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Kruskal coordinates as canonical variables for Schwarzschild black holes

Madhavan Varadarajan*
Raman Research Institute, Bangalore 560 080, India

~Received 21 November 2000; published 15 March 2001!

We derive a transformation from the usual ADM metric-extrinsic curvature variables on the phase space of
Schwarzschild black holes to new canonical variables which have the interpretation of Kruskal coordinates. We
explicitly show that this transformation is non-singular, even at the horizon. The constraints of the theory
simplify in terms of the new canonical variables and are equivalent to the vanishing of the canonical momenta.
Our work is based on earlier seminal work by Kucharˇ in which he reconstructed curvature coordinates and a
mass function from spherically symmetric canonical data. The key feature in our construction of a nonsingular
canonical transformation to Kruskal variables is the scaling of the curvature coordinate variables by the mass
function rather than by the mass at left spatial infinity.
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I. INTRODUCTION

This work is devoted to an extension and improvemen
Kuchař’s beautiful analysis of the Hamiltonian description
Schwarzschild black holes. In@1# Kuchař reconstructed the
curvature coordinates~i.e. the areal radius and the Killin
time! as well as a mass function1 from spherically symmetric
Arnowitt-Deser-Misner~ADM ! canonical data on a Cauch
slice. The curvature coordinates were turned into canon
variables and the constraints in the Hamiltonian descrip
simplified when expressed in terms of the new canon
variables. Since the curvature coordinates are not g
spacetime coordinates on the horizon, Kucharˇ’s canonical
transformation is singular on the horizon. Nevertheless
was argued in@1# that, with sufficient care near the horizo
the curvature coordinate variables could be used to simp
the Hamiltonian description and that the imposition of t
constraints was equivalent to the vanishing of the mome
conjugate to the curvature coordinate variables.

In this work we improve upon the treatment of@1# by
constructing a transformation to new canonical variab
which have the interpretation of Kruskal coordinates. T
transformation is free from the singularities of the canoni
transformation to curvature coordinate variables.2 The con-

*Email address: madhavan@rri.ernet.in
1In this regard, note that Eqs.~11! and ~12! in this work were

discovered prior to the work of Kucharˇ by Louis-Martinez, Gegen-
berg and Kunstatter@2# in the context of~111!-dilatonic gravity
models of which spherically symmetric gravity is a special ca
For a brief review of work on canonical spherically symmet
gravity see, for example, the introduction of@1#.

2In @1#, a canonical transformation on the curvature coordin
variables involving scaling these variables by the mass at left sp
infinity yielded new canonical variables which, on shell, also h
the interpretation of Kruskal coordinates. However, as discusse
Sec. VII, the transformation from ADM variables to these Krusk
variables is still not free from singularities. In contrast, our cano
cal transformation involves scaling of the curvature coordinate v
ables by themass function. It is this feature which enables a non
ingular description.
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straints simplify in terms of the new Kruskal variables a
their imposition is equivalent to the vanishing of the ne
canonical momenta. As in@1#, the true degrees of freedom
are the mass at left infinity and the difference between K
ing time and parametrization time at left infinity.

The layout of the paper is as follows. In Sec. II w
quickly review the relevant parts of@1#. The purpose of this
review is to establish notation and to collect the set of eq
tions from @1# which we shall use to establish our resul
The reader may consult@1# for more details and we sha
assume familiarity with that work. In Sec. III we derive th
canonical transformation to the Kruskal variables from t
curvature coordinate variables of@1# and express the con
straints in terms of the Kruskal variables. In Sec. IV, w
express the ADM variables in terms of the new canoni
variables and note that the transformation is manifestly n
singular at the horizon.

We describe our choice of asymptotic behavior for t
canonical variables in Sec. V. In Sec. VI we invert the tran
formation of Sec. IV and express the Kruskal variables
terms of the ADM variables. Section VII contains our co
cluding remarks.

II. REVIEW OF KUCHARˇ ’S RESULTS

In this section we briefly review the results of@1#. As
mentioned in the introduction, the purpose of this section
to establish notation and collect the set of equations from@1#
which we shall use to establish our results. The reader m
consult@1# for more details.

