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A key feature of the Brown-York definition of quasilocal energy is that, under local boosts of the fleet of
observers measuring the energy, the quasilocal energy surface density transforms as one would expect based on
the equivalence principle, namely, lilin the special relativity formulaE?— p?=m?. This paper provides
physical motivation for the general relativistic analogue of this formula, and thereby arrives at a geometrically
natural definition of an “invariant quasilocal energylQE). In analogy with the invariant mass, the IQE is
invariant under local boosts of the fleet of observers on a given two-susfi;cgpacetime. A reference energy
subtraction procedure is required, but in contrast with the Brown-York procefiigésometrically embedded
in a four-dimensional reference spacetime of one’s choosing. For example, it is well knowanthsphere,
round or not, can always be isometrically embedded into Minkowski space, even if its scalar curvature is not
everywhere positive. So rather than embeddability being a concern, the problem now is that such embeddings
are not unique, leading to an ambiguity in the reference IQE. However, in this codimension-two setting there
are two curvatures associated with the curvature of its tangent bundle, and the curvature of its normal
bundle. Taking advantage of this fact suggests a possible way to resolve the embedding ambiguity, which at
the same time will be seen to incorporate angular momentum into the energy at the quasilocal level. The IQE
is analyzed in the following cases: both the spatial and future null infinity limits of a large sphere in asymp-
totically flat spacetimes; a small sphere shrinking to a point along either spatial or null directions; and finally,

a large sphere in asymptotically anti—de Sitter spacetimes. The last case reveals a striking similarity between
the reference IQE and a certain counterterm energy recently proposed in the context of the conjectured
AdS/CFT correspondence.

PACS numbd(s): 04.20.Cv

[. INTRODUCTION does not rely on the existence of an asymptotically flat re-
gion [2]. For example, recent proponents of this movement

It is generally agreed that gravitational energy exists bu%are Ashtekaet al. [3,4], who have introduced the quasilocal
9 yag 9 9y .~ _Jdea of an isolated horizon to describe a black hole. They

because of the equivalence principle it cannot be localized. . . o
d P P articulate several reasons for this need, and it is useful to

The notion of quasilocal energy is currently one of the most . .
. L . araphrase here at least part of their argument: Let us accept
promising descriptions of energy in the context of genera . ; ;
relativity, and can be characterized simply as follows. The hata black hole is a thermodynamic object, and so obeys the
' "~ first law: SE=T&S+---. Now suppose that the universe is

total energy, including both matter and gravitational contri- : . C o : :
butions, contained in a finite spatial voluBiecan be defined asymptotically flat in spatial directions, and contains a single
' black hole. Therk in the first law is the ADM mass. But if

only as the integral of some ener.gy.surf_ace density over itﬁwere is anything else in the universe thers not the ADM
two—s;rfac::‘h bou_ndaryS= o’*hE éh.Th'S |mp:|es Ithat, stnctl)l/ mass, and the question arises, What expression is to be used
ZZﬁzitmgéxc:nte tlr?a?(\)/vsil::?] ari;re]gs ?riri tﬁzasrfglﬁ:gi); Z]? UMEST E in the first law? In other words, we expect that we can

Y P put something else in the universe, say a galaxy somewhere,

quasilocal ener_g§7.And even_thls local notion 'S '7‘“ truly such that the black hole we started with, considered by itself,
local because it cannot be integrated over a finite volume

unless one is willing to ignore effects due to gravity. In short,\’vt')l.I SE['” pt?]htive as more or Izs_st_the ??rr:]e thern;odynarrzlc
energy is associated with closed spacelike two-surfaces RRIeCt, Wi € Sameé mass, radiating at the same temperature

spacetime, not points. as beforg, and with t.he same entropy qual to one quarter its
There is also a growing consensus that the Arnowitt—27€2- This expectation requires .the ab!l|t3_/ to compute the

Deser—MisneADM) and Bondi—Sachs masses are simply€n€rgy of a given system contained within a finite closed

not enough. We need some definition of energy that isurface, rather than merely the total energy of all such sys-

“more local” than these; i.e., a quasilocal definition that tems comprising the whole universe. _
Thus quasilocal energy lies between the notions of local

energy density and total energy of an isolated system, in the
*Email address: repp@avatar.uwaterloo.ca sense that it is expected to give the energy contained in any
IA notable exception is the Tolman density, which integrates tovolume, no matter how small or large. Although the equiva-
the Komar mas§1]. But it can be defined only when the spacetime lence principle precludes the existence of a local gravita-
possesses special properties, namely a timelike Killing vector fieldional energy density, it does not prevent us from evaluating
and an asymptotically flat spatial infinity, and so tells us little aboutthe (quasilocal gravitational energy in an arbitrarily small
the nature of energy in a general context. but nonvanishing volum&. This is because no matter how
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smallX is, S=J% is not a point, but rather the boundary of CQE®' is not entirely satisfactory, because not all two-
some neighborhood of a point, and so we are always inhekurfaces that arise in practice can be embedded intdflat
ently making a “tidal force measurement.” In this sense A ready example is the horizon of the Kerr black hole, which
quasilocal energy is distinct from attempts to define a locafails to be embeddable in fl&® when the angular momen-
gravitational energy density based on certain symmetries atim exceeds the irreducible madsit the black hole is not
the action, and the concept of a ter chargé. At the other yet extrema), and the two-sphere develops regions with
extreme is the Komar mas®r the closely related ADM negative scalar curvatuf&6]. While this is but one example,
mas$, i.e., the total energy associated with the time translait is noteworthy that the breakdown of embeddability is in
tion symmetry of an isolated system. As emphasized in Refihis case associated with angular momentum and negative
[6], this gravitational conserved charge is intimately con-scalar curvature. It is precisely such issues: embeddability,
nected with a lapse function, whereas quasilocal energy neeshgular momentum, and negative scalar curvature, that will
not make any reference to a lapse function. The point is, théigure prominently in this paper, and will be seen to be subtly
two are conceptually distin¢2,6], even though in some cir- ntertwined.
cumstances one might expect their numerical values to coin- Although a relationship between the Brown-York quasi-
cide. local energy and the spinorial definitions based on the
Currently there are several contenders for a good definiyitten-Nester integral is not immediately obvious, L[di5]
tion of quasilocal energysee Refs[7-9] and the references has shown that spinors may always be chosen so that the
therein. The two that interest us at the moment are theresulting spinorial definition is equal to the unreferenced
Brown-York “canonical quasilocal energy{CQE) [7], and  Brown-York quasilocal energy in Eql.1). Moreover, he
the various definitions based on the integral oeof the  shows that the role of the Sen-Witten equation is to provide
Witten-Nester two-form(the two-form used in Witten's g definite reference point for the energy, which is not in
proof of the positive energy theorefh0,11]). The latter ap-  general the same as COEin Eq. (1.2. The point being
proach uses spinorial methods, and the different definitionghade here is twofoldi(i) the unreferenced Brown-York
are distinguished by the choice of supplementary equatioguasilocal energy seems to be robust, éndall of the prob-
the S-spinors are supposed to satisfy, for example the Senems lie in choosing a suitable reference energy. The various

Witten equation11,12), the Dougan-Mason equatidd3],  prescriptions are either not generally well defined, or they do
or the Ludvigsen-Vickers equatiofi4]. The Brown-York  not agree with each other.

definition of quasilocal energy has the form | will now present a brief review of the Brown-York ap-
1 proach in a form that will be useful to us later. The classical
COE=— — j dS k- CQE®, (1.2) stress-energy tensor of matter is a local concept, associated
8w Js with a spacetime point. It is defined for any field theory

