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Kruskal coordinates as canonical variables for Schwarzschild black holes
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We derive a transformation from the usual ADM metric-extrinsic curvature variables on the phase space of
Schwarzschild black holes to new canonical variables which have the interpretation of Kruskal coordinates. We
explicitly show that this transformation is non-singular, even at the horizon. The constraints of the theory
simplify in terms of the new canonical variables and are equivalent to the vanishing of the canonical momenta.
Our work is based on earlier seminal work by Kuclawhich he reconstructed curvature coordinates and a
mass function from spherically symmetric canonical data. The key feature in our construction of a nonsingular
canonical transformation to Kruskal variables is the scaling of the curvature coordinate variables by the mass
function rather than by the mass at left spatial infinity.
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[. INTRODUCTION straints simplify in terms of the new Kruskal variables and
their imposition is equivalent to the vanishing of the new
This work is devoted to an extension and improvement oftanonical momenta. As ifil], the true degrees of freedom
Kuchats beautiful analysis of the Hamiltonian description of are the mass at left infinity and the difference between Kill-
Schwarzschild black holes. 1] Kuchar reconstructed the ing time and parametrization time at left infinity.
curvature coordinateé.e. the areal radius and the Killing The layout of the paper is as follows. In Sec. Il we
time) as well as a mass functibfrom spherically symmetric  quickly review the relevant parts ¢1]. The purpose of this
Arnowitt-Deser-Misnef(ADM) canonical data on a Cauchy review is to establish notation and to collect the set of equa-
slice. The curvature coordinates were turned into canonicdions from[1] which we shall use to establish our results.
variables and the constraints in the Hamiltonian descriptiorf he reader may consuft] for more details and we shall
S|mp||f|ed When expressed in terms Of the new Canonicaﬂssume fam”larlty Wlth that Work. In SeC. I we deriVe the
variables. Since the curvature coordinates are not googanonical transf_ormation_to the Kruskal variables from the
spacetime coordinates on the horizon, Ku&hamanonical curvature coordinate variables pf] and express the con-

transformation is singular on the horizon. Nevertheless, iB@ints inh terms of thebll<ru§kal variable_;. In Sec. 1V, \'Nel
was argued 1] that, with sufficient care near the horizon, €XPress the ADM variables in terms of the new canonica

the curvature coordinate variables could be used to Simp"f)yanables and note that the transformation is manifestly non-

the Hamiltonian description and that the imposition of thesmgular at the horizon.

constraints was equivalent to the vanishing of the moment We describe our choice of asymptotic behavior for the
) q . _g %anonical variables in Sec. V. In Sec. VI we invert the trans-
conjugate to the curvature coordinate variables.

. . formation of Sec. IV and express the Kruskal variables in
In this work we improve upon the treatment [df] by

. . : - terms of the ADM variables. Section VII contains our con-
constructing a transformation to new canonical varlable%|uding remarks.

which have the interpretation of Kruskal coordinates. This
transformation is free from the singularities of the canonical

transformation to curvature coordinate variatfiéEhe con- L. REVIEW OF KUCHAR" 'S RESULTS

In this section we briefly review the results pf]. As
*Email address: madhavan@rri.ernet.in mentioned in the introduction, the purpose of this section is
YIn this regard, note that Eq$l1) and (12) in this work were  to establish notation and collect the set of equations frbjm
discovered prior to the work of Kuchéwy Louis-Martinez, Gegen- which we shall use to establish our results. The reader may
berg and Kunstattef2] in the context of(1+1)-dilatonic gravity — consult[1] for more details.
models of which spherically symmetric gravity is a special case. Spherically symmetric Cauchy slices in the Hamiltonian
For a brief review of work on canonical spherically symmetric description of spherically symmetric gravity are diffeomor-

gravity see, for example, the introduction [df]. o Phic to S?2xR. The spatial metric induced on such a slice is
In [1], a canonical transformation on the curvature coordinat