Spherically symmetric Cauchy slices in the Hamiltoni
description of spherically symmetric gravity are diffeomo
phic to S23R. The spatial metric induced on such a slice

ds25L2~r !~dr !21R2~r !~dV!2 ~1!

wherer is a radial coordinate anddV is the line element on
the unit sphere.r 5` labels right spatial infinity andr 5
2` labels left spatial infinity.PL(r ) andPR(r ) are the mo-
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menta conjugate toL(r ) andR(r ). After parametrizing the
times at the two spatial infinities, the action takes the for3

S~L,PL ,R,PR ,N,Nr ,t1 ,t2!

5E dtE
2`

`

dr~PLL̇1PRṘ2NH2NrHr !

2E dt~M 1ṫ12M 2ṫ2!. ~2!

Hr is the radial diffeomorphism constraint andH is the scalar
constraint. They are given by

Hr5PRR82LPL8 ~3!

and

H52R21PRPL1
1

2
R22LPL

2 1L21RR92L22L8RR8

1
1

2
L21R82 2

1

2
L. ~4!

The parameterst1 and t2 label parametrization clocks a
right and left spatial infinity and are to be freely varied in t
action as are the lapse function,N, and the radial shift vecto
field, Nr . M 6 are parameters which appear in the asympto
fall off of L at right and left spatial infinity.

To leading order inr, the asymptotic behavior of the ca
nonical coordinates asr→6` on any Cauchy slice of con
stant ‘‘‘t ’’ is

L511M 6ur u21, R5ur u. ~5!

By parametrizing the standard form of the Schwarzsch
line element in curvature coordinates in terms of arbitr
parameters (t,r ), comparing the result with the standa
ADM form of the line element and using the relation b
tween canonical momenta and the velocities of canon
coordinates, Kucharˇ was able to reconstruct the Schwarz
child mass and the rate of change of Killing time from t
canonical data. The expression for the Schwarzschild m
function is

M5
1

2
R21PL

2 2
1

2
L22RR821

1

2
R. ~6!

It is useful to define the quantity ‘‘F ’’ by

3We denote derivatives with respect to ‘‘t ’’ by a dot and spatial
derivatives with respect to ‘‘r ’’ by a prime. We use units in which
Newton’s constant,G, the speed of light,c and Planck’s constant
\, are unity.
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2M

R
~7!

5S R8

L D 2

2S PL

R D 2

. ~8!

When the constraints are satisfied, the vanishing ofF deter-
mines the location of horizons of the~extended! Schwarzs-
child spacetime. We shall continue to use the word ‘‘ho
zon’’ whenF50 even when the constraints are not impos

Denoting the Killing time byT, its rate of change along
the slice is given by

T852R21F21LPL . ~9!

T is turned into a canonical coordinate by making a transf
mation from@L(r ),PL(r ),R(r ),PR(r ),t6# to the variables
@T(r ),PT(R),R(r ),PR(r ),m,p#4 where

T~r !5t11 È r

T8~ r̄ !dr̄, ~10!

PT~r !52M 8~r !, ~11!

5L21~R8H1R21PLHr !, ~12!

PR5PR2
1

2
R21LPL2

1

2
R21F21LPL

2R21L22F21
„~LPL!8~RR8!2LPL~RR8!8…

~13!

5F21~R21PLH1R8L22Hr !, ~14!

p5T~2`!2t2 , ~15!

m5M 2 . ~16!

The action in Eq.~2! is replaced by

S~T,PT ,R,PR ,N,Nr ,m,p!

5E dtS pṁ1E
2`

`

dr~PTṪ1PRṘ! D
2E dtE

2`

`

dr~NH2NrHr !. ~17!

The constraints take the form

Hr5PRR81PTT8, ~18!

LH5F21PTR81FT8PR , ~19!

with

4Our notation differs from the notation of@1# in that R,PR of @1#
are denoted byR,PR in this work.
7-2
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L5~F21R822FT82!1/2. ~20!

From Eqs.~9!, ~14! and ~20!, it can be seen that whenF
→0, the transformation becomes singular.

III. CANONICAL TRANSFORMATION TO KRUSKAL
VARIABLES

In this section we construct a canonical tranformat
from the curvature coordinate variables (R,PR ,T,PT) to
Kruskal variables (U,PU ,V,PV). The transformation is per
formed in two steps. The curvature coordinate variables
scaled with the mass function,M (r ), in the first step and in
the second, a point transformation is made from the sca
variables to the Kruskal variables.