. ) ) . ) residing on a nondynamical background spacetimg) via
in geometrized units, wit@=c=1. The CQE is supposed 0 the functional derivative of théfirst orde) matter action
be the energy of the gravitational and matter fields containegith respect to the metric, as follows:

in a finite spatial volume:, whose boundary two-surface is
S=¢2. dSis the induced integration measure 8nandk is
the trace of the extrinsic curvature 8fas embedded iix. 251"V ¢,91= fM 4V~ 9 TaYap - 13
Thus, —k/(87) is the Brown—York quasilocal energy sur-
face density. Wherk is asymptotically flat the integral in Here ¢ denotes the matter figlg) in question, and the factor
Eqg. (1.1) (the unreferenced CQHliverges asSis taken to  of two on the left is a convention. Usually, as we will assume
infinity, and a reference term, denoted C&)Hs required to  here, there is no boundary term arising from this variation
regulate the energy. The Brown-York prescription is to(for minimally coupled matter but in case there is it does
choose not change the essence of the following argument, it just
adds an interesting dimension toTE2, so defined is covari-
COE®=— iJ ds ket (1.2) antly ponserv_ed, as fo_IIO\_/vs from the_matter Euler-Lagrange
8w Js equations. This prescription for learning about matter stress-
energy gives reasonable answers for all field theories, and so
wherek'™' is the trace of the extrinsic curvature of an isomet-it is natural to try the same thing for gravity. In this case one
ric embedding ofSinto some reference space, usually takenfinds, for the usual first order actidi 7],
to be flatR3. With this choice the resulting CQE reduces to
the ADM mass wherS is taken to infinity[7]. While the
CQE has a host of desirable properties, neatly summarized in 26419g]= fM d4x\/—_g
Ref. [15], the embedding prescription needed to evaluate

1 ab
- QG 5gab

1
+ f8d3x\/— 'y( - gnab) 8Yap- (1.4

2However, a recent discussion of the connection between pseudo-
tensor methods and the quasilocal idea can be found in[Rf. Inspecting the bulk term one is thus tempted to demggv
3We use a sign convention for extrinsic curvatures opposite to that=— G2°/(87) as the local stress-energy tensor of the gravi-
of Brown and York, hence the negative sign in front of this integral.tational field, whereG2? is the Einstein tensor. And this is
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perfectly reasonable: it is covariantly conserved—in this case- I12%/(8), which is inherently associated with the bound-

identically so, via the contracted Bianchi identity. Moreover,ary 3, rather than the bulk spacetime. Like any acceptable

its on-shell value is zero, in full accord with the equivalencestress-energy tenso'f%b is covariantly conservedwith re-

principle, i.e., there is no nontrivial local stress-energy tensogpect to the derivative operator induced 8) this follows

for the gravitational field. N from the analogue of the diffeomorphism constraint of gen-
In fact this absence of a nontrivial local stress-energy teng 4 relativity for the three-surfacB (rather thans), and

sor is true not only for the gravitational field, but also for anyassuming the appropriate componentsTQﬁ vanish ong3
; ; . t .
system comprised of both matiand gravity. To see this we Physically,5 is to be thought of as the congruence of world

need only make the spacetime metric dynamical, in Whicqines of a two-parameter family of observers with four-
case the matter action in E(..3) must be augmented by the o P y
velocity u?, hypersurface orthogonal to a one-parameter fo-

?Jg\;lgcf;gﬁon' Adding EqsL.3) and (1.4) one finds for the liation of B by spacelike two-surfaces with the topology®f
Within their three-dimensional spacetiniB,y), the observ-
1 ers measure a spatial energy denfﬁk‘?uaub, which is pre-
259|t°t[(p,g]:J' d“x\/—_g( Tab — —Gab> 89ap cisely —k/(8w), and thus one is led to Eql.1). Finally,
M 87 observe that one can add to the action any covariant func-
1 tional of the boundary three-metrig,,, without affecting the
+f d3x\/—_y( — _Hab) Yap. (1.5 previous argument. This is the source of the reference point
B 87 ambiguity CQE®" in Eq. (1.1). This summarizes the central
idea of the Brown-York approad].
Thus one is led to identiff2%:=T2 — G%/(81) as the total Now if energy is really quasilocal, and calculated via a
local stress-energy tensor for matter plus gravity. It has theurface integral involving’%b, one comes to the conclusion
desirable property of being covariantly conserved, but turnshat a priori neither T22 nor ngv has anything to do with
out to be just zero by the Einstein equations. If this argumengnergy. While this might be unsettling at first, it is reassuring
is taken seriously we learn that, as soon as we add gravity t® know that a satisfactory notion of locahatter energy
any matter system, the notion of a nontrivial local stressdensity can be recovered from the small sphere limit of
energy tensor disappears. Furthermore, one might interprejuasilocal energy. For example, in REF9] it is shown that,
the Einstein equations, written in the for'ﬁﬁ%ﬁr Tgrba\,= 0,as for a certain choice of reference term C€Ethe Brown-
a micro-balancing of local stress—energy at each spacetimeork quasilocal energy contained in an infinitesimal sphere
point: wherever a component of matter stress—energy is pospf proper radius is the volume of the sphere ¢ 3/3) times
tive, the corresponding component of gravitational stress-the local matter energy densifyrangpaub (evaluated at the
energy is negative, and vice versa, such that the total is atenter of the sphefehat would be measured by an observer
ways zero. The idea that G?/(8) is the local stress- with four-velocity u?. Moreover, this is a well-established
energy tensor of gravity is, of course, a very old idea, firstoroperty of most quasilocal energy definitiof9—24, so
put forward by Lorentz and Levi-Civita. It was rejected by the result is quite robust. But at higher orderringravita-
Einstein, since it implies that the total energy of a closedional energy begins to appear, as will be discussed in detail
system would always be zero, which is obviouslyater, The point is there is no contradiction betwédnthe
problematic? It is only with hindsight that we now realize |gcal stress-energy tensdrl + Tgrbav being zero, andii)
why the problem was not resolved much sooner. People thefhere being nonzero stress—energy in a finite spatial volume.
day, Thanks 10 Brown. and ork we. now Know that what 1115 1> DECRUSETuct Toi is ot a local stress-energy
. tensor—indeed, if we accept the previous argument, there is

comes to the rescue Is the bc_)und_ary term in ). no such thing. There is onl'yrgb, associated with the fact
In this equation the spacetime is assumed to be the topqy, ., energy is fundamentally quasilocal

logical product of a three-'spac% an'd a real line ‘”“?”’a'- The main purpose of this introduction is to emphasize,
The boundary componeiitis a timelike tbe, topologically firstly, that energy is fundamentally quasilocal, i.e., associ-

the prqduct 0fS=42 and the real line interval(The two ated with closed spacelike two-surfaces—not points—in
spacelike end-cap boundary components/bf have been g, atime: and secondly, there are strong reasons to believe
omitted, 2§ they play no role in t_h's discussiofhe quantity that —k/(87) is the correct quasilocal energy surface den-
— /= yI1*"/(16m), constructed in the usual way out of the sity. The major unresolved problem is how to choose the
gxtnnsm curvature oB, |s'the grawtatlonal momentgm con- right well-defined energy reference term, CEE Rather
jugate to the three-metrigyy, induced onB. Now, in the 51 address this probleper se | will begin with — k/(8)
spirit of identifying the stress-energy tensor as the functionalq 5, energy surface density and construct a new definition
derivative of the action with respect to the metric, ogbe readsgys quasilocal energy based on analogy with the special rela-
off from Eq. (1.5 the stress-energy tensoffz:= ity formula: E2—p2=m2. The new definition is both
physically and geometrically natural, and lies somewhere be-
tween the Brown-York CQE and the Hawkiihg5] or Hay-
4See the historical discussion given on pages 176 and 177 in ReWard [8] definitions. A reference subtraction procedure is
[18]. Thanks to L. de Menezes for bringing this reference to mystill required, that involves a reference embedding, but this is
attention. a codimension-two embedding that is not subject to the prob-
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lem that afflicts the Brown-York embedding prescription. of all its indices with the surface projection operator. Obvi-

Moreover, there is a shift in the physics: the reference emeusly one such tensor is the spatial two-metric

bedding is not associated with determining a reference en-

ergy so much as a reference angular momentum, so to speak. Tap=P5PiGca= JabT Ualp— Naly (2.3