variables involving scaling these variables by the mass at left spatial
infinity yielded new canonical variables which, on shell, also had
the interpretation of Kruskal coordinates. However, as discussed in
Sec. VII, the transformation from ADM variables to these Kruskal
variables is still not free from singularities. In contrast, our canoni-
cal transformation involves scaling of the curvature coordinate variwherer is a radial coordinate andi(} is the line element on
ables by thamass functionlt is this feature which enables a nons- the unit spherer =< labels right spatial infinity and =
ingular description. — o labels left spatial infinityP, (r) andPg(r) are the mo-

do?=A?(r)(dr)?+R?(r)(dQ)? @
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menta conjugate ta (r) andR(r). After parametrizing the 2M
times at the two spatial infinities, the action takes the form F=1-— (7)
S(A,P, ,R,Pgr,N,N", 7, ,7_) R’\2 Pa 2 g
xR ©

=fdtf dr(Py,A+PgR—NH—N"H,) _ o o
—o When the constraints are satisfied, the vanishing deter-
mines the location of horizons of tHextendedl Schwarzs-
_f dt(M 7, —M_71_). (2)  child spacetime. We shall continue to use the word “hori-

zon” whenF =0 even when the constraints are not imposed.

Denoting the Killing time byT, its rate of change along
H, is the radial diffeomorphism constraint aHds the scalar the slice is given by
constraint. They are given by

T'=-R'F'AP,. 9
H =PgrR' = AP} () Tis turned into a canonical coordinate by making a transfor-
mation from[A(r),P,(r),R(r),Pg(r),7.] to the variables
and [T(r)va(R)vR(r)inR(r)vmvp]4 Where
r JEE—
1 T(r)= +jT’rdr, 10
H:-R*lpRPAJrER*ZAPiJFA*lRR'—A*ZA’RR’ =7t |, T (19
1 o1 Pr(r)=—M'(r), (11
+§A*1R 2 —5A. (4
=A"YR'H+R™IP,H,)), (12)

The parameters, and 7_ label parametrization clocks at 1

right and left spatial infinity and are to be freely varied inthe ~ IIg=Pg— ER_lA Pa— ER_lF_lA Pa

action as are the lapse functidw, and the radial shift vector

field, N". M .. are parameters which appear in the asymptotic —RIA2F (AP, (RR)—AP,(RR)")
fall off of A at right and left spatial infinity.

To leading order irr, the asymptotic behavior of the ca- (13
nOI‘lICE‘i‘! Sqordlnates as— = on any Cauchy slice of con- —F YR IP,H+R'A2H,), (14)
stant “‘t” is

p=T(—0)—71_, (15
A=1+M.|r|7Y, R=]r|. (5
m=M_. (16)

By parametrizing the standard form of the Schwarzschil L .
line element in curvature coordinates in terms of arbitrar)(j.rhe action in Eq(2) is replaced by
parameters t(r), comparing the result. with the standard S(T,P7,R,ITr,N,N",m,p)

ADM form of the line element and using the relation be-
tween canonical momenta and the velocities of canonical : o . .
coordinates, Kuchawas able to reconstruct the Schwarzs- = | dt| pm+ %dr(PTT’LHRR)
child mass and the rate of change of Killing time from the
canonical data. The expression for the Schwarzschild mass o ;
function is — | dt B dr(NH—N"H,). (17
1 , 1 1 The constraints take the form
M=§R‘1PA—§A‘2RR2+§R. (6)
H,=I1IgR'+P;T’, (18
It is useful to define the quantityF” by AH=F 'P{R' +FT'IlR, (19

with

3We denote derivatives with respect to™by a dot and spatial
derivatives with respect tor" by a prime. We use units in which
Newton’s constant(s, the speed of lightc and Planck’s constant, 4Our notation differs from the notation ¢1] in that RPg of [1]
f, are unity. are denoted by, Il in this work.

084007-2



KRUSKAL COORDINATES AS CANONICAL VARIABLES ...

A=(FIR2-FT'?)12 (20

From Egs.(9), (14) and (20), it can be seen that wheh
—0, the transformation becomes singular.

