J. - TA78. C41TO9B0

R

r 992

THE ASTROPHYSICAL JOURNAL, 428:419-432, 1994 June 20
© 1994. The American Astronomical Society. All rights reserved. Printed in U.S.A.

PERTURBATIVE GROWTH OF COSMOLOGICAL CLUSTERING. I. FORMALISM

SOMNATH BHARADWAJ
Raman Research Institute, Bangalore 560 080, India;' and Joint Astronomy Program, Indian Institute of Science, Bangalore 560 012 India
Received 1993 August 26 ; accepted 1993 December 20

ABSTRACT

Here we rederive the hierarchy of equations for the evolution of distribution functions of various orders
using a convenient parameterization. We use this to obtain equations for evolving the two- and three-point
correlation functions in powers of a small parameter, viz., the initial density contrast. The correspondence of
the lowest order solutions of these equations to the results from the linear theory of density perturbations is
shown for an Q = 1 universe. These equations are then used to calculate, to the lowest order, the induced
three-point correlation function that arises from Gaussian initial conditions in an Q = 1 universe. We obtain
an expression which explicitly exhibits the spatial structure of the induced three-point correlation function. It
is seen that the spatial structure of this quantity is independent of the value of Q. We also calculate the triplet
momentum. We find that the induced three-point correlation function does not have the “hierarchical” form
often assumed. We discuss possibilities of using the induced three-point correlation to interpret observational
data. The formalism developed here can also be used to test a validity of different schemes to close the
BBGKY hierarchy.

Subject headings: galaxies: clustering — large-scale structure of universe — methods: analytical

1. INTRODUCTION

Most efforts at understanding the formation of structure in the universe use numerical simulations. Although this allows us to
evolve given initial perturbations, there is still room for using analytic approaches to improve our understanding of the physics of
gravitational clustering. Also, we cannot numerically evolve the observations backward in time to find the initial conditions, and
there do not exist very strong observational reasons to choose one kind of initial conditions over another. On may then have to
work through a very large number of initial conditions before getting one that matches observations. These arguments motivate
analytic treatments, the one explored in this paper being perturbation theory.

In this paper we consider the purely gravitational growth of perturbations in an expanding universe filled with dust. The
evolution of the statistical quantities characterizing these perturbations is described by the BBGKY hierarchy (§ 3). In the fluid limit
this hierarchy has infinite equations, and they cannot be generally solved. We consider perturbations that are initially small (§ 4),
and this provides a natural means for truncating the hierarchy. By taking moments in velocity space, we derive equations for
perturbatively evolving the two- and three-point correlation functions (§ 5). To the lowest order the solutions to these equations
correspond to the correlations from the linear theory of density perturbations. These equations can be solved to higher order to
obtain the correlation functions in the weakly nonlinear regime.

The BBGKY hierarchy can also be used to study the correlations in the strongly nonlinear regime. In this case, one has to assume
some scheme for closing the hierarchy. Such a scheme could be tested using the formalism developed in this paper. The study of the
hierarchy in the weakly nonlinear regime may also yield clues that could be used to construct a scheme for closing the BBGKY
hierarchy in the strongly nonlinear regime.

The general area of the application of the BBGKY hierarchy to cosmological correlations has been the subject of many studies
(Peebles 1980 and references given there). In this paper we have given a self-contained treatment of the subject. This is in view of two
technical differences from the earlier work, viz., a nonstandard parameter (§ 2) has been used in place of cosmic time and the entire
treatment is in real space.

In § 6 we assume that the initial perturbations are Gaussian and use the equations developed in the previous section to calculate,
to the lowest order, the induced three-point correlation of an Q = 1 universe. We also calculate the triplet momentum.

Fry (1984) has calculated the three-point correlation function for initial conditions that are Gaussian and have a power-law
power spectrum by using second-order perturbation theory (Peebles 1980). The method used by Fry may be described as evolving
one realization of the perturbations and then calculating the correlations, whereas in this work we dynamically evolve the statistical
quantities themselves. In § 7 we present a comparison of the three-point correlation function as calculated by us and by Fry. Inagaki
(1991) also has calculated the Fourier transform of the three-point correlation function perturbatively for Gaussian initial condi-
tions using the BBGKY hierarchy.

In § 7 we also briefly discuss the possibility of applying the calculated three-point correlation function to observational data and
the possibility of using the formalism developed here to test the validity of schemes for closing the BBGKY hierarchy. We make
some remarks on a scheme used by Davis & Peebles (1977) to close the hierarchy.
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2. THE EVOLUTION PARAMETER

Consider a system of a large number (N) of collisionless particles interacting through Newtonian gravity. The Lagrangian for
such a system is

ar° m2G 1
L—-_ -
2<dt> TR )

where r, refers to the u Cartesian component of the a particle. When there is no subscript, it refers to the vector r*. We transform to a
time-dependent coordinate system with new coordinate x, with

rt) = S(Oxi(0) , @

where S(t) is a function of time. The Lagrangian becomes
mS? m’G 1 mS d’S .,
- 2 Z( > 28 a;blxa_xbl_ 2 dt2 Z( ) (3)

The extra potential arises due to the change to an accelerating coordinate system. The function S(t) (scale factor) is dimensionless
and is chosen such that it satisfies

a’s 4nGp
T T 382 @

where p d3x is the mass that would be in the volume d3x if all the particles were uniformly distributed.
The Lagrangian then becomes
- Z ( T )

If the particles are all uniformly distributed, the attractive force of gravity is exactly canceled by the repulsive harmonic oscillator
force described by the last term in equation (5). In this case, if all the particles start with dx§/dt = 0, then the solution is x{(t) = x;(t,),
i.e., the coordinate system moves with the particles. Thus x is a comoving coordinate system, and p is the comoving density, which
remains a constant. In this case the system corresponds to a part of a homogeneous and isotropic universe where all the dynamical
information is in S(¢). In this paper we consider how a system with an initial configuration slightly different from the above-
mentioned one evolves.