Why angular momentum? Because angular momentum con- i )

tributes to energy, and the new definition can be seen asgduced onS Another is the corresponding volume form on

precise formulation of this fact at the quasilocal level. S given by
The paper is organized as follows. In Sec. Il we introduce . e d

the geometrical quantities we will use later. Section IIl con- €ab*=€abedd M, 2.4

tains thg _p_hysical angl geometrical motivations be_hir}d th‘?/vhereeabcdis the volume form oM. The symbobSwill be

new definition of quasilocal en_ergﬁs WeI_I as_the def|n|_t|0n used in place o, as the integration measure fd8,¢).

itself). The reference sub.tractlon term is d_|sc;u.sse.d in Sec. ¢ V. denotes the Levi-Civita connection &¥1, g), then

IV. In Sec. V both the_ spatial and future null |.nf|.n|.ty I|m|t§ of D, , the Levi-Civita connection induced 08o), is defined

the energy are examined; the small sphere limit is consider

in Sec. VI. Finally, in Sec. VIl we examine the new energy

in the context of asymptotically anti—de Sitter spacetimes. A DaTE":PiPSPE- SV TE, (2.5
summary of results is found at the end of the paper, which
also includes some additional discussion. where T2 is any surface tensor. Then for any two surface

vector fieldsX? andY?, the Gauss formula reads
Il. THE GEOMETRY OF TWO-DIMENSIONAL .
SPACELIKE SUBMANIFOLDS X2V Y= XaD,Y 4+ hpX2YP, (2.6)

Let (M,g) be a four-dimensional Lorentzian geometry whereh®,, is the second fundamental form. Its first index is
with signature+2, andSbe a closed two-dimensional space- normal toS§, i.e., Ph¢,,=0, whereas the remaining two are
like submanifold. Letu® and n® be timelike and spacelike surface tensor indices, that are symmetric under interchange
unit normals toS that are orthogonal to each othefu,= [as can be easily seen by interchang¥gndY in Eq. (2.6)
—1,n%n,=1, andu®n,=0. We will assume thaBis orient-  and subtracting the two equatignhus the second funda-
able, and an open neighborhood®in M is space and time mental form can be decomposed into components along the
orientable, so that® andn? are globally well defined26].  two unit normals:

u? andn? are fixed up to an arbitrary local boost transfor-
mation: h®ap=UClap— NKap, (2.7)

u’@=u?cosh\ +n?sinh\, where the two extrinsic curvatures af®ymmetrig surface
(2.1)  tensors given by
n’2=u?sinh\ +n?cosh\.
lap=— uchcabngfpgvcud ,

The physical picture to keep in mind is that of a finite spatial (2.9
volume 3, i.e., a three-dimensional spacelike submanifold, Kap= —nchcabngpgvcnd_
whose boundary iS. AlthoughS need not be connected, nor
simply connected, we will often think of as having the It is useful to decompose the extrinsic curvatures into trace
topology of a three-ball, an8 that of a two-sphere, and thus and trace-free parts:
will sometimes refer to the direction of* (assumed outward

directed as the radial direction. Given such a three-surface lab= 3 1oap+ T ap
spanningSiit is natural to choos&?® to be orthogonal t& (2.9
(and future directed in which casen? is tangential toX.. Kap= % koap+Kap

Physically,u? is the instantaneous four-velocity of a two-
parameter family of observers @& With u? thus tied to the  wherel = 02, andk= 0*"k,,,, and a tilde appearing over
spanning surfac®, a deformation oE (preservingS will in any quantity in this paper will always mean trace-free part

general effect a radial boost, Eq2.1). of. The mean curvature vector is then
The remainder of this section is a summary of some stan-
dard facts about the geometry of the submanif8ldés can HC:=3 o®PhS =3 (lu¢—kn°®), (2.10

be found, e.g., in Ref27], except here we follow a notation ) o
similar to that used in Ref26]. The surface projection op- andH-H=(k“—1%)/4 is the square of the mean curvature.

erator,P?, is a tensor defined o8 by Extrinsic curvature is a measure of how a unit normal
vector rotates as it is parallelly propagated tange&itothe
Pai= 82+ utu,—n2ny,. (2.2 ambient spacéM, g). Two normal vectors means two extrin-

sic curvatures. However, from Eq&.8) we see that,, and
(All raising and lowering of indices,b,c, ... will be effected  k,, measure only the components of this rotation tangent to
with the metricg,y, or its inverseg?”.) A surface tensoris S There is also a normal component, i.e., the component of
defined as a tensor dhithat is left invariant under projection the rotation of one normal vector along the other. Thus a
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complete characterization of the extrinsic geometrysoé-
quires also the surface one-form
Ay:=P2nV,u,. (2.11)

This is an SQ1,1) connection in the normal bundle 8f and
its associated curvature two-form is

]'—ab‘:DaAb_DbAa- (212

We will see later that the curvature of the normal bundIl& of

plays a key role with regard to angular momentum.
While the second fundamental forfncluding H® and

H-H) and the curvature of the normal bundle are invariant

PHYSICAL REVIEW D 62 124018

matter curves the space insi@dn such a way that its vol-
ume is greater than one would infer by measuring just the
area of the sphere and using Euclidean geometry. Thus the
expansion measured &must be smaller, i.e., the areas of
spherical shells at larger radii will not increase as rapidly as
expected. So we see that the unreferenced Brown-York
quasilocal energy in Eq1.1) is greater(less negativewhen

S contains matter, than when it does not. This is an intuitive
reason whyk is a measure of the energy insi&|[It also
explains the need to subtract off a reference energy of the
form given in Eq.(1.2): k"' is the nonzero value d&¢whenS
merely encloses a volume of fl&F, i.e., no energy.

| is similar tok, except that it measures the expansiois of

under local radial boosts, the extrinsic curvatures and thé time,.i:e., in.the direction of the observer’s f(_)ur-velqcity
connection on the normal bundle are not. They transform ag®. Intuitively, if the observers tend to be moving radially

| 2="apCOShA +Kkgp SiNhX,
Kap=IapSinhA +k,, cosh,

(2.13

A=A+ Dy\.

outward then the area of the two-surface they are on will be
expanding, i.e.]>0. Conversely, a radially inward motion
corresponds td<0. Thusl [more precisely|/(87)] can be
interpreted as a radial momentum surface den&@y. In the
case thatk?—1?) is positive, the observers can always make
appropriate local radial boosts such that0 at each point of

S a situation corresponding to a quasilocal rest frame. | will

trinsic geometry in that it transforms as a gauge field.

Our sign conventions are such that the Riemann tensor of

(M,g) is defined by ¥,V,— V, V) Xc=Rapc X4, and simi-
larly that of (S,0) by (DyDy— DpDa) Xe=Rapc Xq (X is a
surface one-form in the latter casé\ppropriate projections
of the Riemann tensor dM,g) yield the Gauss equation

PgPLPngRefgh: Rabcat (I acI bd ™ I bcl ad)
- (kackbd_ I(bckad) ’ (2-14)
the Codazzi equations
nggpguhRefg h=(Dal pc— Dyl ac) = (AaKpc— ApKac)

PgPIJ/PgnhRefgh: (Dakpc— DpKac) — (Aal pe— Apl ac()y 5
2.1

and the Ricci equation:

PEPLUIN"Re1gn= — Fapt (Kalpe—15Kpe).  (2.16

These are the integrability conditions for the isometric em-

bedding of §,0) into (M,g), and so by definition of are
necessarily satisfied.

Ill. THE INVARIANT QUASILOCAL ENERGY

section.