IIl. CANONICAL TRANSFORMATION TO KRUSKAL
VARIABLES

PHYSICAL REVIEW D63 084007

In this section we construct a canonical tranformation

from the curvature coordinate variableR,{Ig,T,Pt) to
Kruskal variables ,P,V,Py). The transformation is per-

R= R 2
“om @
[g=2MIlg, (28)
P;T+IIgR
f ——— =, (29
M2
PT=2MP;. (30)

formed in two steps. The curvature coordinate variables ar&ince the variable canonically conjugate to the new momen-

scaled with the mass functioW (r), in the first step and in

tum, p, is still the left mass, we have continued to denote it

the second, a point transformation is made from the scalegy m,

variables to the Kruskal variables.
In what follows, we shall make use of the identity

f:drf(r)f_rwdTg(f_)=—f:cdrg(r)J;dﬁ(r_)

21

The Liouville form, w, in terms of the curvature coordi-

nate variables is

wzpmf dr(PyT+TIgR). 22)

Using Eqgs(21) and(11), and ignoring total time derivatives,

it can be shown that

I

©

_ d/ R\ [+ TR .
drlIgR= f_ dr(ZMHR)a M +f_ ermm

* d r —HRR
—Jixdr(ZM PT)a( der W>, (23)

and that
fdeT—fwd 2MPd !
L ArPeT= | dr2MPr Gl om
* d r—PTT
_j, dr(ZMPT)& fdrmz .

Equationg23) and(24) imply that, up to a total time deriva-
tive,

o P;T .
+J ermm

(29)

w=3m+f dr(P7T+1IgR), (25)
where the new canonical variables are given by

_ o PTT+ HRR

p=p+mf_mdr vz ) (26)

SFor a proof of the identity, sefd].

This completes the first step of the transformation to
Kruskal variables. In the second step, we define the Kruskal
variables through the following point transformation on the
scaled variables:

(R—1)eR=—UV, (31)
= v 32
=1n U . ( )
It follows that
VP,—UP
T (33
and
VP,+UP,
R 5 (34)

whereF is a function ofUV through Eqs(7) and(31). Thus,
the new set of canonical variables i9,Py,V,Py) as well

as the canonically conjugate parametersf). This com-
pletes our presentation of the canonical transformation from
the curvature coordinate variables to the Kruskal variables.

Next, we present expressions for the constraints in terms
of the new canonical variables. It is easy to check that in
terms of the Kruskal variables the diffeomorphism constraint
is

H=PyU'+PyV'". (35

It is easier to express the rescaled scalar constraidt, in
terms of the Kruskal variables, rather thienTo do this, we
use Eqgs(11), (14) and(27)—(32) in Eq.(19). Then it follows
that AH takes the form

R2

R —
AH:PVV'—PUU'—WeRPUPV. (36)

Note that from Eq.(31), the vanishing ofF implies the
vanishing of at least one &f or V. It follows from Eqgs.(32)
and (34), that the transformation between curvature coordi-
nate variables and Kruskal variables is singular on the hori-

084007-3



MADHAVAN VARADARAJAN PHYSICAL REVIEW D 63 084007

zon. Note, however, that the expressions for the constraint§ AP ,)'(RR')— AP,(RR')’
in terms of the Kruskal variables remain non-singular on the

horizon. =4M2(m>(—APAE’(§+ 1)-4M2e RR(g}+g3))
IV. ADM VARIABLES IN TERMS OF KRUSKAL R\’
VARIABLES _AMZRl
4M ﬁ(ZM) AP, . (43

As noted in previous sections, both the transformation
from the ADM variables to the curvature coordinate vari- Equations(27), (30), (11), (31) and (33) imply that
ables as well the transformation from curvature coordinate
variables to Kruskal variables, are singular wHes 0. In R' _ _
this section we present expressions for the ADM variables in M R le R(g;—g,). (44
terms of the Kruskal variables and see that this transforma-
tion is manifestlynon-singularat F=0. . .
To expressA in terms of the Kruskal variables we start Using Egs.(44) and(39) in Eq. (43) we get
from Eq.(20) and use Eq47), (11) and(27)—(32). Then itis —

straightforward to show that (AP,)"(RR)—=AP,(RR)"'=32M 4972R(9291—g§91()- |
B B 45
, 16M2 PyRZ%eR PyR%e®
AP=—— 5 + > (37) By substituting this expression in E¢L3) and using Egs.
Re 4M aM (7), (34) and(39), we obtain