Next, time is replaced by a parameter A, where

dx“>2 m*G 1 27:Gpm

2Sz

a#b |xa—x |

dt
di = SO (6)
The condition
=JLdt=JEdA )]
defines the new Lagrangian,
. mg (dx\*  Sm’G 1 27tSGpm w2
L‘2§<d1> KPS 2. ®
For evolution in A the Hamiltonian is
1 , Sm’G 1 27tSGpm 5
N a2 a 9
D0V =75 ¥ e, ©
where
dxt
pPu=m—* (10)

is the momentum conjugate to x§. The main advantage of using 4 instead of the cosmic time is that no .S appears explicitly in
equation (10). As a result, the equation of motion for a particle, which is

d*xs —x5 4
- = 11
F7P SGm Z | C—y + = nSpr (11)

resembles the equation of motion of a particle in an inertial reference frame with a time-dependent force. If instead we use cosmic
time as the evolution parameter, derivatives of the scale factor appear in the equation of motion. These terms have been avoided by
using the parameter 4.
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The relation between this momentum and the peculiar velocity is
py = mSv, . (12)
In terms of A equation (4) becomes

d (1dS 4nGp
—l=s=)=- . 1
di <S2 di) 3 (13)
Any solution of this equation is given by a parabola,
1 2nG
—=P 04 A+ K] (14)
S 3
Since the range of A can be chosen arbitrarily, we set A, = 0. The case with K = 0 corresponds to a Q = 1 universe where we have
S(A) = 3 15)
T 2nGpi*’

with A going from — oo to 0. In this paper for all calculations we assume Q = 1, and equation (15) is used for S(A).

3. THE BBGKY HIERARCHY AND EVOLUTION OF REDUCED DISTRIBUTION FUNCTIONS

It is assumed that (1) there is a large spatial scale on which the universe is homogeneous and isotropic, and (2) volumes of this size
located at different parts of the universe are independent realizations of the same physical processes with different initial conditions.
Such volumes can be “assembled ” to form an ensemble.

The system defined in the previous section is a model for one member of such an ensemble. Such a system can be described by a
distribution function on phase space. This function f(x, p, 1) gives the number of particles in a unit volume of the phase space at the
point (x, p) at the instant A.

The ensemble described above can be used to define a M-particle distribution function p,(x!, p!, x2, p?,..., x™, p™, J) defined as

pu(x, pt, X2, p2 . XM pM2) = (X, ptl AL f M, M, D)), (16)

where the angular brackets indicate an average over all the systems in the ensemble.

This function gives the joint probability density of finding a particle in the volume d>x* d>p* at the point (x*, p!) and in the volume
d*x? d3p? at the point (x2, p?) and in the volume d3x> d®p? at the point (x3, p3), etc., at the instant A. The evolution of the distribution
functions is governed by the BBGKY hierarchy (Peebles 1980 and references given there). The first three equations of this hierarchy
are given below in the fluid limit.

Because of homogeneity, the one-particle distribution function does not depend on position. This has been used in equation (18)
below. We define a function f, where f (p*, 4) = p,(x!, p!, A).

In the equations below the numbers 1, 2, 3,... are used to refer to phase-space points x!, p*, x2, p2, x3, p%,.... Later on the
numbers 1,2, 3,... are used to denote points x!, x2, x3,... in space, as will be clear from the context. We also use the notation

a b
. X, — X,
ub = [x* — x| (17
throughout the text.
ip a ,1)+Sm2G-i p,(1, 2, X3! d3x? d3p? +‘—t7tSGpmx1 i,o 1LAH=0 18)
6/11’ ap}l 204y 4 m 3 uap;19 )
ip 1,2 i)+p—f' g pa(1, 2 i)+‘—‘nSGpmx" d p>(1, 2, 1) + Sm*G d p3(1, 2,3, X3 dBx3d3p® =0 19)
6129> mafoZ’& 3 uapZZ” 7‘35,, m s

where a takes the values 1, 2, and

Pu 0
m 0x,,

0 4 0 0
'Y p3(1, 2a 3, )”) + p3(1’ 2, 3’ l) +3 nSGpmxz ) p3(ls 2, 3, 2‘) + szG
oA 3 op°

jp4(1, 2,3, 4, WX d’x*d’p* =0, (20)
op,,
where a takes the values 1, 2, and 3.

The hierarchy continues up to the equation for the N-particle distribution function.

For special initial conditions it is possible to truncate the hierarchy at some level, the error from the terms dropped being of a
higher order in some small parameter compared to the terms retained. In order to do this explicitly, it is convenient to work in terms
of the reduced distribution functions defined below.