The trace-free quantitids,, andl ., measure the shear of
S and are intimately connected with angular momentom

at leastl ., is). For example, consider a set of locally nonro-
tating observers who at coordinate titnare on a constamt

t sphere of the Kerr black hole in Boyer-Lindquist coordi-
nates. Their four-velocity is given by

a_l ¢9+ d\?
U_NE w%,

whereN is the lapse function, and(r,6) = —g;,/9 4, is an
observer's angular velocity as measured from infifi2g)].
Starting at Eqs(2.9) it is not difficult to show that in this
casel =0, so here is an example of observers in a quasilocal
rest frame as defined above. Furthermore, one can show that
the nonvanishing components of the shear in the time direc-
tion are given by

(3.9

=T4o=5 —. (3.2

Physically, a nonzera reflects the frame dragging caused
by the rotating black hole. The fact that the degree of frame
dragging depends o#f is what makes the observers at dif-
ferent latitudes of the sphere rotate at different rates relative

A physical interpretation of the various geometrical quan-to the distant stars, and more to the point, relative to each
tities introduced in the preceding section can be given asther. This causes a shear effect between observers at neigh-
follows. The expansiok measures the fractional expansion boring latitudes, which obviously disappears when the angu-

of the area of a small element &when each point in the
element is projected a unit distance radially outward. It will

have a certain positive value if, for exampkjs a round
sphere enclosing a volume of fl&f. (For our present pur-

lar momentum is zero.

Furthermore, let the locally nonrotating observers label
themselves with coordinate®)(,¢'), which att=0 coin-
cide with the Boyer-Lindquist6,¢) coordinates orgs. Then

poses, imagine fldt® as at=constant surface in Minkowski although the observers always measure the same two-
space. Now if Sis a round sphere of the same area enclosinggeometry ofS as timet goes on, the components of the
some matter, then, according to the Einstein equations, thsvo-metrico,, in their (6’,¢') coordinates will differ from
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those in the(6,¢) coordinates by a- and ¢-dependent dif-  pingT,, is at least roughly consistent with being interested
feomorphism along the-direction. So although one usually only in the two-geometry ofS i.e., the two-metrico,,
associates shear with a geometrical deformation, for inStan(}‘ﬁodulo diffeomorphisms, since, as indicated ab&gg is in

a rounq sphere evplvmg Into an eII|p§O|d, oneé can alsp haV‘gome cases associated with just diffeomorphismS. of
a physically meaningful shear associated with a continuous 52 we will replacep with

; . . ; Thus, in the expressioE?—
parameter family of isometric surfaces. This fact plays ar]/(Sﬂ_)‘ What should replacg? Given the preceding discus-

important role in understanding certain embedding equationgion the obvious answer is the Brown-York energy surface

xﬁev;/gl[;&counter later, and will be discussed in detail else'density,—k/(Sqr). Clearly!/(87) and —k/(8) are on ex-

. . . actly the same geometrical footing, being proportional to the
necTt?oenI?r?ttﬁ2Or?:)?m;Ialb?;?]i?élt){r:cir:gteéféatg‘%\('otriea%%?;/sistime“ke and spacelike components of the mean curvature
. . ' ) vectorH® Eq(2.10]. Thus we arrive at th neraliza-
the quantity —A,/(8) is called the momentum surface ecto [see Bq(2.10]. Thus we € atthe gene a

density, and is denoted @g[7]. The momentum vectdgr is tion

tangential toS, corresponding to a rotating two-surface, and

thus should be associated with angular momentum. Indeed, E2—p’—
this is correct: Let5 denote the timelike three-surface that is
the congruence of world lines belonging to the two-
parameter family of observers on a two-sph&ré 5 admits

a Killing vector field ¢?, whose orbits lie ir§, then one can
define the angular momentum charge

(K>—12). (3.9

(8m)*

Now before we accept this generalization, let us observe that
there is something unexpected about it. The four-momentum
(E,p) has become a two-momentum-Kk,l)/(87). What
happened to the other two components of spatial momen-
tum? 1/(87) is just the radial component; should not the
J::f dS %] 33 Brown-York momentum surface densii§ [in our notation,
s a ' —A?/(87)], which is tangent td5 be the analogue of the

two missing components @? If so, then instead of E¢3.4)

which can be shown to coincide with the ADM angular mo- we should have

mentum at infinity for asymptotically flat spacetimgg|. ) 1
Thus we expect both the she_ar and the connection in the E2— g2 ——— (K2— 12— A%A,). (3.5
normal bundle to play a role in angular momentum at the (8)
guasilocal level, and indeed we will see that this turns out to
be the case. At first sight this expression is appealing because it mani-
Now the first goal of this paper is to provide a physical festly includes a contribution from angular momentum, and
motivation for the general relativistic analogue of the speciait is known that in general relativity angular momentum con-
relativity formula: E?— p?=m?. First of all, this formula ap- tributes to mass. A simple example that illustrates this phe-
plies strictly to point particlegas opposed to extended ob- nomenon is the Kerr black hole, where the ADM mass in
jects. One imagines determining, say, the instantaneou§xcess of the irreducible mass is due to rotational energy.
three-velocity of such a particle by measuring its location inThe precise relationship [29]
space at two closely separated points in time, in some inertial 5
reference frame. In the spirit of the quasilocal idea, the ana- M2= Mz—( J ) 3.6
logue of this in general relativity would be to first replace r 2M;,) '
measurements at a point with measurements on a closed
spacelike two-surfaceS. But measurements of what? It whereM is the ADM massM;, the irreducible mass, andl
would seem that measurements of the location of the pointhe angular momentum of the black hole. Comparing the
particle in some inertial frame is to be replaced with mea-ight-hand sides of the previous two equations suggests we
surements of the two-geometry 8fin a generic spacetime. conceptually identifylA|/(87) with the angular momentum
These measurements are to be repeated at two closely seperm, J/(2M;), which seems reasonable. This leaves
rated points in time. In the point particle case this yields the,/k?—1?/(81) to be interpreted as an object ik, viz., a
three-velocity(or the three-momenturf if one also knows total mass, total in the sense that it includes the contribution
m); in the two-surface case it yields,, the time component from angular momentum. But here then is the point:
of the extrinsic curvature d Now | pointed out above that \/k?—12/(8 ) somehow implicitly already includes the an-
the trace ofl ,,—more preciselyl/(8m)—indeed has the in-  gular momentum contribution to mass. Precisely how will
terpretation of a momentum: it is the norntal radia) mo-  become clear later, but to see immediately that this is at least
mentum surface densif28]. So it seems reasonable to re- plausible, consider the case0. Then— k*—1%/(8) re-
placep with I/(8). What about the trace-free partlgh? It duces to the Brown-York energy surface density, at least
was argued above thby,, is associated with angular momen- whenk is non-negative, and it is known that threferenceyl
tum. Insofar as angular momentum is qualitatively distinctBrown-York quasilocal energy yields the ADM mass at spa-
from linear momentum, its role at least at this point of thetial infinity, which includes the correct angular momentum
argument is not clear, and we will simply drop it for now contribution to mass. So we do not need &#, term in
(however, its role will become clear lajeNotice that drop- Eg. (3.5). Besides, putting it in is counter to our goal of
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seeing if general relativity admits an analogue of itheari- It is useful to express the integrand of the unreferenced
antmassm: While the combinatiok?—12 is invariant under  IQE in two other equivalent forms. Define the pair of null
radial boosts, A?A, is not—see Eqs(2.13. So from this normals&? :=u?+n? on S, and the corresponding null ex-
point of view the right-hand side of E3.5) is defective, not  pansions
to mention the generally unsavory fact thatitxesobjects

with different transformation properti@sThe question of

missing momentum components can also be thought about as
follows. A point particle has three components of spatial
momentum. Likewise, each point on a two-surf&adso has

three components of spatial momentymore properly, mo- ¢t Egs.(2.8) and (2.9. Then we have the following three
mentum surface densjtyone normal, and two tangential to equivalent expressions:

S But being tangential, the latter two are associated with a '
rotating surface, and hence with angular momentum. In go-
ing from a point to a two-surface, two components of the