In what follows, we shall make use of the identity5

E
2`

`

dr f ~r !E
2`

r

dr̄g~ r̄ !52E
2`

`

drg~r ! È r

dr̄ f ~ r̄ !.

~21!

The Liouville form, v, in terms of the curvature coordi
nate variables is

v5pṁ1E
2`

`

dr~PTṪ1PRṘ!. ~22!

Using Eqs.~21! and~11!, and ignoring total time derivatives
it can be shown that

E
2`

`

drPRṘ5E
2`

`

dr~2MPR!
d

dtS R

2M D1E
2`

`

dr
PRR

M2
mṁ

2E
2`

`

dr~2M PT!
d

dtS È r

dr̄
PRR

2M2D , ~23!

and that

E
2`

`

drPTṪ5E
2`

`

dr~2M PT!
d

dtS T

2M D1E
2`

`

dr
PTT

M2 mṁ

2E
2`

`

dr~2M PT!
d

dtS È r

dr̄
PTT

2M2D . ~24!

Equations~23! and~24! imply that, up to a total time deriva
tive,

v5 p̄ṁ1E
2`

`

dr~PT̄TG 1P R̄RG !, ~25!

where the new canonical variables are given by

p̄5p1mE
2`

`

drS PTT1PRR

M2 D , ~26!

5For a proof of the identity, see@1#.
08400
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R̄5
R

2M
, ~27!

P R̄52MPR , ~28!

T̄5
T

2M
2 È r

dr̄S PTT1PRR

2M2 D , ~29!

PT̄52M PT . ~30!

Since the variable canonically conjugate to the new mom
tum, p̄, is still the left mass, we have continued to denote
by m.

This completes the first step of the transformation
Kruskal variables. In the second step, we define the Krus
variables through the following point transformation on t
scaled variables:

~R̄21!eR̄52UV, ~31!

T̄5 lnUVUU. ~32!

It follows that

PT̄5
VPV2UPU

2
, ~33!

and

P R̄5
VPV1UPU

2F
, ~34!

whereF is a function ofUV through Eqs.~7! and~31!. Thus,
the new set of canonical variables is (U,PU ,V,PV) as well
as the canonically conjugate parameters (m,p̄). This com-
pletes our presentation of the canonical transformation fr
the curvature coordinate variables to the Kruskal variable

Next, we present expressions for the constraints in te
of the new canonical variables. It is easy to check that
terms of the Kruskal variables the diffeomorphism constra
is

Hr5PUU81PVV8. ~35!

It is easier to express the rescaled scalar constraint,LH, in
terms of the Kruskal variables, rather thanH. To do this, we
use Eqs.~11!, ~14! and~27!–~32! in Eq. ~19!. Then it follows
that LH takes the form

LH5PVV82PUU82
R̄2

2M2 eR̄PUPV. ~36!

Note that from Eq.~31!, the vanishing ofF implies the
vanishing of at least one ofU or V. It follows from Eqs.~32!
and ~34!, that the transformation between curvature coor
nate variables and Kruskal variables is singular on the h
7-3
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zon. Note, however, that the expressions for the constra
in terms of the Kruskal variables remain non-singular on
horizon.

IV. ADM VARIABLES IN TERMS OF KRUSKAL
VARIABLES

As noted in previous sections, both the transformat
from the ADM variables to the curvature coordinate va
ables as well the transformation from curvature coordin
variables to Kruskal variables, are singular whenF50. In
this section we present expressions for the ADM variable
terms of the Kruskal variables and see that this transfor
tion is manifestlynon-singularat F50.

To expressL in terms of the Kruskal variables we sta
from Eq.~20! and use Eqs.~7!, ~11! and~27!–~32!. Then it is
straightforward to show that

L25
16M2

R̄eR̄ S U81
PVR̄2eR̄

4M2 D S 2V81
PUR̄2eR̄

4M2 D . ~37!

In the above expression,R̄ and M are to be thought of as
functions of the Kruskal variables.R̄ is a function ofUV
through Eq.~31!. To expressM in terms of the Kruskal vari-
ables, we use Eqs.~11!, ~30!, ~33! and ~16!. We obtain

M25m21E
2`

r

dr̄
UPU2VPV

2
. ~38!

To expressLPL in terms of the Kruskal variables w
start from Eq.~9! and use Eqs.~11!, ~27!, ~29! and Eqs.~31!,
~32!, ~34!. We obtain

LPL524M2e2R̄XVS U81
PVR̄2eR̄

4M2 D
1US 2V81

PUR̄2eR̄

4M2 D C. ~39!