In the above expressiof® and M are to be thought of as

. = ) VPy+UP = AP,
functions of the Kruskal variable®R is a function ofUV Pr=—R|————|—-Me R(UV'-VU")+ —=
through Eq.(31). To expres in terms of the Kruskal vari- 4M 4MR
ables, we use Eq$11), (30), (33) and(16). We obtain

M3e R
r _UPy—VP —16——H (46)
M2=m2+f dr—"—. (39) A
where
To expressAP, in terms of the Kruskal variables we
start from Eq.(9) and use Eqg.11), (27), (29) and Eqgs(31), P, R2eR P R2eR\’
(32), (34). We obtain H=| U+ Y SRV
B 4M? 4M?
2.AR
AP, = —4M2e‘ﬁ(v ur+ R ze . PyR%R|’ PyR%eR
4M -\ U+ 5 - PIVE (47)
PuR%eR
+U[ -V’ + FIvE ) (39  InEq.(46), AP, andA? are given by Eq(37) and(39) and
M by Eq. (38) andR through Eq.(31).
Next, R can be expressed as As mentioned earlier, Eq$7) and(31) imply thatF=0
corresponds to the vanishing of at least on&afr V. As can
R=2MR (40) be explicitly verified, the expressions for the ADM variables
(A,P,,R,PR) are all non-singular when this happens and
with M given by Eq.(38) andR by Eq. (31). hence, at the horizon, the ADM variables continue to be

The calculation 0P in terms of the Kruskal variables is Smooth functions of the Kruskal variables.
fairly involved and we sketch the main steps here. We evalu- For the transformation to be defined, it is necessary to
ate Py through Eq.(13). We first evaluate the expression impose the conditioM #0. Since we are interested in black

[(AP,)'(RR)—AP,(RR)’] which occurs in Eq(13). To  holes rather than naked singularities, we shall impbse
this end, it is useful to define >0. Further, in the ADM description, the conditions>0

andR>0 hold and these conditions must be imposed in the

P R%eR description in terms of the Kruskal variables. We shall com-
g;=U| -V'+ > | (47 ment further on these points in Sec. VI where we invert the
aM transformation and express the Kruskal variables in terms of
I the ADM variables.

, PyR%eR Finally, note that we have yet to reconstruct the remaining

9=V U'+ 4AM?2 (42) ADM variables, namely the parametrization times.{,
from the Kruskal variables. Since this reconstruction requires

Then from Eqs(11), (30), (27) and(39) it follows that not only the variable in the Kruskal description but also the
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asymptotic behavior of the Kruskal variables, we shall 1
return to this point in Sec. V, after we have analyzed the A=———40(n), (54)

asymptotics. oM.
- +
Irl

V. ASYMPTOTICS

In this section we describe our choice of asymptotic con- R=|r|+0O(r), (55
ditions for the ADM variables and the Kruskal variables.
These conditions ensure that the various integrals encoun- Pr=0(r), (56)
tered in the canonical transformation of Sec. Ill are conver-
gent near spatial infinity. Pr=0(r). (57

In future work we would like our framwework to admit
matter couplings. To this end, we expect that our choice o

boundary conditions is general enough to handle coupling olﬁ'ggbétiégnsgrr%ﬁf&s c()jnestﬁrelbfl?r\llgtﬁfec.cglc;r\éviiactznv:r_i—
to a large class of matter fields, namely those for which the Y

matter fields fall off faster than any power of| ! at ables, the scale_d curvature cpordlngte variables gnd finally,
infinity.® the Kruskal variables. Following this procedure, it can be

In the Schwarzschild spacetime, the Kruskal CoordinategheCkeOI that Eq50)~(53) are obtal_ned. .
Next, we analyze the asymptotic behavior of the con-

i‘?{; nirglz;t;:d to the curvature coordinates near right and IefsEtraints, the lapse function and the shift vector field. It can be

checked that the constraints fall off faster than any inverse

= power of|r|: i.e.,
— S L (R-T)am
U== VZM le , (48) H,H,=0(r). (58)