0. =0V ¢, =1k, (3.9

linear momentum have become angular momenta. So they do 1 1 1

not (directly at least contribute to the expression for an in- 8 k"=1"= 8 V=0.0_= A VH-H. (3.9

variant mass given on the right-hand side of E84) be-

cause, as claimed, this expression already inherently includes

the contribution from angular momentum. For the last expression recall the definition of the mean cur-
Thus we are led to propose the following definition of anvature given after Eq2.10. Thus the unreferenced IQE in

invariant quasilocal energfor 1QE): Eq. (3.7) has a very simple geometrical interpretation: up to

a proportionality constant, it is just the mean curvatur&of
averagzed ()2veS Because of the square root it is defined only
1 whenk—1=0, i.e., at each point 06 the mean curvature
IQE=— 87 LdSV k?—12—1QE", 37 vectorH® in Eqg. (2.10 must be either spacelike or null, but
never timelike. Roughly speaking, this means that the area of
Schanges more rapidly in a radial direction, than in time. For
where IQE®' is a reference subtraction term that will be de- example, this condition is satisfied for the constghtwo-
fined later. The word invariant in IQE refers to the fact justspheres outside the horizon of a Schwarzschild black hole,
mentioned, thak®—12 is invariant under local radial boosts but not for those inside; on the horizon the unreferenced IQE
of the observers oB. And the word energy is used instead of is zero.
mass—despite our analogy betweék?—12/(87) and the In terms of the null expansions, recall that a fut(pas)
massm—because, as we will see in Sec. VII, the IQE be-trapped surface is one for which both ingoing and outgoing
haves more like an energy than a mass. So the IQE can kil expansionsg_ and 6, , are everywhere negatiposi-
thought of as the amount of rest energy containeim  tive) on S[1]. Thus, the unreferenced IQE is imaginary when
quantity independent of the motion of the observers measuSis a future or past trapped surface. It is real only when no
ing it. Notice that the unreferenced IQE is negative. Nomi-point onSis trapped. Now a future trapped surface does not
nally the reference energy I(fEis morenegative, so that the quite characterize a black hole, and more subtle characteriza-
referenced IQE is positive. tions have been proposed for a local definition of a black
hole horizon[3,4,39. For example, HaywarfB2] has intro-
duced the notion of a future outer trapping horizbin,char-
5This was first noted in Ref28]. A further discussion of boosted acterized by(i) 0_|4<0 (in-going light rays converging
observers in the Brown-York framework appears in R&1]. (i) 6.]n=0 (outgoing light rays instantaneously parallel on
SHayward's[8] definition of quasilocal energy includes an angular the horizon, (iii) 6. |,+>0 (outgoing light rays diverging
momentum contribution of the form-w?w,, analogous to the just outside the horizonand(iv) 6. [y-<0 (outgoing light
—A%A, term in Eq.(3.5). Hayward'sw, is a suitably normalized rays converging just inside the horizorAccording to this
anholonomicity, or twist, of the pair of null normals & and en-  general definition of a black hole, the unreferenced IQE is
codes essentially the same informationfgs The important dis- nonzero just outside the horizon, zero on the horizon, and
tinction is that, unlike the connectiof,, the objectw, is boost  undefined(or imaginary just inside the horizon. In this con-
invariant, and so representing angular momentum with a term pronection see also Reff33].
portional to —w?w,, as Hayward does, is perfectly acceptable. ~Furthermore, observe that the condition for the integrand
(The relationship betweeh, andw, is discussed in Appendix B of Of the unreferenced IQE to be real and nonzero, narkély
Ref.[32].) However, there is no need, or even natural waydgito —12>0, is precisely the same condition that ensures that the
enter our work here. For instance, th&A, term in Eq.(3.5 cannot ~ observers can always, by appropriate local boosts, go to a
simply be replaced withw®w,, since the(tentative inclusion of  quasilocal rest frame in which=0 at each point o§ Such
this term is suggested by the physical interpretationAgfas a  a two-surface is analogous to a massive particle. The case
momentum surface density. This interpretation arises from Brown'«?—12=0 everywhere or8, for instance wher$ is a future
and York’s Hamilton-Jacobi analysis of the gravitational acfish ~ outer trapping horizon, is analogous to a massless particle,
and it is not clear that a similar interpretation can be givemjo  for which no quasilocal rest frame exists. And finally, the
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casek?—12<0, say inside a future outer trapping horizon, o209 reduces it to the scalar equation
corresponds to a superluminal partiéle.

The situation is actually more subtle than indicated in the L2 12y (R2_T2
previous two paragraphs. The conditions {6 6. 6_ to be goR=R =z (K=H+ (=19, @3
real are reminiscent of the conditigh. <0 required for the ) ac bd o oy
holomorphic case of the Dougan-Mason quasilocal energy t§/n€ré ooR is shorthand foro®*e>"Rapcq, (k°=17) is
be non-negative. The conditiors, =0 and §_<0 essen- shorthand for k*°k,,—T2°T,;), and R is the scalar curva-
tially imply that the two-surfac&is suitably convex13]. To  ture of (S,0). Using this equation we can express the IQE
emphasize that “suitably convex” is not a serious restric-given in Eq.(3.7) in the equivalent form
tion, in particular it does not mean th&tannot be concave,

consider a two-parameter family of observers at rest in an 1 — of
inertial frame in flat spacetime. Suppose that=ad they lie IQE=—5— LdS\/z[R_UURJF(k —19)]-1QE®.
on a two-sphere that is round except for a small indenta- 4.2

tion. Thenl=0 at each point o5 andk is positive every-
where except in a small region near the center of the inder\-N
tation, where it is negative. Thus there will be a circle of
points C at whichk=0. So at each point o8 we havek?
—12=0, equality holding orC. One might worry that a ra-
dial boost at a point or€ will make 12>0, and hencek?
—12<0. But of course this will not happen: If we consider a

e remark here thatroR is a natural geometrical object
called the sectional curvature 08,) as embedded M,
g) [27]. It will play an important role in what follows.

Now the definition of the unreferenced IQE is rooted in
the extrinsic geometry of the submanifol,¢), thought of
) X as a two-surface isometrically embedded in the spacetime
second set of observers, boosted relative to the first, ithen (M.g). It is then natural to define the reference IQE to be of

Second S61 of Gbservers o be boosted radially outward n (S SaMe form as the unreferenced IQE in B2, i, 10
region of the indentation, such that the indentation, and it e the same geometrical object, except wiflio) now iso-

attendant set of fixed point§, smoothly disappear as the

sphere evolves in timé switches from negative to positive . . "
) o : in Eq. (4.2 [or Eq.(3.7)], except with all quantities referred
by passing through the origin oflal diagram. Thus we can to the reference spacetime, which we indicate with a super-

imagine a wide class of two-surfaces, including ones with__ . o .
indentations, and dynamically changing in time, for which script ref. Note that although the extrinsic geometrysafill

H H ref yre P oo _
k?—12=0 everywhere ors Moreover, bear in mind that the be different in 4,g'), its intrinsic geometry, by assump

observers are allowed to accelerate, so there is a great dealtlo n, will not. So in the IQF integral we are constructing

ef _ ref__ ref__ ref
freedom for them to maintain a physically reasonable e ca" setS¥=dS R™=R, and (FoR)"™'=0oR™. Also

; ref i
Nevertheless, what is needed here is a careful analysis basnar;[%ths;’ ;ntv%?)[]serﬁglre :nliﬂbé:jodpeoolloigI;ag%cior:o?gzmgéee,time
on Raychaudhuri equations for a two-parameter family o Y P P '

. o 2 2 . .
accelerated timelike curves. Such a detailed analysis is ou)gl'.thk'vI _S XS, Wh(.atﬁ\??eftfiief\?\;iﬂiﬁs'pacgt'mte rrg_ght be
side the scope set for this introductory paper. INKOWSKI Space, wi - W IS understanding,

we define

?netrically embedded in a different spacetime—some refer-
ence spacetimeM'®,g"". Thus IQE®" will be the integral

