
About a year ago Ian Porteous, a 

mathematician at the Univer-

sity of Liverpool, told me

about an elegant game. His son, Rich-

ard Porteous, invented it to teach child-

ren about multiplication and division.

The game is called Juniper Green, after

the school at which Richard taught. It

is fun to play, and the search for a win-

ning strategy is quite challenging.

To play Juniper Green, you should

make 100 cards, numbered 1 through

100. Lay them face up on the table in

numerical order, say, 10 rows of 10

cards each, so that it will be easy for

players to locate the desired card. Here

are the rules:

1. Two players take turns removing

one card from the table. Cards removed

are not replaced and cannot be used

again.

2. Apart from the opening move,

each number chosen must either be an

exact divisor of the previous player’s

choice or an exact multiple.

3. The first player who is unable to

choose a card loses.

There is one final rule to make the

game worth playing. Recall that a

prime number has no divisors other

than itself and 1. It so happens that if a

player picks a prime larger than 50,

then the next player loses. Suppose Al-

ice plays against Bob, with Alice going

first. She plays 97; Bob must play 1.

Now Alice plays another big prime—

say, 89. At this point Bob has used up

card 1 and is stuck. To prevent this

spoiling strategy, we have:

4. The opening move in the game

must be an even number.

Even though the game starts with an

even number, big primes still influence

play. In particular, if any player picks

card 1, then he or she loses, assuming

the opponent is awake. Say Bob chooses

1, and Alice responds with a big prime—

97. (Note that 97 must be available, be-

cause it can be chosen only if the previ-

ous player chooses 1.) Then Bob has no-

where to go. So the game effectively ends

when a player is forced to choose card 1.

The chart below shows a sample

game, played without much regard for

good tactics. I would suggest that at

this point you stop reading, make a set

of cards and play the game for a while.

Although I’m not going to give away the

winning strategy—I’ll put it in a subse-

quent Feedback section so as not to spoil

your fun—I will analyze the same game

when there are only 40 cards, numbered

1 to 40. The analysis will give you some

broad hints on the 100-card game as

well. Very young children might use a

pack numbered 1 to 20. For brevity, I

will call the Juniper Green n-card “JG-n”

and find a winning strategy for JG-40.

Some opening moves, of course, lose

rapidly. For example:

MOVE    ALICE BOB 
1 38
2 19
3 1
4 37
5 LOSES
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MOVE
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

ALICE
48

32

16

10

35

25

3

9

54

62

93

97

BOB

96

64

80

70

5

75

81

27

2

31

1

COMMENTS
Even number, as required by rule 4
Doubles Alice’s choice
One third of Bob’s choice
Bob is forced to choose a power of 2
So is Alice

Halve
Only choices are 7, 5 (or 1 and lose)

Only 50 and 75 available

Only 27 and 9 available
Bad move!
Forced because 1 loses
Forced
Inspired variant on big prime tactic
Forced
Only choice but a good one
Forced, and loses, because . . .
Big prime tactic

Juniper Green
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ALICE AND BOB
play Juniper Green,

an educational number game.
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The same goes for an opening move

of 34. Some other numbers are also

best avoided. For instance, suppose that

Alice is unwise enough to play 5. Then

Bob strikes back with a vengeance by

picking 25. Alice has no choice but to

play 1; however, this move is bound to

lose. (Note that 25 must still be avail-

able, because it can be chosen only if the

previous player plays 1 or 5.)

Alice’s obvious tactic is to force Bob

to play 5 instead. Can she do this? Well,

if Bob plays 7, then she can play 35, and

Bob has to play 1 or 5, both of which

lose. Good, but can she force Bob to

play 7? Yes: if Bob has chosen 3, then

Alice can play 21, and that forces a reply

of 7. Fine, but how does she make Bob

play 3? Well, if he plays 13, then Alice

plays 39. Alice can go on in this man-

ner, building hypothetical sequences

that force Bob’s reply at every stage and

lead to his inevitable defeat.

But can she maneuver Bob into such

a sequence to begin with? Early in the

game the moves have to involve even

numbers, so the card numbered 2 is

likely to play a pivotal role. Indeed, if

Bob plays 2, then Alice can play 26,

forcing Bob into the trap of playing 13.

So now we come to the crunch. How

can Alice force Bob to play 2?