Next, R can be expressed as

R52MR̄ ~40!

with M given by Eq.~38! and R̄ by Eq. ~31!.
The calculation ofPR in terms of the Kruskal variables i

fairly involved and we sketch the main steps here. We eva
ate PR through Eq.~13!. We first evaluate the expressio
@(LPL)8(RR8)2LPL(RR8)8# which occurs in Eq.~13!. To
this end, it is useful to define

g15US 2V81
PUR̄2eR̄

4M2 D , ~41!

g25VS U81
PVR̄2eR̄

4M2 D . ~42!

Then from Eqs.~11!, ~30!, ~27! and ~39! it follows that
08400
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~LPL!8~RR8!2LPL~RR8!8

54M2S R8

2M D „2LPLR̄8~R̄11!24M2e2R̄R̄~g181g28!…

24M2R̄S R8

2M D 8
LPL . ~43!

Equations~27!, ~30!, ~11!, ~31! and ~33! imply that

R8

2M
5R̄21e2R̄~g12g2!. ~44!

Using Eqs.~44! and ~39! in Eq. ~43! we get

~LPL!8~RR8!2LPL~RR8!8532M4e22R̄~g2g182g28g1!.
~45!

By substituting this expression in Eq.~13! and using Eqs.
~7!, ~34! and ~39!, we obtain

PR52R̄S VPV1UPU

4M D2Me2R̄~UV82VU8!1
LPL

4MR̄

216
M3e2R̄

L2
H ~46!

where

H5S U81
PVR̄2eR̄

4M2 D S 2V81
PUR̄2eR̄

4M2 D 8

2S U81
PVR̄2eR̄

4M2 D 8S 2V81
PUR̄2eR̄

4M2 D . ~47!

In Eq. ~46!, LPL andL2 are given by Eqs.~37! and~39! and
M by Eq. ~38! and R̄ through Eq.~31!.

As mentioned earlier, Eqs.~7! and ~31! imply that F50
corresponds to the vanishing of at least one ofU or V. As can
be explicitly verified, the expressions for the ADM variabl
(L,PL ,R,PR) are all non-singular when this happens a
hence, at the horizon, the ADM variables continue to
smooth functions of the Kruskal variables.

For the transformation to be defined, it is necessary
impose the conditionMÞ0. Since we are interested in blac
holes rather than naked singularities, we shall imposeM
.0. Further, in the ADM description, the conditionsL.0
andR.0 hold and these conditions must be imposed in
description in terms of the Kruskal variables. We shall co
ment further on these points in Sec. VI where we invert
transformation and express the Kruskal variables in term
the ADM variables.

Finally, note that we have yet to reconstruct the remain
ADM variables, namely the parametrization times (t6),
from the Kruskal variables. Since this reconstruction requi
not only the variablep̄ in the Kruskal description but also th
7-4
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asymptotic behavior of the Kruskal variables, we sh
return to this point in Sec. V, after we have analyzed
asymptotics.

V. ASYMPTOTICS

In this section we describe our choice of asymptotic c
ditions for the ADM variables and the Kruskal variable
These conditions ensure that the various integrals enc
tered in the canonical transformation of Sec. III are conv
gent near spatial infinity.

In future work we would like our framwework to adm
matter couplings. To this end, we expect that our choice
boundary conditions is general enough to handle coupli
to a large class of matter fields, namely those for which
matter fields fall off faster than any power ofur u21 at
infinity.6

In the Schwarzschild spacetime, the Kruskal coordina
are related to the curvature coordinates near right and
infinity by

U57A R

2M
21e(R2T)/4M, ~48!

V56A R

2M
21e(R1T)/4M. ~49!

Therefore, asr→6` we impose

U57A ur u
2M 6

21eur u/4M6e2T̄(6`)/2
„11Q~r !…, ~50!

V56A ur u
2M 6

21eur u/4M6eT̄(6`)/2
„11Q~r !…,

~51!

UPU5Q~r !, ~52!

VPV5Q~r !. ~53!

Here T̄(6`)ªT̄(r )ur 56` and M 65M (r )ur 56` , with
M (r ) given by Eq.~38!. Q(r ) denotes smooth fall off faste
than ur u2n, n arbitrarily large.