IV. THE REFERENCE INVARIANT QUASILOCAL

1
ENERGY IQE"™f= — 8—[ dsy(k®—1?)re
m™J)s

As in the Brown-York case, the unreferenced IQE di-
verges in an asymptotically flat spacetime as the two-surface
Sis taken to(spatial or null infinity, and so must be regu-
lated with a reference term, IFE as already anticipated in
Eq. (3.7). To better understand the nature of our definition of (4.3
the invariant quasilocal energy, and to help suggest a natural
choice for IQE®, we now make use of the Gauss embeddingThe termaoR™ is shorthand for°s*Rig .4, whereR(g .
equation given in Eq(2.14). This equation has only one is the Riemann tensor of the reference spacetime.

independent component. Transvecting both sides with Typically one is motivated to choose a reference space-
time of constant curvature, the geometrical reason being that

then the Gauss, Codazzi, and Ricci embedding equations

"As noted in the text, the spirit of the quasilocal idea is to replaceNake no reference to whereS,g) is embedded in
measurements at a poifdf certain aspects of a point particle, say (M™,g"). In other words, the conditions placed @,
with measurements on a closed spacelike two-surface. If one takééeg, and A;ef by the reference version of Eq$2.14-
seriously that Eq(3.4) is the generalization of point particle rest (2.16—which are just integrability conditions for the refer-
mass, then one is quickly led to speculate that a closed spacelikence embedding—do not depend on knowing the embedding
two-surface is the generalization of a point particle. This is curi-itself [34]. This is a pleasing criterion because it keeps the
ously reminiscent of string theory, except that the one-dimensionaleference spacetime abstract, rather than concrete. For a four-

string is replaced by a two-dimensional surface. dimensional space of constant curvature we have

1 ——
:——f dSV2[R— ooR®+ (k2-T2)*f],
8 S
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ot C etref refref example of the horizon of the Kerr black hole, which cannot
Rabcd=75(9acObd ™ bcTad): (4.4 pe globally embedded into fl&° when the angular momen-
tum exceeds the irreducible mass, which coincides with the

whereC is the constant value of its scalar curvature. For thistwo-sphere developing regions with negative scalar curva-

choice of reference spacetime one gets ture [%6]. However, it is a simple exercise to apply Brlnk—
mann’s construction and thus globally embed the horizon

C into a light cone of four-dimensional Minkowski space. |

ocoRe=— (4.5  will omit the details of this calculation, and just note that the
6 embedding is valid for all angular momentuin(up to and
including the extremal black hole caseand changes

For example, for Minkowski space we ha@=0, and for  smoothly withJ, including at the critical point whed equals
anti—de Sitter space we ha@= —12//?, where/ is the  the irreducible mass.

radius of curvature of the anti—de Sitter space, and is related On the other hand, in a codimension-twersus

to the (negativé cosmological constant by A=-3//2 codimension-oneembedding there is more elbow room, and

We will return to these two examples later. consequently the embedding is not unique—there is a func-
~The idea of embeddingSo) into some reference space- tion worth of freedom(which will be discussed in detail in

(time) is in the same spirit as the Brown-York approach, butRef. [30]). This results in an ambiguity in the reference en-

an important difference that arises out of using the invariangrgy IQE®’, which enters via the reference shear tef® (

quantity\/kz—lz, rather thar_k, deserves further cor_nm_ent. In _T2yre__gee Eq(4.3). This is the only term in IQE' not yet

the Brown-York approack is the trace of the extrinsic cur- determined, and the only one for which we require an ex-

vature of G,) as embedded in a three-geome(®h), plicit reference embedding. Observe that in the Brown-York

where X is a spacelike three-surface spanni@gwith in- ) N :
duced metrich,,. Thus it is natural to tak&™' as the trace approach the undetermined quantitykS', an expansion.

. . ~2 ~2 f . . .
of the extrinsic curvature ofS,o) as embedded in some Here it is k°—19)", a shear. I will now argue that it is
three-dimensional reference space’®{h™). So the embed- precisely this term that plays the key role in properly incor-
dings of S, for both the unreferenced and reference CQEPOrating angular momentum into the IQE. The basic idea is
inherently have ahreedimensional target space. On the Simple, but first we will introduce some notation.

. : : . : In the preceding section we introduced the null normals
other hand,Jk?—12 is proportional to a geometrical invari- P g

. . —a a H H _
ant of S, namely its mean curvature, and makes no essentidi= = U"=n", and corresponding null expansiofis =I=k

reference to a spanning three-surfate(making the IQE N Eq. (3.9. Similarly, the(tracci—freefhears in the two null
truly quasilocal in the sense that it dependsSmloné). As  directions are defined by. ,,:=1,,+Ka,. The curvature of

a consequence, the embeddings inherently havioua the normal bundle has only one independent component, and
dimensional target spaane). can be written asF,,=(F/2)e,, for some scalar fieldF,

The advantage of a three-dimensional target referencehere €,y is the volume form onS defined earlier in Eq.
space, say flaR®, is that when the embedding exists, it is (2.4). With this notation, and assuming that the reference
unigue(up to translations and rotationsand so the Brown- spacetime is one of constant curvature, i.e., @) holds,
York CQE® is unique. The disadvantage, as is well known,the Gauss, Codazzi, and Ricci embedding equations given at
is that such embeddings do not exist for 8| ¢) of interest, the end of Sec. Il take the form
and this problem is not limited to just a few isolated excep-

tional cases. C 1 etref  refa _refo

For a four-dimensional target reference spacetime, say €:R+§0+ 0= =Sy bS"a, (4.6
Minkowski space, the situation is reversed: an embedding
always exists, but it is not unique. Regarding the first half of 0=1 (D.5 A g (D 5 Arehgreb

. 1 . . — 5 + S+ 3
this statement, Brinkmanf85] has shown, by a simple ex- 2 (Pa¥Aa) 02— (Do+ Ay )SeTa 47
plicit construction, that any-dimensional conformally flat '
Riemann space can be considered as a particular cut of a _ rref, 1 _a roref orefb
light cone in fi+2)-dimensional Minkowski space. And 0=7"z €[y, s~ T, “.8
conversely, any cut of such a light cone gives an . .

y, any g g In the Ricci equations’®",s™"°, denotes the commutator of

n-dimensional conformally flat Riemann space. Now any ol e reft Tefc _ _
=2 space is, of course, conformally flat, and thus aByrj) e shearss®cs=,—s=Fcs.™,. Notice that by using null
can always be so embedded, eveBifas regions with nega- directions, rather than® andn?, the Codazzi equations have

tive scalar curvature. In the Introduction | mentioned thedecoupled into a- and a— set.
Our task is thus: Givewr,,, and hencéR, D,, andegy,,

solve these embedding equations for the unknown quantities
- , , , , 0", s, and A", (Of courseF®'=2¢2*D,A®" is not an
he CQE can also be made truly quasilocal, in a slightly different, oo ndent quantityin particular, we are interested in the

sense: by relaxing the restriction that the foliation of the spacetim : : :
(ie..S) be orthogonal to the boundai§ [7], it is shown in Ref. %olution for the boost invariant reference shear term

[31] that the resulting CQE no longer dependsXgrbut instead just ~5 o ref . f
depends on the foliation dS. (k*=1%)"®= —sF8, 80, (4.9
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appearing in the Gauss equation, which is to then be substirere(a notable exception is Rdf27]). One possible way to
tuted into the second integral of EGL.3). Or equivalently, proceed is as follows. Give™ [=F by Eq.(4.10], choose
solve for k?—12)"®=— ¢ and substitute the answer A’ such thatF™®'=2e2*D,Al. There may be a convenient
into the first integral of Eq(4.3). This is how IQE®" is de- gauge choice, such a@-A™®'=0, or1"'=0. Then view the
termined. _ ~ Codazzi equation$t.7) as a set of four linear partial differ-

