taken in using this procedure.

The Surface Area: In the high g limit of the small
angle region, I(q) ~ (p, — ps)?sq™*, where s is the sur-
face area of a particle. This is known as the Porod law
and holds good whenever the interface between the par-
ticle and the solvent is sharp. This expression has to
be slightly modified when the variation of the electron
density across the interface is smooth. This relation can
also be used to determine the internal surface area of
porous materials (Figure 3).

dE/aq (1/cm)

T T T — T T
001 a1 0.2

q (VA

The behaviour of
the scattered
intensity in the
high-q limit is
described by the
Porod law.

Figure 3. Scattering from a
porous material showing
the g dependence pre-
dicted by the Porod law.

RESONANCE | June 2005 W

3



GENERAL | ARTICLE .

The scattered
_intensity from a
concentrated colloidal
suspension can be

expressed as the
product of a form

factor P(¢ )and a

structure factor S(& ).

Figure 4. Decomposition of
the scattered intensity I(q)
from a dispersion of char-
gedspheres into a form fac-
tor P(q) and a structure fac-
tor S(q). The broad peaks in
8(q) are from the liquid-like
short-range order in the
system. -

Scattering at Higher Concentrations

The above discussion has been restricted to very low
density of scattering particles, such that they could be
treated as scattering independently with no interference
between the waves scattered by different particles. How-
ever, at higher concentrations this approximation is not
valid and the interparticle interference effects have to
be taken into account. In such a situation the scattered
intensity can be written as

1(g) = nK? $(q) P(), (6)

where the structure factor S(g) describes the interpar-
ticle interference, P(q) is the particle form factor men-
tioned earlier. In systems such as colloidal dispersions,
where the size and shape of particles do not change with
concentration, P(q) can be determined from very dilute
solutions, and S(q) can be extracted from the scatter-
ing data at higher concentrations (Figure 4). S(§) is
related to the pair correlation function g(), which gives
the probability of finding a particle at a distance 7 from
another, by :

S@=1+n | g(Peap(~ig-7)dF (M)

Fiq), scaled

S¢q) -

Intensity (arbitrary)

32

J\/\/\/\/\r RESONANCE | June 2005



>

GENERAL | ARTICLE

where n is the number density of the particles and V the
volume of the solution. All the structural information
about the fluid is contained in g(r), and the interpar-
ticle interactions can, in principle, be deduced from it.
In other systems, where the aggregate size depends on
the concentration, it is often difficult to separate the
intraparticle and interparticle interference effects unam-
biguously.

Polydispersity

Another complication that arises in practice is from the
fact that all particles are not of the same size. In the case
of a dilute solution of such polydisperse particles, the
scattered intensity is just the sum of those from the in-
dividual particles. As a result, many characteristic fea-
tures of the particle form factor get smeared out (Figure
5), and it is very often difficult to distinguish between
the scattering from a polydisperse distribution of parti-
cles of one shape and that from a monodisperse disper-
sion of another shape. For example, the same scattering
curve can be fitted to polydisperse spheres as well as
monodisperse ellipsoids. Under these circumstances ad-
ditional information from other experimental techniques
is required to remove the ambiguity.

Hq) tem™
=

Monodispersg

Hy Spheres
(R =103 &)
‘0"‘ - 'Y Attt datal - i PRI ¥ ‘
1w w* w! 10’

q(A™h

Polydispersity
smears out
features in the
scattered intensity
characteristic of
the shape of the

particles.

Figure 5. Scattering from
polydisperse spheres. Note
the smearing ofthe features
in the scattered intensity
due to the polydispersity.
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As described by (3), the scattered intensity is propor-
tional to the difference in the electron density of the
particle and the solvent. Therefore, it is advantageous
to maximize this contrast. It is not very easy to do this
in the case of SAXS, since the electron densities can be
changed only by changing the chemical nature of the
substance. On the other hand, the contrast can be very
easily changed if neutrons are used, instead of X-rays.

Neutrons are scattered by the nuclei of the atoms, and
the scattering power of isotopes of the same element
can be very different. For example, the difference in the
scattering powers of hydrogen (*H) and deuterium (*H)
is very large, and this difference is made use of in small
angle neutron scattering (SANS) studies to enhance the
contrast.
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The most beautiful experience we can
have is the mysterious. It is the Sfunda-
mental emotion which stands at the
cradle of true art and true science. Who-
ever does not know it and can no longer
wonder, no longer marvel, is as good as
dead, and his eyes are dimmed.

— Albert Einstein
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