By virtue of the relation between Kruskal variables a
ADM variables derived in Sec. IV, the conditions~50!–~53!
induce the following asymptotic behavior for the ADM
variables7 as r→6`:

6Note that we have not looked for the weakest possible asymp
conditions on the gravitational variables but simply for ones wh
provide an elegant, consistent description and which admit coup
to a fairly large class of matter fields.

7Note that Eq.~54! admits the Schwarzscild solution. In contra
~41! of @1# admits the Schwarzschild solution only ife,1 in that
equation, whereas~58! of @1# does not admit the Schwarzschi
solution at all.
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L5
1

A12
2M 6

ur u

1Q~r !, ~54!

R5ur u1Q~r !, ~55!

PL5Q~r !, ~56!

PR5Q~r !. ~57!

Alternatively, we can start from Eqs.~54!–~57! and fol-
lowing the transformations described in Sec. III, we can
duce boundary conditions on the curvature coordinate v
ables, the scaled curvature coordinate variables and fin
the Kruskal variables. Following this procedure, it can
checked that Eqs.~50!–~53! are obtained.

Next, we analyze the asymptotic behavior of the co
straints, the lapse function and the shift vector field. It can
checked that the constraints fall off faster than any inve
power of ur u: i.e.,

H,Hr5Q~r !. ~58!

The behavior of the lapse and shift should be such that
smeared scalar constraint,*2`

` drNH and the smeared dif
feomorphism constraint,*2`

` drNrHr be well defined, differ-
entiable functions on the phase space and that the mot
they generate preserve the boundary conditions~54!–~57!.

For the shift vector field asr→6`, we impose

Nr5Q~r !. ~59!

It can be checked that with this behavior the smeared diff
morphism constraint is a well defined, differentiable functi
on the phase space.

For the lapse function we impose

N5N61Q~r !, ~60!

whereN6 are constants. In the description in terms of t
ADM variables, the smeared scalar constraint is a differ
tiable function on phase space only whenN1 andN2 vanish.
For non-vanishingN1 or N2 , the boundary term (N1M 1

2N2M 2) has to be added to the smeared scalar constr
to render the combination differentiable on the phase sp
As discussed in@1#, parametrization of the times at spati
infinity leads to the action~2! in which the boundary term is
replaced by the term (ṫ1M 12 ṫ2M 2). In the description in
terms of Kruskal variables, the smeared scalar constrain
differentiable without the addition of any boundary term
even for non-vanishingN1 or N2 . As in the case of the
description in terms of the curvature coordinate variabl
instead of the boundary terms of the ADM description the
are a pair of canonically conjugate parameters (p̄,m) ~see
Sec. II!.

As mentioned earlierm is the mass at left spatial infinity
p̄ can still be interpreted as the difference between the K
ing time and the parametrization time at left infinity as w
now show. From Eq.~29! we have

tic
h
g
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E
2`

` PRR1PTT

2M2
5T̄~2`!2

T~2`!

2m
. ~61!

Then Eq.~26! implies that

p̄5p12mS T̄~2`!2
T~2`!

2m D . ~62!

From Eq.~15! we have that

p5T~2`!2t2 , ~63!

which together with Eq.~62! implies that

p̄52mT̄~2`!2t2 . ~64!

Since 2mT̄(2`) is the Killing time at left spatial infinity,p̄
has the interpretation of the difference between the Kill
time at left infinity and the parametrization time at le
infinity.8 Note also that from Eqs.~10! and ~29! we have

T̄~`!5
t1

2M 1
. ~65!

Now we can finally complete the reconstruction of Sec. IV
the ADM parameterst6 from the Kruskal variables. Using
Eqs.~64! and ~65! we have

t252„p̄24mT̄~2`!…, ~66!

t152M 1T̄~`!. ~67!

HereM 15M (r )ur 5` is obtained from the Kruskal variable
through Eq. ~38! and T̄(6`) are obtained from the
asymptotic behavior of the Kruskal variables from Eqs.~50!
and ~51!.

This completes our discussion of the asymptotics, as w
as the reconstruction, of the ADM variables from the Krus
variables. In the next section we shall invert the expressi
for the ADM variables in terms of the Kruskal variables.