However, as already noted, any solution we obtain is Nogntial equations for the four independent degrees of freedom
unique. We can seeretfh|s immediately byrg:fountmg functionap, the two shears. These equations are of second order if one
degrees of freedont." are two functionss.y, are fourthe  makes use of the fact that any trace-free symmetric tensor
two shears are symmetric and trace-fredA, are two. s on a two-surface$,o) with two-sphere topology can be
These eight functions are subject to six equations: Gauss {Sxpressed as,,=D,vp+ Dpva— oapD-v fOr Some vector
one, Codazzi are four, and Ricci is one. This leaves tWqiq|q ,2 Thus solve fors® . in terms of the expansions
arbitrary functions in the solution. But owing to the invari- e ; o ~ab . ]

. . g, and their derivatives. The expressions one obtains at

ance of the embedding equations under a local boost tranaﬁs stage are, in general, nonlocal. Then substitute these into
formation[see Eqs(2.13], one of these functions is just the 9 1N g ’ '

boost parameten, leaving one nontrivial arbitrary function the Gguss anq Rice equatlpméﬁ) anq (4.8), which are
in the solution. really just nonlinear algebraic constraints. But because the

The question then arises, Is there a natural way to impos%ﬂia;égvglvsvi?ﬁ ngarioonﬁggiﬁogiﬁténn%fga:heareﬁa;fsf'gﬂs’
one additional functional condition on the unknowns so thaf(;ntial e uat‘i)ons for the twWo expansions Remparkabl it is
the embedding, subject to this additional condition, is quati pansions. . Y,

. ) . . almost possible to solve these equations, but in the end one
unique, and hence IQtis unique? One of the central ideas ; o . .
C . . - o encounters a certain combination of nonlocality and nonlin-
in this paper is to impose the additional condition . X . X :

earity that makes the final step to a solution seem impossible.

Fef=F (4.10  Nevertheless, it appears that the solution fot12)"", if it
can be found, almost certainly depends in a simple way on
i.e., the curvature of the normal bundle s embedded in both’R andF, and derivativesof a finite or possibly infinite
the reference spacetim#(®',g™" should equal that c8as  ordep of these two curvatures. | am suggesting that it is

embedded in the original physical spacetitivg). through this subtle presence &fin (k?—12)"" that angular
There are several reasons why it is geometrically naturghomentum is properly incorporated into the IQE.
to demandF**'= F. First, the two-surfac& has two connec- So although a direct attack on the embedding equations

tions: one is an S@) connection on the tangent bundleSf  has not yet yielded a solution, fortunately one can make
associated with the curvatufe, and the other is an S@O,1)  some progress of a general nature by calculating the first and
connection on the normal bundle &f associated with the (.4 order variations &' and ®2—T?)" under isomet-

curvature . In fact both of these connections are metrlcriC deformations of a given embedding. The idea is to see

connections, associated with the metrics in the tangent angl)\ . both of these quantities change under such a deforma-
normal bundles t&, respectively{27]. Furthermore, Szaba- . . —
& resp m27] tion, and thereby infer howk€—12)"®' depends o™®', and

dos[26] has considered the two-dimensional version of th .
ence angular momentum. The results are somewhat in-

Sen connection for spinors and tensors on a submanifol : .
such asS and has found that the two-surface spinor curva-volved, and will be given elsewhe[80]. For now let us start

ture has, essentially, imaginary part equaRtoand real part by maklng some simple observations regarding the enigmatic
equal toF. Finally, althoughA, is a measure of extrinsic object &*—T2)""

geometry, as pointed out earlier it is not really on the same T0 begin with, one might object to our argument thus far
footing as the extrinsic curvatures,, and |,,, since its because it implies thatkf—T%)"®", and hence IQE', de-
transformation law under local radial boosts is qualitativelypends on the extrinsic geometry 8fas embedding in the
different—see Eqs(2.13. It transforms like the connection physical spacetime. In particular, through E4.10 and the

that it is, and gives rise to a curvature, and so arguably hagference embedding equation&?{12)" depends onf.
more in common witiR than withk,, andl,,. The pointis,  On the other hand, it is often stated that a reference subtrac-
F is really on the same geometrical footingAs We have  tjon term should be a functional of only the intrinsic geom-
already demanded th&''="R, as a necessary condition for etry of (S,o). However, notice that there is no dependence
the embedding of$,0) into (M'™,g™) to be isometric. S0  on the extrinsic curvatures proper, i.b,, andkp, only a
demanding also thaf™'= F is thus seen to be quite natural. dependence ofF, a quantity which | argued above is really
Unfortunately, implementing Eq4.10 seems like an in-  on the same geometrical footing as the intrinsic quarfty
tractable task. Embedding equations involving curvature ofvioreover, as discussed in the Introductiprefer to Eq.
the normal bundle, i.e., codimension-twand higher em-  (1.5)], in the Brown-York approach one is free to add to the
beddings, have, of course, been studied for a Iong time. Witlaction any functional of the boundamreemetric, Yab
regard to solutions, although one expects to be able to exyhich contains information about the two-metric,,, as
press k?—T12)"in terms of 7, R, and their derivatives, | am well as information about howS o) is embedded in the
not aware of any such general results in the literature. In facthree-boundarys. For instance, one could add to the action a
much of the literature on such embeddings considers the cas®undary integral of the scalar curvature®fwhose varia-
F=0, which is not the case we are particularly interested irtion would add td12” in Eq. (1.5) a term proportional to the
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Einstein tensor ofy,,, as is done in Ref.36]. Such a term 1

obviously depends on some extrinsic geometry Q). In |QEref||§‘g=o: - %J’ dSlk’]

the work of Brown and York this fact is of course recog- S

nized, but being in a Hamiltonian framework, they restrict 1 —

the form of the arbitrary boundary functional such that the == EJ’sd SV2[R+(k™)?]. (4.13

energy surface density—k/(87)] and momentum surface
density[ —A,/(87)] of Sin a particular spacelike hypersur-
face depend only on the canonical data BnThis effec- ) .
tively means that their reference subtraction term can deperd"'du¢: 'Eova clearly, no matter what the surface is, the spa-
only on oy, [7]. But as | emphasized earlier, our approach istial shearks, must be such that what is under the square root
based on the invariant objegk?— 12, and makes no essen- in EQ. (4.13 is non-negative, because™| is real. [More

tial reference to a three-surfadespanningS. The invariant ~ Properly, one should look at the “reference version™ of Eq.
quasilocal energy constructed here does not come out of @.1), with (1™)2=(T"*%)2=g¢R™=0.] For example, con-
canonical analysis, so there is no reason that our subtractisider a dumb-bell-shaped surface of revolution inftIn
term cannot depend af. a region near the throat of this surfaReis negative, never-

So the shear termkf—T2)"" is allowed, but is it really theless at every point of the surface we haRe- (k'™)2

necessary? Perhaps it is just an unsavory term resulting from 0.

a poor definition of the IQE. For instance, looking at the | emphasize that, even wheis,) can be embedded in

Gauss embedding equatidd.1) one might be tempted to flat R3, its embedding in Minkowski space need not be cho-

write, instead of Eq(3.4), sen to be in a=const slice, as was done in the previous
paragraph. One may also embed it in a light cone, or in a
host of other ways—remember that there is a function-worth

? 5 of freedom in our choice. | argued in the context of Eq.

E2—p? —>(8W)2[(k2—lz)—2(ZE2— [%)], (4.1)  (4.10 that this freedom has to do with angular momentum,

or more precisely, the curvature of the normal bundle. For

the t=const embeddingl’&'=0 implies s, = +kS', and

; ; H i ef _
where the additional shear term on the right-hand side iSC InsPection of Eq(4.8) reveals that in this casé™=0.
perhaps the proper way to include angular momentum, som&lOWeVer, it is not hard to see that starting with such a
what like the A%A, term we attempted in Eq3.5). This =const embedding one can perform an infinitesimal isomet-

would have the advantage of changing [&& Eq. (4.3 to ric deformation of the embedding out of the const plane,
o i.e., in a directiongd/dt, where ¢ is an arbitrary function.