The probability density for finding a particle at x' with momentum p! and another with position x?> and momentum p? has a
contribution from the one-particle distribution function. This is f(1) f(2). The reduced two-particle distribution function is defined
by the equation

P21, 2) =f(1)f(2D) + (1, 2) . 21
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The reduced three- and four-particle distribution functions are similarly defined by
pa(1,2,3) =f()f)fB3) + ;f(l)ca, 3)+4d1,23), 22
pa(1,2,3,4) =f()fDfB)f4) + ; Ff(2)e3, 4) + ; (1, 2)e(3, 4) + ; f()d(2, 3,4) +e1,2,3,4), 23)
where ) » means a sum over all cyclic permutations of the particle indices. Equations (18), (19), and (20) and the definition of the

reduced distribution functions can be combined to obtain equations for the evolution of the reduced distribution functions. These
equations are

0
af(l, A) + szGa%Jc(l, 2, A)X§1d3x2d3 2=-0, (24)
"
8 Py 0 ) 3a 3.3 333 2 0 3a 3.3 733
c(l 2, )+ m O ac(l, 2, A) + Sm cla, 3, )X d>x> d’p* + Sm Gap“ d1,2,3, )X d*>x*d°p* =0, (25)
M
where a’' = 2whenatakes the value 1,and ¢’ = 1 whena = 2, and
Py 0

0 d(l 2,3, )+ d1, 2, 3, ) + Sm*G

" 4a 33,4 33,4
m o : 3 af(a)fd(a ANXdx*dp

F
+ Sm?G 5 € (@ ) | clar, 4 , DX % d3x d3p* + Sm2G — d e(l,2, 3,4, HX* Bx*dPp* = 0. (26)

® aa

The symbol a” represents two position indices, and the various values a and a” are to be summed over whenever they appear
together are shown below.

a: 1 2 3
a: 2,3 3,1 1,2
The various values over which the symbols a, a7, and ), are to be summed over whenever they appear together are shown below.
a: 1 1 2 2 3 3
ay: 2 3 3 1 1 2
ay: 3 2 1 3 2 1

4. INITIAL CONDITIONS

We next specify the initial conditions which we are going to evolve using these equations. These initial conditions have to be such
that we can have some meaningful evolution using only a few equations of the whole hierarchy.

We choose initial conditions where the deviation of the particles from the uniform distribution is small. The fractional density
perturbation at any point is of order € (a small number). The peculiar velocities are also of this order. In other words, it is a cold
system (dust) where the peculiar velocities are only those that arise due to the gravitational acceleration.

Using these assumptions we can estimate orders of magnitude for the initial values of various moments of the distribution
functions as powers of e. We give this for some of the moments we encounter later.

Jf(l)dap =n  (mm=p), @7
Jp; f(d*p* =0, (28)
where n is the number density of particles;
J(p,i)zf (d*p" = m(pa)*>s ~ €, (29)
Jc(l, 2)d3p d3p® = n2E(xt, x?) ~ €2, (30)
ijC(l, Qdp' dp? = n*{p),(x", x?) ~ €, €2
_[pf,p’; o1, dp' dp? = n*Cp), pl>a(x!, x) ~ €2, 32)
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where i and j take values 1 and 2, and i # j; & is the two-point correlation function. All other moments of ¢ are of higher order in ¢,
and

Jd(l, 2, 3)d3p! d3p? d3p® = n3{(x!, x2, x*) ~ € (33)

fpf, d(1, 2, 3)d®p' d*p? d*p® = n*(piys(x!, X2, x¥) ~ €3, (34
fpiﬂd(l, 2, 3)dp! d°p? d*p® = n¥(p, pl)s(x', X%, x}) ~ €2, 35)
inp’;p’; d(1, 2, 3)d°p* &p? &°p® = n* (P, plpeda(x!, X%, X% ~ €, (36)

where i, j, and k run over the values 1, 2, 3, and i # j # k. All other moments of d are of higher order in €. All moments of e are also of
higher order in €; { is the three-point correlation function, and y the four-point correlation function.
These initial conditions correspond to a situation where the linear theory of density perturbations (Peebles 1980) can be applied.
The initial conditions are all specified at some instant A,.

5. PERTURBATIVE EVOLUTION AND LINEAR THEORY

We now want to see how the various moments of the reduced distribution function evolve from the given initial conditions. The
equations are too complicated to solve outright. We have to treat the problem perturbatively by initially keeping terms only up to
the lowest order in € and solving the equations, and then putting in the contribution from the kigher order terms as corrections.

The derivations are described in this section and worked out in detail in the Appendix. We first deal with the two-particle reduced
distribution function ¢. We proceed by taking moments of the evolution equation for c¢. The zeroth moment of equation (25) is

19
m 0x;,

2120 4 o a2, )= 0. (7
This equation relates the evolution of the two-point correlation function to the divergence of the first moment of ¢. This equation is
the continuity equation for pairs. It was two unknown functions both the order €2, so we cannot ignore any of them. We cannot
solve this equation either. We then look at the evolution of the first moment, which is given by the first moment of equation (24). We
can take the divergence of this equation and differentiate the continuity equation with respect to 4, and combine the two to get an
equation involving the two-point correlation function and the second moment of c. This equation still has two unknown functions
of order €2. We take the evolution equation for the second moment of ¢ and go through a similar procedure to obtain an equation
relating the two-point correlation function to the third moment of ¢ and moments of d. This equation is

0? 0 0 0
E{gf—gﬂGP Sﬁé+a(56) =1, —f?,—ngls (38)
where
fi1,2, ) = SGp aa J 1,2, 3, X2 d3x®,
6xu
02
Full, 2, 7) = 28Gn ——— f piva(l, 2, 3, VX3 d3x3
v@iu

1 3
51,24 = m? 0x;, 0x5 0x;,

In this equation the only unknown function of order €? is the two-point correlation function . The functionsf;, f,, andf; are of
higher order in €. Initially we neglect terms of higher order in € and deal with an equation correct to order €2 only.