The behavior of the lapse and shift should be such that the
V= A /i—le(R”)"”\". (49) smeared scalar constraint, .drNH and the smeared dif-
2M feomorphism constrainf,” .drN"H, be well defined, differ-
] entiable functions on the phase space and that the motions
Therefore, ag — + o we impose they generate preserve the boundary conditi@ds—(57).
For the shift vector field as— *, we impose

r J—
U=+ \/%—1e"’4M*e‘T(i°°)’2(l+®(r)). (50) N'=0(r). (59)

It can be checked that with this behavior the smeared diffeo-

g Alternatively, we can start from Eq$54)—(57) and fol-

[r] = morphism constraint is a well defined, differentiable function
V=+ 1 [r[/4M 4 AT(£2)/2 1+ 6
= Nom, ¢ € 1+0(r)), on the phase space.
B (51) For the lapse function we impose
UPy=0(r) (52) N=N.+0(r), (60

whereN. are constants. In the description in terms of the

VP,=0(r). (53 ADM variables, the smeared scalar constraint is a differen-
tiable function on phase space only whén andN _ vanish.
Here T(x%):=T(r)|,_+. and M.=M(r)|,_.., with  For non-vanishing\, or N_, the boundary termN .M ,

M(r) given by Eq.(38). O(r) denotes smooth fall off faster —N_M_) has to be added to the smeared scalar constraint
than|r| ", n arbitrarily large. to render the combination differentiable on the phase space.
By virtue of the relation between Kruskal variables andAs discussed irf1], parametrization of the times at spatial

ADM variables derived in Sec. IV, the conditios0)—(53)  infinity leads to the actioii2) in which the boundary term is
induce the following asymptotic behavior for the ADM replaced by the term7(, M , —7_M_). In the description in
variableg asr — =+ oo: terms of Kruskal variables, the smeared scalar constraint is
differentiable without the addition of any boundary term
even for non-vanishindgN, or N_. As in the case of the
description in terms of the curvature coordinate variables,

» - ) ; Olithstead of the boundary terms of the ADM description there
conditions on the gravitational variables but simply for ones which

provide an elegant, consistent description and which admit couplin re a pair of canonically conjugate parametepsm) (see

to a fairly large class of matter fields. ec. ). o o
"Note that Eq.(54) admits the Schwarzscild solution. In contrast __ As mentioned earliem s the mass at left spatial infinity.

(41) of [1] admits the Schwarzschild solution onlydk 1 in that P can still be interpreted as the difference between the Kill-

equation, wherea$58) of [1] does not admit the Schwarzschild ing time and the parametrization time at left infinity as we

solution at all. now show. From Eq(29) we have

SNote that we have not looked for the weakest possible asymptoti
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= TIgRR+P;T — T(—) transformation.. In this section we.provide thg required proof.
f e e (61)  We shall be brief and only describe the main steps.
= 2M m In what follows, we shall assume that
Then Eq.(26) implies that A>0 M>0 R>0. (68)
_ _ T(—o0 .
p=p-+2m| T(—=)— (=) (62) We define
2m
R
From Eq.(15 we have that Ay=—V'+ WERPU , (69)
p=T(-»)—71_, (63)
. . — RZ —
which together with Eq(62) implies that A,=U'+ WeRpV_ (70)
p=2mT(—o©)—7_. (64)

Substitution of Eqs(69), (70) in Egs.(37), (39) yields
Since ZnT(—OO) is the Killing time at left spatial infinitya

has the interpretation of the difference between the Killing A2 16M2A A 70
time at left infinity and the parametrization time at left T ReR V¥ (72)
infinity.® Note also that from Eqg10) and(29) we have
_ r AP,=—4M?e R(UA;+VA,).
T()= : (65 (72)
2M

Note that Eq.68) together with the asymptotic behavior of

Now we can finally complete the reconstruction of Sec. IV ofthe Kruskal variables implies that

the ADM parameters—. from the Kruskal variables. Using
Egs.(64) and(65) we have

A;<0, A,<0. (73)
7-==(p=4mT(==)), (66 By using Eqs(7), (27), (28), (34), (69), (70) and (39) in
_ Eq. (46), we get
7, =2M , T(). (67) B
2AR D.
HereM , =M(r)|,_.. is obtained from the Kruskal variables H(r)=— Ate Pr+ FHRS&/IRJFD + AZGF . (74
M3

through Eq. (38) and ﬂiw) are obtained from the

asymptotic behavior of the Kruskal variables from EG) ) ) . ) .
and (51). Equation(74) is to be viewed as an expression faf in