VI. KRUSKAL VARIABLES IN TERMS OF ADM
VARIABLES

The Kruskal variables can be expressed in terms of
ADM variables using the results of Sec. III in conjunctio
with Eqs.~10!–~16!. However, the transformation describe
in Sec. III as well as the transformation from ADM variabl
to curvature coordinate variables are both singular at the
rizon. For the transformation between the ADM variab
and the Kruskal variables to be non-singular andinvertible, it
is necessary to prove that the Kruskal variables can be
structed from the ADM variables through a non-singu

8Note that in generalp̄Þp. However, on the constraint surfac

p5 p̄. Since the interpretation ofp,p̄ comes from their interpreta
tion on a solution, they have identical interpretations even tho
they define different functions on the~unconstrained! phase space.
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transformation. In this section we provide the required pro
We shall be brief and only describe the main steps.

In what follows, we shall assume that

L.0, M.0, R.0. ~68!

We define

L152V81
R̄2

4M2 eR̄PU , ~69!

L25U81
R̄2

4M2 eR̄PV . ~70!

Substitution of Eqs.~69!, ~70! in Eqs.~37!, ~39! yields

L25
16M2

R̄eR̄
L1L2 , ~71!

LPL524M2e2R̄~UL11VL2!.
~72!

Note that Eq.~68! together with the asymptotic behavior o
the Kruskal variables implies that

L1,0, L2,0. ~73!

By using Eqs.~7!, ~27!, ~28!, ~34!, ~69!, ~70! and ~39! in
Eq. ~46!, we get

H~r !52
L2eR̄

16M3 S PR1
FPRR~R̄11!

2M
1

LPLF

4M
D . ~74!

Equation ~74! is to be viewed as an expression forH in
terms of the ADM variables. Thus in Eq.~74!, M is given by
Eq. ~6!, F by Eq. ~7! and R̄ by Eq. ~27!.

From Eqs.~47!, ~69! and ~70! we have

L2L182L1L285H. ~75!

At this stage it is useful to define

G~r !ª
L2R̄eR̄

16M2
. ~76!

From Eq.~71! we get

L1L25G, ~77!

whereG is expressible as a function of the ADM variable
through Eq.~76!.

From Eqs.~75! and ~77! we get a first order ordinary
differential equation forL1 /L2. The boundary conditions
~50!–~53! along with Eq.~65! can be used in Eqs.~69! and
~70! to fix the integration constant in the solution of th
differential equation. The solution to the differential equati
and Eq.~77! can be solved to obtain
h

7-6
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L152AGet1/4M1e*`
r dr̄(H/G), ~78!

L252AGe2t1/4M1e2*`
r dr̄(H/G). ~79!

Note that the signs ofL1 ,L2 are fixed by the conditions
~73!. Equations~78! and~79! expressL1 ,L2 in terms of the
ADM variables. We shall now solve forPU andPV in terms
of L1 ,L2 and the ADM variables. From Eqs.~12! and~14!,
it can be shown that

UPU522ML22~LH2Hr !S R82
LPL

R D , ~80!

VPV52ML22~LH1Hr !S R81
LPL

R D . ~81!

To evaluate (R86LPL /R) we use Eqs.~72!, ~27!, ~30!, ~33!
and ~31!. We obtain

R81
LPL

R
52

4M

R̄eR̄
VL2 , ~82!

R82
LPL

R
5

4M

R̄eR̄
UL1 . ~83!

We substitute Eqs.~82!, ~83! in Eqs.~80!, ~81! and use Eqs.
~69!, ~70! to obtain

PU52
LH2Hr

2L2
, ~84!

PV52
LH1Hr

2L1
. ~85!

SinceL1 andL2 are given by Eqs.~78! and~79!, Eqs.~84!
and~85! expressPU andPV in terms of the ADM variables.

We now show thatU and V can also be determined i
terms of the ADM data in a non-singular way. From Eq
~82! and ~83! we obtain

V52S R81
LPL

R D R̄eR̄

4ML2
, ~86!

U5S R82
LPL

R D R̄eR̄

4ML1
. ~87!

SinceL1 andL2 have been expressed in terms of the AD
variables, Eqs.~86! and~87! expressU andV in terms of the
ADM variables in a manifestly non-singular form.

Finally, it is easy to see that (m,p̄) are also determined in
terms of the ADM variables.m is trivially obtained from the
asymptotic behavior ofL at left infinity. p̄ can be expresse
as

p̄5
22mV~r !

U~r !
U

r 52`

2t2 . ~88!
08400
.