If Alice opens with 22, then Bob ei-

ther plays 2 and gets trapped in the

long sequence of forced moves outlined

above, or he plays 11. Now Alice has

the choice of playing 1 and losing or

going to 33. When she picks 33, 11 has

already been used up, so Bob is forced

to 3, and so Alice can win. The moves

below summarize Alice’s strategy: the

two sets of columns deal with the two

alternatives Bob can pick. (Assume

throughout that all players avoid 1.) 

There is at least one other possible

opening move for Alice that forces a

win: 26. The same kind of game devel-
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MOVE
1
2
3
4
5
6
7
8
9

10
11
12

ALICE
22

33

21

35

25

BOB

11

3

7

5

LOSES

ALICE

26

39

21

35

25

BOB

2

13

3

7

5

LOSES

Copyright 1997 Scientific American, Inc.



ops but with a few moves interchanged

as in the list below.

The crucial features here are the

primes 11 and 13. If the opening move

is twice such a prime (22 or 26), Bob

has to reply either with 2—at which

point Alice is off to a win—or with the

prime. But then Alice replies with thrice

the prime, forcing Bob to go to 3—and

she’s away again. So Alice wins because

apart from two times the prime, there is

exactly one other multiple that is under

40, namely, 33 or 39. These “medium

primes,” which amount to between one

third and one quarter of the number of

cards, allow Alice to win.

Does any opening choice other than

22 or 26 also lead to a win? That’s for

you to find out. Moreover, you are now

in a good position to analyze JG-100—

or even the ambitious JG-1,000. Is there

a first-player strategy to force a win?

Finally, the time has come to open up

the problem in its full generality. Con-

sider JG-n for any whole number n. Be-

cause no draws are allowed, game the-

ory implies that either Alice—who goes

first—can have a winning strategy or

Bob can, but not both. Suppose n is

“primary” if Alice has a winning strate-

gy for JG-n and “secondary” if Bob

does. Can you characterize which n are

primary and which are secondary?

For very small n, a few quick calcula-

tions indicate that 1, 3, 8 and 9 are pri-

mary, whereas 2, 4, 5, 6 and 7 are sec-

ondary. What about n = 100? Com-

pletely general n? Can anyone find any

patterns? Or solve the whole thing?
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Much of the mail I got on the in-
terrogator’s fallacy [September

1996] demonstrated how easy it is to
get confused about conditional proba-
bilities. So I’ll try to clarify the points
that caused the most difficulty. Most
readers had trouble with the prepara-
tory example. We were told that the
Smith family has two children and that
one of them is a girl. What is the proba-
bility that both are girls? (Assume boys
and girls are equally likely, which may
not be the case in reality. Also, when I
say “one is a girl,” I do not mean that
only one is: I mean that at least one is.)

The big bone of contention was my
ordering the children by birth. There
are four types of two-child family: BB,
BG, GB, GG. Each, I said, is equally likely.
If one child is a girl, we are left with BG,
GB and GG. Of these, only one gives
two girls. So the conditional probabili-
ty that if one is a girl, so is the other, is
1/3. On the other hand, if we are told
“the eldest child is a girl,” then the con-
ditional probability that they are both
girls is now 1/2. 

Some of you said that I shouldn’t
distinguish BG and GB. Why don’t we
just toss two coins to check? The coins
represent the sexes, with the right prob-

abilities (1/2 each). If you’re lazy, like me,
you can simulate the tosses on a com-
puter with a random-number genera-
tor. For one million simulated throws,
here’s what I got:

Two heads 250,025
Two tails 250,719
One of each 499,256

Try it for yourself. If BG and GB are
the same, you should get 333,333 in
the last category.

The other main argument was that
whether or not we know that one child
is G, the other is equally likely to be B or
G. It is instructive to see why this rea-
soning is wrong. When both children
are girls, there is no unique notion of
“the other”—unless I specify which girl
I am thinking about (for example, the
elder). The specification destroys the
assumed symmetry between Bs and
Gs and changes the conditional proba-
bilities. In fact, the statement “the el-
dest child is a girl” conveys more infor-
mation than “at least one child is a girl.”
(The first implies the second, but the
second need not imply the first.) So it
ought not to be a surprise that the as-
sociated conditional probabilities are
different. —I.S.

FEEDBACK

SA

MOVE
1
2
3
4
5
6
7
8
9

10
11
12

ALICE
26

39

21

35

25

BOB

13

3

7

5

LOSES

ALICE

22

33

21

35

25

BOB

2

11

3

7

5

LOSES
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