As the system evolves the higher order terms become important, and they have to be considered. They can be thought of as giving
rise to corrections to the lowest order solution.

Keeping terms of order €2 only, equation (38) becomes

<pflp€pf7>2(19 2’ 3’ }') .

23—c-s;:c S—a—¢+i(s5) =0 (39
a5 APaasTa | =
This is a third-order differential equation for the two-point correlation function.
For an Q = 1 universe this is
o® 24 ¢ 24

FEE Rt p e 4
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A\ A A\¢
1,2, )= (I;) F, + (/1_0>F2 + (/1—0> F,, 41)

where F,, F,, and F; are functions of x' and x*. The two-point correlation function at A, is expressed in terms of these functions
which have to be given as initial conditions. We have three initial conditions because we have a third-order differential equation.
Instead of these three functions, one could have given the two-point correlation function and the first two moments of ¢ at 4, as
initial conditions.

One can derive the same result by evolving one realization of the ensemble using the linear perturbation theory and then
calculating the correlation function. The growing mode for density perturbations, usually denoted by D,(t), grows proportionally to
the scale factor, and the decaying mode, usually denoted by D,(t), is proportional to ¢ ~*. In terms of A this is A3. The three modes of
growth for the two-point correlation function correspond to D, D, D,, and D? (Peebles 1980), which is also what we get above.

If the two-point correlation function starts as a mixture of the three modes, after some time it will be noted by the growing mode
D%(4). For most purposes it suffices to just keep this mode. If we consider a situation where only the growing mode is present, we can
introduce a potential ¢(x*, x?). All the quantities of interest can, to order €2, be expressed in term of this potential:

which has solutions of the form

o(xt, x?) = p(x' — x?), 42)
1 2 1 )“(5) 4 1 2
€t x5 ) =53 Viglx' —x7), 43)
et 5, ) = m 22 L yrget — x) (@)
wEE T A% oxg '
A

a b 1 .2 3y _ 9,272 1,2

<Pqu>2(x s X7, '1) - 2m 15 ax: axe ¢(x X ) . (45)

In the above equations the V? is with respect to either x! or x2, and a, b = 1, 2 with a # b. It can be verified that the above
relations are consistent with all of the two-particle evolution equations.

The potential ¢ is proportional to the correlation of the gravitational potential at the two points x! and x? and has dimensions
I#T 1. If the other modes are present, one can introduce potentials for them too. This is not considered here.

A similar procedure of taking moments can be used to derive an equation for the three-point correlation function. This equation
is
02 das o 2

_— C —

o* d*s
P { — 40nGpS FYe { — 40nGp Ty 12n6p<;1—)? - 12nGpS2>C

2
~ha i = fo = fy+ 55 U+ 00 + (120605 - T )10 9

where

0
f4(1’ 2: 3, l) = SGp a
Ox;,

[C(a, ay, 4) Jé(a’z, 4, Hxye d3x“] ,

fi(1, 2,3, 2) = SGp

aa fx(l, 2,3,4, NXp d’x*,
ox;,

256 _o°
n® 0x5ox
62
x5 0x4

w6 __o
n*m 0x, 0xb 0x

f6(17 2, 37 j') = fpe c(a, a,19 l)c(aIZa 4’ j')X:a d3x4 dlZP s

£o(1, 2,3, 2) = 2SGn

J‘<p€>4(1’ 2, 3, 4, l)X:a d3x4 N
fe(1,2,3,2) = J‘PSPZC(C, ce(ch, HXH dBx*di2p

n 9°
1 2, S — - a b X4c d3 4 ,
f9( s 3 }') 3SG m axﬁ, axz ax: J<pupv>4 o X

1278Gp  ?
1 ittt A, a na
flO( s 23 35 }') m2 axz axz <pupv>3(1’ 2, 3: j') s
12aSG 02
S, 2,3, ) = =522 papey 11,2, 3, 0),
m 0Ox;, 0x
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and
i
m* 0x3 0x, 0xb x4

The functions f, to f;, are of order €* or higher. To order € we have a fourth-order differential equation for the three-point
correlation function:

fi2(1,2,3,0) = <pappsxids .

o* a* ds\ o d*s s
57 C - 407tGpS 51'5 C — 401tGp<—dI> a C - 127‘6Gp<ﬁi — 127tGpS >C =0 N (47)

which for an Q = 1 universe becomes

o* 60 02 120 ¢ 216
Al i+ S (+=(=0. (48)
oA A% 04 A% 04 A

The solution of this equation can be written as
0(1,2,3,2) = A" °F, + A" 'Fs + 2*F¢ + A°F,, 49)

where F, Fs, F¢, F, are functions of x!, x2, and x3.

Thus we have obtained four modes D3, D? D,, D, D%, and D3 for the evolution of the three-point correlation function. This
corresponds to what we would have obtained if we had used the linear theory of density perturbations to evolve some initial density
perturbations and then calculated the three-point correlation function and compared it with the initial three-point correlation
function of the density field. One could use a similar treatment for the higher correlation functions.