SinceV andU are known in terms of the ADM variables, s
is p̄.

Thus, we have shown that the Kruskal variable
(U,PU ,V,PV ,m,p̄), are uniquely determined through man
festly non-singular transformations of the ADM variable
(L,PL ,R,PR ,t1 ,t2).

VII. CONCLUDING REMARKS

In this work we have constructed a transformation b
tween the ADM variables, (L,PL ,R,PR ,t1 ,t2), and new
canonical variables (U,PU ,V,PV ,m,p̄). U andV are inter-
preted as Kruskal coordinates andPU ,PV are their conjugate
momenta.m is the mass at left infinity.p̄ is interpreted as the
difference between the Killing time at left infinity and th
parametrization time,t2 , at left infinity, with the Killing
time at right infinity synchronised with the parametrizatio
time, t1 , at right infinity.

This transformation is manifestly non-singular and inve
ible. In particular, it is non-singular at the horizon. For th
transformation to be well defined, we assume that the m
function, M (r ), and the areal radius,R(r ), are both strictly
positive i.e.R,M.0. The interpretation ofL2 as a metric
coefficient implies thatL2Þ0. The conditionsL.0 and
M.0 lead to complicated restrictions on the Kruskal va
ables through Eqs.~38! and ~37!. The conditionR.0 is
equivalent, through Eq.~31!, to the condition (2UV).1.
Note that this is exactly the condition that defines the sin
larity free region of the extended Schwarzschild spacetim

In terms of the Kruskal variables, the constraints are giv
by Eqs.~35! and~36!. Equations~84! and~85! imply that the
vanishing of the constraints is equivalent to the vanishing
PU and PV . This equivalence does not entail the involve
arguments nearF50 which were used in@1# to show that the
imposition of the constraints impliedPR5PT50. After the
imposition of the constraints, the true degrees of freedom
( p̄,m) and quantization of this reduced theory is trivial. Th
condition M (r ).0 reduces to the conditionm.0 on the
constraint surface. It is useful to make a further point tra
formation on the pair (p̄,m) to obtain (x5 ln m, px5mp̄).
We can now pass to quantum theory on the Hilbert sp
$c(x)PL 2(R)% by setting

x̂c~x!5xc~x!, ~89!

p̂xc~x!52 i
d

dx
c~x!. ~90!

As mentioned in footnote 2, a transformation to new c
nonical variables which also have the interpretation
Kruskal coordinates, was constructed in@1# by rescaling the
curvature coordinate variables by the left mass ‘‘m’’ rather
than by the mass function, ‘‘M (r ), ’’ as is done here. It can
be checked that this transformation of@1# is singular on
points in the ~unconstrained! phase space whenF51
22M /RÞ0 and fª122m/R50. This is, of course, pos
sible only off the constraint surface. Nevertheless, it is cl
that any neighborhood of the constraint surface conta
7-7
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points whereFÞ0, f 50 and hence, where the transform
tion is ill defined. Since Poisson brackets involve function
derivatives, their definition, even on the constraint surfac
requires a nonsingular structure in a neighborhood of
constraint surface. This is one reason why the transforma
to Kruskal variables in@1# is unsatisfactory. In contrast th
transformation described in this work is nonsingular on
entire phase space~of course, subject to the condition
M ,L2,R.0).

Although this work is concerned with spherically sym
metric vacuum gravity, the physically interesting problem
that of spherical matter collapse say, the collapse of a m
less scalar field. In the collapse situation, the coordinar
ranges from 0 tò with r 50 being the fixed point under th
action of the rotation isometry group. As discussed in@3#, the
mass functionM (r ) can still be constructed from the ADM
data. Moreover the apparent horizon is defined throughF
50. The canonical transformation toR,T variables can still
be done but this transformation is singular on the appa
horizon. Thus, it would be of interest to construct the ana
ys

08400
l
,
e
n

e

s-

nt
g

of the Kruskal coordinates for the matter collapse case. N
that the treatment in this work would have to be modified
deal with the conditionM (r )ur 5050.

Apart from the Kruskal coordinates, there exist other g
bal coordinates for the extended Schwarzschild space
such as those described in@4,5#. It would be of interest to
reconstruct these from the ADM data. In particular, it wou
be of interest to try to use these~putative! variables to con-
struct a time variable which is a spacetime scalar@6,3# even
in the presence of matter couplings.
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