This completes our discussion of the asymptotics, as wefflerms of the ADM variables. Thus in EZ4), M is given by
as the reconstruction, of the ADM variables from the KruskalEg. (6), F by Eq.(7) andR by Eq. (27).
variables. In the next section we shall invert the expressions From Eqgs.(47), (69) and(70) we have
for the ADM variables in terms of the Kruskal variables.

VI. KRUSKAL VARIABLES IN TERMS OF ADM ] o ]
VARIABLES At this stage it is useful to define
The Kruskal variables can be expressed in terms of the A2ReR
ADM variables using the results of Sec. Il in conjunction ag(r):= > (76)
with Egs. (10)—(16). However, the transformation described 1eM

in Sec. lll as well as the transformation from ADM variables

to curvature coordinate variables are both singular at the hd=rom Eq.(71) we get
rizon. For the transformation between the ADM variables

and the Kruskal variables to be non-singular anertible, it

is necessary to prove that the Kruskal variables can be con- . . . .
structed from the ADM variables through a non—singularWhereg is expressible as a function of the ADM variables

through Eq.(76).
From Eqgs.(75) and (77) we get a first order ordinary
differential equation forA,/A,. The boundary conditions
8Note that in generap+p. However, on the constraint surface (50)—(53) along with Eq.(65) can be used in Eq$69) and
p=p. Since the interpretation gf,p comes from their interpreta- (70) to fix the integration constant in the solution of the
tion on a solution, they have identical interpretations even thougttlifferential equation. The solution to the differential equation
they define different functions on th@nconstrainedphase space. and Eq.(77) can be solved to obtain

A1A2=g, (77)
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Ag=— \/Ee#/zuw +ej;dr_(7-l/g), (78

Ay=— \/ae— rt1am +e—f;dT(H/g)_

Note that the signs of\,,A, are fixed by the conditions
(73). Equationg78) and(79) expressA ;,A, in terms of the
ADM variables. We shall now solve fd?; andPy, in terms
of A;,A, and the ADM variables. From Eq&l2) and(14),

it can be shown that

(79

AP,
R

|

To evaluate R" = AP, /R) we use Eqs(72), (27), (30), (33)
and(31). We obtain

UPU=—2MA2(AH—Hr)(R’— ) (80)

AP,

R+R

VPy=2MA ?(AH+H,) (81)

4M

, APy

R‘f‘T: E—eRVAZ’ (82
, AP, 4M

TR RAO ®9

We substitute Eq982), (83) in Egs.(80), (81) and use Egs.
(69), (70) to obtain

b= _ AH=H .
v 2A,
__AHTH, @5
v 2A,

SinceA; and A, are given by Eqs(78) and(79), Egs.(84)
and(85) expressP; andPy, in terms of the ADM variables.
We now show thatU and V can also be determined in

terms of the ADM data in a non-singular way. From Egs.

(82) and (83) we obtain

ve—|Rrr 4 AP e 86
— + — 4—2, ( )

U , APA ReR 8
=R — — 4—1 ( 7)

SinceA; and A, have been expressed in terms of the ADM
variables, Eqs(86) and(87) expresdJ andV in terms of the
ADM variables in a manifestly non-singular form.

Finally, it is easy to see than(,a) are also determined in
terms of the ADM variablean s trivially obtained from the

asymptotic behavior ol at left infinity.Ecan be expressed
as

—2mV(r)
u(r)

(89)

r=—w

PHYSICAL REVIEW D63 084007

SinceV andU are known in terms of the ADM variables, so
is p.

Thus, we have shown that the Kruskal variables,
(U,Py,V,Py,m,p), are uniquely determined through mani-
festly non-singular transformations of the ADM variables,
(AP, ,R,PR,7,,72).