The solution we obtained for the two-point correlation function will be valid as long as the €3 terms may be neglected. As the
evolution proceeds, the contribution from the higher order terms will increase and they will modify the evolution of the two-point
correlation function. The evolution of the higher order functions f}, f,, and f; is calculated by solving to lowest order the equation
for these quantities. For example, to lowest order the function f; will be of order €3, and its evolution is governed by equation (46).
These functions are then to be incorporated as known functions into the equations for the two-point correlation function. These
equations then have to be solved to obtain the two-point correlation function to a higher order. This method can in principle be
used to calculate higher order terms for the other correlation functions also.

The perturbative approach breaks down when eD; ~ 1.

6. THREE-POINT CORRELATION FROM GAUSSIAN INITIAL CONDITIONS

Here we shall go one step beyond linear perturbations for Gaussian initial conditions. If the initial perturbations are Gaussian,
they are completely specified by the functions fand c at the instant 4,. All nonzero moments of d, e, and all other higher distribution
functions can be expressed in terms of moments of f and c at A,. The distribution function d has no moments of order €3, but it has
moments of order €*. These are

papsys = <Pwala, ay, AoKp5)aa, s, Ao) (50)
and
Papbpspiys =Y, 0(PL PS> 2{P5Psy2 + <PEPSY2{Papiy)) (51)

where the sum is over all possible pairs of particle indices in the delta function. There are no moments of e of order €* or lower. All
this implies that

F4=F5=F6=F7=fu(}~o)=0

and

f 5('10) =f 7(10) =f9()~o) =0, (52)

to order €*. The functions f;, and f; , can be expressed in terms of moments of ¢ using equations (50) and (51). Thus, the equation for
the three-point correlation function to order €* is

o* 0* das o dzs 0 0*

az C - 407tGpS —aﬁ C - 407tGp ﬁ a C — 1271.’Gp<;l-)? - 127IGpS2>C =f12 +f10 —'fg + afﬁ + (IZnGpS - 5}'—2 f4 . (53)
The terms on the right-hand side are all products of two terms of order €2 and can be calculated using the equation of the previous
section. For an Q = 1 universe, keeping only the growing mode, we can write the terms on the right-hand side as

. 10 10

f4(1’ 2’ 3s A) = <7> f4(1’ 27 3, )'O) H (54)
)'O 11

f6(1’ 2, 3’ A) = <7) f6(la 2s 39 }'0) ’ (55)
A’O 12

f8(19 2’ 3a /1) = <7) fS(I’ 2, 37 ’10) ’ (56)
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)'O 12
flO(l) 2’ 35 j') = (7) flO(l, 2’ 39 A’O) (57)
and
10 12
le(l’ 29 3’ /1) = <7> le(la 29 3’ ’10) . (58)
Using these, the equation for the three-point correlation function is
* 60 02 120 6 . 216 PARE ' 1. 92
FYE: (- FEREYE {+120 FENEY) + 7 {= <_1‘> (fxz +fio—fs — l_ofs —A—‘z)fat)lo » (59)
which has a solution,
1 lo 8 4 3 2 A’O 6
01, 2,3 %)= 3856 \ 7 [A5(fi2 + fio —fs) — 115 fo — 9245 fu1s + 7 E(1, 2, 3), (60)

where E is some function to be decided by the initial conditions.
Imposing the initial condition {(1, 2, 3, 1,) = 0 on the solution, we get

L 2\ (4
01,23, ) = 50 (7") [(f) - l]tzz(flz +fro —fo) = 1135 fs = 9243 fuLso - (61

Actually, for a complete solution of the equations, four initial conditions have to be given. Also, the function E can be neglected if
one is concerned only with the fastest-growing part of the three-point correlation function that is induced by the two-point
correlation function.

Written explicitly, this is

1 [(4)® Ao\* o* o ar ¢ ay
(.23, =52 () 112 52) 5o gmar g [<PAPE Do)t )allo)]

m) 0x40x30xat oxe2

o)\ 0? . , . , 334, 9* b , - 4a 33,4 312
+18 Z axz ax: [<pu>2(a, ais '{0)<pu>2(a’ a, j'0)] - m m pvc(a7 ai, lO)C(aZ’ 4’ A’O)Xll d°x*d p

92.02 63 b , , 4a 334 312 0 ’ ’ 4a 33 .4
- 2 <m> 6xf,6x'v’6xz pvpcc(a9 ai, )'O)C(aZ, 4’ AO)Xu d’x*d p— 138 ax: f(a, ai, )“0) f(aZ’ 4’ j'O)Xll d°x .

(62)

This solution can be further simplified if we use the potentials introduced earlier. Using the potential and doing the integrals over
space by parts, we have

0
Ox,

¢ [v4¢(a, )2 v, a;)] , 63)

a
0x;,

0
axa |:é(a’ a,h /10) J“f(alz, 4, }'O)X:a d3x4] = _n)'(z)

"
2

j Pz c(a, a,l, )'O)C(a,Z, 4, }'O)X:a d3x4 dlzp

oxbox?
= —2ami _az g [V2¢(a, a})] d [V2¢(a, ay)]; — 4nmi 9 V4¢(a, a)) 9 Vig(a, a) (64)
= T 0x4 0x5 | 0x3 T oxa 2 % oxa o ox4 el

63 b _a g ’ 4c 334 J12
ax;‘ axt axz Jpvpu C(C’ cl, )'O)C(CZ’ 4, j’0))(17 d X d 14
2 62 a 2 ’ a 2 ’ 2 a 4 ’ a 2 ’
= —16mm? ——— 4= [V2$(a, a))] 5 [V?dla, ap)]{ — 8am® —— | V4d(a, @) == V?la, ;) | (65)
0x;, 0x; (0x oxy, 0x;, 0x;,

Using these expressions in equation (62), we get

WEASN .
) z)—zg( A) aol[s 2

u

0 2
V2¢(a, a’z)] +2 g {i [V:4(a, a))] ¢ [V24(a, a’z)]Hl, (66)

a a a a a
ox;, 0x;, 0xy (0x ox;,

[V“Qﬁ(a, aj)

which can also be written as

O [ a, ay ACPEala, oy ]+~ —2
6xf, a, ag, pu 2la, a, max:ax,:

1
(1,23 4=y {3 [Kpp>2(a, dy, <P -(a, ay, /1)]} : (67)
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We have an expression for the three-point correlation function that arises from perturbations that are initially Gaussian and have
no three-point correlation. This expression is of order €* and is a local function involving only derivatives of the potential ¢. This
expression is valid as long as terms having higher powers of € may be neglected. It has been assumed that the initial perturbation
had only the growing mode. If other modes are present, ¢ represents only the growing part of it. One can introduce two other
potentials for the two other modes, and the three-point correlation function will have terms with all combinations. The expression
calculated is the fastest-growing component.

It may also be pointed out that the three-point correlation is the divergence of some quantity. We can then use equation (92), the
triplet continuity equation, to obtain an expression for the triplet momentum defined in equation (34).

. 2m (A9\° ., | ,. 0 , 0 0 Lo 0 ,
P23, )= (7") onV“qs(a, @) gz V0la az)] +25a { 7 V200, )] 35 [V20(a az)]}]l S
This is the part of the triplet momentum {p%), that has divergence and is coupled to gravity. This component grows the fastest
and will dominate any other component of the triplet momentum.
Another interesting fact is that for all values of the density parameter Q the three-point correlation function has the same spatial
dependence given by

I3} 0? 9} 0
4 ’ ] 2 ’ B, A 2 , ’ 2 , ’ , 69
[V ¥ @) 7 Ve, az)] HP0) Gaas { 7 (V240 @] 55 [V29la az)]} (69)
where F4 and F® are some functions of A. This is because equation (46), which governs the growth of the three-point correlation
function, is a differential equation in 4 alone. The functions F*(4) and F?(4) have to be determined by solving equation (46) and will
be different for different values of Q.

{1,2,3, 1) =F4) aa
ox;,

7. DISCUSSION

To get a better understanding of the three-point correlation function calculated in the previous section, it is convenient to express
it explicitly in terms of the two-point correlation function ¢ instead of the potential ¢.
Using equation (43), which defines the potential, and the fact that &(x) is a spherically symmetric function, we have
0
0x,

224 * 24 ¢
VZi(x) = <-}§> % L E(x', Hx?dx’ = (Tg)x” &x), (70)

where we have defined &(x), which is related to the average of &(x) over a sphere of radius x, by the second equality above.

The above equation can be easily understood by an analogy to a spherical mass distribution where the gravitational force on a
particle at any point can be found by replacing all the matter in the sphere between this particle and the center of the distribution by
an equal point mass at the center, and ignoring all the matter outside this sphere. Using this in equation (66), we obtain

001,23, =3 (5 +2 o5% B)E0E0) + cos 6, = £y + 21— 3 cos? 0,)6980) + 5 (3 cos? 0, — DEWEW . (71

where
x=|x*—x],
y= Ixa_xaz'l s

and

XuYu
cos 0, = 4=,
xy

We would like to remind the reader that a, a}, and 4}, are to be summed over the values shown in the tabulation in § 3. Although the
three-point correlation function appears to be a local function when written in terms of the potential ¢, it is not local in terms of the
two-point correlation function . The three-point correlation function { does not depend only on the values of the two-point
correlation function ¢ at the separations occurring in {. It depends on the two-point correlation at all scales smaller than the scales
where the three-point correlation function is being evaluated. It should also be noted that it involves a derivative of the two-point
correlation function ¢&. '

An interesting consequence of equation (71) arises when the two-point correlation function has compact support, i.c.,

dr)=0; r>r;; (72)
the three-point correlation has the form
M2

(1,2,3,0 = 5

(73)

2|

(3 cos? 6, — 1)

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1994ApJ...428..419B&amp;db_key=AST

J. - TA78. C41TO9B0

]

r 992

428 BHARADWAJ Vol. 428
in the region where the separation between all of the three points is more than r;. M is defined as
x1
M = J &, Ax2dx’ (74)
0

and the three-point correlation function here depends only on the integral of the two-point correlation function over the volume
where it is nonzero.

Fry (1984) has calculated the three-point correlation function for the special case of the power-law initial two-point correlation
function

Hx) = Ax~" . | (75)

The general result obtained by us agrees with Fry’s result for the power-law case when # is less than 3. For larger values of n the
integral of the two-point correlation function diverges, and deviations from the power-law behavior are required at small separa-
tions to obtain meaningful results.