VIl. CONCLUDING REMARKS

In this work we have constructed a transformation be-
tween the ADM variables,A,P, ,R,Pr,7.,7_), and new

canonical variablesU,P, ,V,Pv,m,E). U andV are inter-
preted as Kruskal coordinates aRd ,P,, are their conjugate

momentam s the mass at left infinityp is interpreted as the
difference between the Killing time at left infinity and the
parametrization times_, at left infinity, with the Killing
time at right infinity synchronised with the parametrization
time, 7., at right infinity.

This transformation is manifestly non-singular and invert-
ible. In particular, it is non-singular at the horizon. For the
transformation to be well defined, we assume that the mass
function, M(r), and the areal radiu®(r), are both strictly
positive i.e.R,M>0. The interpretation oA? as a metric
coefficient implies thatA2#0. The conditionsA>0 and
M>0 lead to complicated restrictions on the Kruskal vari-
ables through EQqs(38) and (37). The conditionR>0 is
equivalent, through Eq31), to the condition UV)>1.
Note that this is exactly the condition that defines the singu-
larity free region of the extended Schwarzschild spacetime.

In terms of the Kruskal variables, the constraints are given
by Egs.(35) and(36). Equationg84) and(85) imply that the
vanishing of the constraints is equivalent to the vanishing of
Py and Py . This equivalence does not entail the involved
arguments nedf =0 which were used ifil] to show that the
imposition of the constraints impliedg=P+=0. After the
imposition of the constraints, the true degrees of freedom are

(p,m) and quantization of this reduced theory is trivial. The
condition M(r)>0 reduces to the conditiom>0 on the
constraint surface. It is useful to make a further point trans-
formation on the pair §,m) to obtain k=Inm, p,=mp).

We can now pass to quantum theory on the Hilbert space
{y(x) e L2(R)} by setting

XP(X) = Xih(X), (89)

Pap(x) =~ dixwx). (90)

As mentioned in footnote 2, a transformation to new ca-
nonical variables which also have the interpretation of
Kruskal coordinates, was constructed i by rescaling the
curvature coordinate variables by the left mase™rather
than by the mass function,M(r),” as is done here. It can
be checked that this transformation [df] is singular on
points in the (unconstrained phase space wheir=1
—2M/R#0 andf:=1-2m/R=0. This is, of course, pos-
sible only off the constraint surface. Nevertheless, it is clear
that any neighborhood of the constraint surface contains
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points whereF+#0, f=0 and hence, where the transforma- of the Kruskal coordinates for the matter collapse case. Note
tion is ill defined. Since Poisson brackets involve functionalthat the treatment in this work would have to be modified to
derivatives their definition, even on the constraint surface,deal with the conditiorM (r)|,_,=0.
requires a nonsingular structure in a neighborhood of the Apart from the Kruskal coordinates, there exist other glo-
constraint surface. This is one reason why the transformatioRal coordinates for the extended Schwarzschild spacetime
to Kruskal variables irf1] is unsatisfactory. In contrast the such as those described [i4,5]. It would be of interest to
transformation described in this work is nonsingular on thd€construct these from the ADM data. In particular, it would
entire phase spacéf course, subject to the conditions be of interest to try to use the$putat|ve.var|ables to con-
M,A2,R>0). _struct a time variable which is a spacetime scifgB| even
Although this work is concerned with spherically sym- N the presence of matter couplings.
metric vacuum gravity, the physically interesting problem is
that of spherical matter collapse say, the collapse of a mass-
less scalar field. In the collapse situation, the coordimate | gratefully acknowledge helpful discussions of matter
ranges from 0 tee with r =0 being the fixed point under the pertinent to this work with Karel Kuchard thank Jorma
action of the rotation isometry group. As discussefBlathe  Louko for encouragement and for his incisive comments. |
mass functionM(r) can still be constructed from the ADM owe special thanks to Joseph Romano for helping me formu-
data. Moreover the apparent horizon is defined throlgh late the ideas in this work and work them out in the context
=0. The canonical transformation BT variables can still of the CGHS model. Part of this work was done at the Uni-
be done but this transformation is singular on the apparentersity of Utah and supported by the NSF grant
horizon. Thus, it would be of interest to construct the analogPHY9207225.
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