If we assume deviations from the power law at small separations for the two-point correlation function, keeping a power-law
behavior at large x, our formula will give the same result as Fry’s formula at large x if

o Sx)
= 76
B =3 (76)
for large x. Whether this happens or not depends crucially on the behavior of the two-point correlation function at small
separations.
As an illustration of the above point, we present two examples where the two-point correlation has a large-x behavior

)~ x4, (77

but the three-point correlation functions are quite different in the two cases.
First we consider

{)=A4—=——3 (78)

where A is some normalization constant and a some length scale. This corresponds to a Harrison-Zel’dovich power spectrum (~k*)
with an exponential decay for large k. Using this, we get

—_— 1
(x)=A4 Era)’ 79

which satisfies equation (76) for large x. In this case we find that at large separations the three-point correlation matches with the
formula derived by Fry (1984).
Next we consider

o

dx)=4 e (80)
which corresponds to a power spectrum ~ k° with an exponential decay at large k, and we get
e A fan-t (X)) - X
¢ = 2x3 [tan (a) 1+ (x/oc)z:l ) ®1)
For large x we have
— 7A
50 = o5 (82

which does not satisfy equation (76). In this case the three-point correlation function that we calculate differs, even at large
separations, from the expression that Fry has given. Because &(x) behaves as x ~* and &(x) behaves as x ~* for large x, &(x) falls off
much faster than &(x) and the three-point correlation is dominated by the term containing two £’s. The three-point correlation
function at large separations then is controlled by the contribution from the two-point correlation at small separations.

Thus we see in the two cases above that although the two-point correlation function has the same power-law spatial dependence
for large separations, the three-point correlation functions are quite different.

This is further illustrated graphically in Figures 1 and 2, which show Q(r) versus r for the two cases discussed above. Q(r) is defined
as

~ (1,23, 4
CAL 2L, 3) + &R, 3)ER, 1) + €3, 1DEB, 2)°

where the three points 1, 2, and 3 are located at the three corners of an equilateral triangle with sides of size r.

) 83)
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2t
“? 0 é ‘;» é é 10 0 5‘0 1 (1)0 1 éO 200
(r/a) (r/a)
Fic. 1 FiG. 2
F1G. 1—Q(r) for the first example considered in § 7. There is a singularity at r = 3'/2, where Q(r) = — co.

FI1G. 2—Q(r) for the second example considered in § 7. For large r we have Q(r) ~ 2.

Next we would like to make some cautionary remarks on the direct application of the three-point correlation function calculated
here to interpret observations. The calculation that has been done here is for the dominant matter component in the universe. If one
wishes to use it to interpret galaxy correlations, one should take into account the possibility that galaxies might be a biased tracer of
matter. Second, although the galaxy correlations are small at large length scales, galaxies are strongly correlated at small length
scales. Because of the nonlocal nature of the results, one has to check whether the perturbative results can be used at the large length
scales when the small scales are strongly nonlinear. In addition, even if the perturbative results are valid at large length scales, one
cannot make a comparison of the three-point correlation function at some length scales with just the two-point correlation function
at the same length scales. The three-point correlation function is highly dependent on the shape of the initial two-point correlation
function at all scales smaller than the scales where the three-point correlation is being evaluated.

Finally, the formalism developed in the paper can be applied to test the validity of any scheme to close the BBGKY hierarchy.
Such a scheme involves assuming a relationship between some moments of the various distribution functions. The validity of these
assumptions can be tested in the weakly nonlinear regime using the formalism developed in this paper. As an example, consider the
scheme proposed by Davis & Peebles (1977). They assume that the three-point correlation function has the “ hierarchical ” form, i.e.,

{1, 2, 3) = QLE(1, 2)¢(1, 3) + &(2, DE2, 3) + &G, DEB, 2)]1, @4

where Q is a constant, and that the correlations arose from initially small Gaussian density perturbations. A comparison of the
expression for the three-point correlation in equation (84) with the three-point correlation function calculated in the paper shows
that it is not possible to write the induced three-point correlation function in the weakly nonlinear regime in the form assumed in
equation (84). Thus, although using this formalism we cannot say anything about the assumptions made by Davis & Peebles in the
strongly nonlinear regime, we can say that it fails in the weakly nonlinear regime.

We would like to thank Professor Rajaram Nityananda for his advice and encouragement.

APPENDIX

Here we give the derivation of equations (38) and (46), which govern the evolution of the two- and three-point correlation
functions. The zeroth moment of equation (25) is equation (37):

i) 10 .,
57 S 2D+ 22 a1, 2.0 = 0.
The first moment of equation (25) is
Fi 10 '
7 pads + e <papa(l, 2, 2) — SmGp jé(a’, 3)X;d>x* — SmGp JC(I, 2,3, )X d%*=0. (85

The last two terms have been obtained by integrating the p integral by parts and dropping the surface term. This will be done in the
equations for all the other moments also. If we take the divergence of equation (85) and use it in equation (37), we have

2,1 #
6/12 é - mz axbaxa <pupv>2 - SnSpr = _fl s (86)
v&iu
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where

0

f:(1,2, ) = SGp P j 0(1,2,3, X2 d*3 . 87
"

The second moment of equation (25) is

, 18

a a
a pupv>2(19 2s }“) + m axz

<papipiya(l, 2, A)

2GS 2GS
- ng f(éf,‘}, Py + 0 P f()elc’, X3 d*x d°p — ng J (05,5 + 05, pd(1, 2, )X d*x*d°p = 0. (88)

Taking the divergence with respect to both the free indices, we have

3 3

Tada AP+ o m s AP + BSMGp 2 (s =y, Co®
where
62
112, = 256n 5 J D1, 2, 3, HXP x> . (90)

Differentiating equation (86) with respect to A and using equations (89) and (37), we have equation (38), the equation for the
two-point correlation function,

3
Se-sosZerZoo|-n-r-21.
where

1@

m> 0x¢, 0xb 0x4

f3(1’ 2’ )') = <PZP'V’P§>2(1, 2, 3, '1) . (91)

A similar treatment can also be done for equation (26), the third equation of the hierarchy. The zeroth moment of equation (26) is

0

a
ox;,

0 1 .
7 1,23, 1)+ - Pe>s(1,2,3,1)=0. 92)
The first moment of equation (26) is

0 1 0 ”
72 Pst o5 <paps(l, 2, 3, 4) — SmGp jC(a , X" d°x* — SmGp Jx(l, 2,3, 49X,  dx*

— SmGp&(a, a}) J Eay, DX 3 d>x* =0. (93)

Taking the divergence of equation (93), we have

o T3+ g PR+ 125SMGl = (7 4 £, %
where
f4(1, 2,3, 1) =SGp ai; [f(a, ay, A) fﬁ(a'z, 4, HXy d3x“:| 95)
and
£41,2,3, 1) = SGp ai;; Jx(l, 2,3, 4, HX* dPx* . 96)

Differentiating equation (92) with respect to A and using equation (94), we have

02 1 82
EYER it papdys — 128nGpl = —(fy +f5) . 97
v Ui
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The second moment of equation (26) is

[ 10 a b c Sm*G ca b cb a " dc 3.4 312
77 SPups + m e PuPyPors(1, 2,3, ) — 5 | 05upy + 05 P f(ed(c”, 3)Xxg® dx*d**p

2 2
= S0 [t + st et vty — € [t + oo, 2,3 st ap =0, )

Taking the divergence with respect to both the free indices, we have

3 1 03 I3}
oo papdds + m O o ot PLpipsys + 167SmGp par P>z =m(fs + f2), %99
v UAy ¢ UXy OXy u
where
258G 2
f6(1,2,3, 1) = P axbaaxa Jp'v’c(a, dy)c(ay, HX 5 d*x*d"2p (100)
v OXy
and
62
141, 2,3, ) =28Gn T o J(p€>4(1, 2,3, 4, l)X:" d3x* . (101)
v n
Using equation (92), this becomes
63 a b 1 63 a b ¢ 2 a 2
P Pupws + m I O o {PuPyPgy3 — 16nSm*Gp 7 {=m(fs +f7), (102)
v m o v "M
which, when combined with equation (97), gives
O 8 ey —nGe 165 Lt 12250 | = (e + 1) = L (a4 12 (103)
022 ° " m? oxt oxt oxa “PuPvPess m TR 105 5 a2 =Veml) =5y UaT]s)

The third moment of equation (26) is

I A Sm*G
a <puptpo'>3 + ; a_xg <pup€po'x: 3(1, 2> 3a A) - n3

J (85 PV PG + 85 PP + 05, P py) f(e)d(e”, )X x5 dx* d'?p

Sm?G N
- f(éif. PDS + O3 b bl + 0% Pl p)cle, €))cley, )X e dx* d*2p

Sm*G ea b ¢ eb a ¢ ec a b de J3.4 J12
- (03 Py Pe + 05, P ps + S5 pupyle(l, 2, 3, )Xy d’x*d*?p =0 .

(104)
Taking the divergence with all the three particle coordinates, we have
4 1 4 2
FrF PLPipeys + o R <pLphps X8y 5 + 12nSmGp pRrEw pipys =m*(fs +fo — fio — fi1), (105)
o v " Y a v " " v
where
386 o ,
fo1,2,3,2) = o o AP JP'C P clc, cyelch, HX 5 d>x*d*?p , (106)
o v "
n i a. b 4c 3.4
fQ(la 2’ 3) /1) = 3SG ; m,; <pupv>4Xa d X, (107)
a v "
127nSG 02
Froll 2,3, 2) = =28 el papa(1,2,3, ), (108)
n v
and
122SGp 02
f (19 29 3, )') = <pa p:> Sa Ava C(l, 27 33 A') . (109)
H m? #EYL Gxa oxa
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Using equation (97), this becomes
4

1
0 0x¢ 0x® ox° NAGIS
o v m

a C 62
" m LS Xys + 12Sm3GP[a—l—z { = 1287Gpl + (f4 +fs)] =m*(fs +fo —fro —f11) -
(110)

Differentiating equation (103) with respect to 4 and using equation (110), we get equation (46), the equation for the three-point
correlation function,

o* 02 as o d*s
— =4 — (- 40nGp — —{ — 12 — — 127GpS?
oz ¢~ A0mGPS 7z L= 40nGp 7 i ¢ "G"<d/12 mGpS” Jt
a 0?
=fia +fi1 +fro—fo—fs + 27 (f7 +fs) +| 127GpS — FYE (fs +f4) >

where

f(123l)——1-———a——(" "‘x") (111)

122 m 0x3d 0x¢, 0x5 x4, PuPvPaXy7s -
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