Furthermore, | show in Ref30] that after such an infinitesi-
> mal deformationF®" is no longer zero, and can in fact be
ref_ _ _— \/ﬁf]' made to be essentially any infinitesimal function we like by a
QE 8m LdS 2lR-aoR™, (4.12 suitable choice ofp. It is not hard to imagindjust hard to
do) that by integrating such isometric deformations one may
be able to achieve a two-geometr8,{) isometrically em-
which is clearly unique, and moreover, requires no explicitbedded with any desired curvature of the normal bundle.
reference embeddin@o equations need to be solveBqua- ~ With this in mind, it would seem unnatural to reference-
tion (4.12 is a more general case of the zero point energyembed, e.g., a constant two-sphere of the Kerr geometry
suggested by La{i37] (except that his derivation of it re- (which is easily shown to hav&+0) as a two-sphere in a
quires an explicit reference embedding—we will return toMinkowski reference spacetime withH"®'=0 (say, in at
this point latey. But unfortunately it cannot be correct. For =const slicg, when it seems possible to instead embed it
example, when the reference spacetime is Minkowski spacayith 7= F. Note, however, that as the embedding is de-
Eq. (4.5 tells us thatroR™'=0 and thus the radical reduces formed out of thet=const surfacelf will also cease to be
to V2R, which is not defined for negativ®. Nor is this  zero, and so will introduce a negative contribution to the
problem properly solved by takinG+0 in Eq.(4.5), since  quantity under the square root in Eg.3). This jeopardizes
this would put arad hocfixed lower bound orR. the non-negativity of this quantity. But at the same time we

So the shear termkf—12)"" is not only allowed, it is clearly cannot simply throw away the (T2 term, since
necessaryor at least its absence leads to an unsatisfactoryhis would violate a key property of the IQE, namely its
resuld. In fact its role seems to ke keep non-negative what invariance under local boosts. Short of solving the embed-
is under the square rooin Eq. (4.3). To see this more ding equations for a generi€® and explicitly checking, | do
clearly, consider the special case th8i«) is embeddable in not know of any guarantee of non-negativity. Equivalently,
flat R*. If our reference spacetime is Minkowski space, wein question here is the non-negativity of the quantikf (

The uniqueness of the embedding meanskffaandk's are

can then choose to embe8,¢) in at=constant slice and, —12)" which is the same type of question as the non-
within this slice, the embedding is essentially unique. In thisnegativity of k?—12) discussed at the end of Sec. lIl. | do
case it is easy to see that we will hakﬁ:O. And by as- not at present have a complete answer to either of these
sumption,coR™=0, so Eq.(4.3) reduces to difficult questions.
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Finally, one might guess that it is possible to avoid theenergy as $,0) tends to a large sphere at infinity. At spatial
embedding problem entirely by simply setting2¢12)""  and null infinity we might expect these limits to be the ADM
=(k2=T2), which is in the same spirit as E+.10 in that, and Bondi-Sachs masses, respectively. Let us see if this is so.
like F, the shear term has something to do with angular L€t 7be atime function oM such thatr=r7, defines a
momentum. But this does not work. For example, it is notspacelike(respectively, null hypersurface, of topology
hard to show that, althougtk¥—T2) is in general nonvan- RXS” extending to spatialrespectively, nu)l infinity. Let-
ishing on constant,t spheres of the Kerr geometry, it hap- ting the parameter, vary over some range gives a foliation
pens to vanish on the horizon. So if we S'E%_éTZ)ref: (’Rz of a part ofM. Let r be a function onM such thatr=r,
—T?), then in calculating IQE' for the Kerr horizon ex- defines a hypersurface that intersects each#gaf(over the
ample we would run into the same problem with negafve ~allowed range ofr, ) in a spacelike two-spher&, , . The
as we did in Eq(4.12. So such a prescription must not be parameter , ranges to infinity, and over its range the sur-
valid, and we cannot avoid the embedding problem this V\{ayfacess,* ., provide a foliation ofHT*. We are interested in

Let us conclude this section by addressing the followingine imit r, —c, with 7, arbitrary but fixed. In a rather

qguestion: What is the relationship between the IQE define%enign abuse of notation we will refer & , as simplyS

here and the Brown-York CQE? We begin by supposing that o . , o
the following four conditions are satisfiedi) (S,o) is a and take the limit as— o with 7 fixed. The metric induced

two-surface in the physical spacetime such teat 12>0; on S will, as usual, be denoted as,;, (in abstract index

(i) k>0: (iii) (S,a) is such that it can be embedded in flat Notation. _
R3; and (iv) for the embedding ifiii ), k™*=0. As discussed Now assume that the functionsandr have been chosen

earlier, condition(i) ensures that the unreferenced IQE issuch that §,¢) tends to a round sphere at infinity. Thus the
well defined—roughly speakingis not inside a black hole. components of its metric in spherical coordinates
Then it is always possible to go to a quasilocal rest frame=(6,¢) have an asymptotic expansion of the form
wherel=0 on S and the integrand in Eq3.7) is just |k.

Given condition(ii), the unreferenced IQE thus reduces to X 1 0 X Ysing
the unreferenced CQE in E(L.1), provided the observers in ajj=r . + r( . . +0O_(r).
the Brown-York case are in a quasilocal rest frame. Condi- 0 sifo Ysing  Zsinf 0

tion (iii) ensures that the Brown-York prescription is well

defined, and allows us to choosetaconst embedding in In thi . Y andz h arbit functi f
Minkowski space, as above, and get E4.13. The first n this expansiony, Y, andZ are each arbitrary functions o

integral in this equation, together with conditién), shows 7 6> @hd¢. The symbolO_(r~") denotes a term that falls
that our IQE® reduces to the Brown-York COE in Eq. off faster(or grows more slowly, depending on the sigmof

(1.2). So if these conditions hold, and we choose to use a thanr ", but not necessarily acco_rding toa power_roFor

= const embedding to calculate IE then our invariant €Xample, rather tha@(1), theremainder term®(r) in Eq.

quasilocal energy is the same as the Brown-York rest energy>- Might grow as Ir. The motivation for this increased

In most applications considered in the literature these condidenerality will be explained below when we consider the

tions are satisfied, and the IQE will then share all of thel2r9¢ sphere limit at null infinity. Furthermore, we can

desirable properties of the CQE. For example, it will be thet100se(the functlozr) r to be an areal radius, in which case

thermodynamic energy that appears in the first law of blackVe may take\o=r?sin g, whereo =detoy; . Itis easy to see

hole thermodynamics for Schwarzschild black holes, as corthat this requireZ = —X in Eq. (5.1). _

sidered in Ref[7]. The _scalar curvatu_re _of a round s_phere of areal radiss
On the other hand, | emphasize that conditigins and 2/r?. Since the metric in Eq(5.1) differs frpm that of a

(iv) are easily violated. One need only think of a roundfound sphere by a term one power lowerrinwe immedi-

sphere with a small indentation, an example discussed at ttf€ly have that its scalar curvatuReis given by

end of Sec. lll(except here the embedding spacetime is ge-

nerig. So in general, the IQE defined here is not simply the 2 Ax

Brown-York rest energy. Furthermore, we need not choose a R="2+ T3 (5.2

t=const embedding to calculate I(SE Indeed, as | have

argued, such a choice is unnatural wig# 0. In short, the  \here the remainder terthy, is of order oné.In our asymp-
invariant quasilocal energy defined here is not quite the samgytically flat spacetime the components of the Riemann ten-
object as the Brown—York quasilocal energy. Note that thesor fall off as 1¢3, and so the same will be true ofrR, the

aforementioned thermodynamic nature of the CQE is derivedectional curvature ofS,¢). In the present context the ap-
in Ref. [7] assuming thaS is a round sphere. It would be

interesting to extend this analysis to indented spheres, for———
instance, and determine which, if either of the CQE or IQE
is the correct thermodynamic energy.

-

" %In Ref.[38] it is shown thatA ,=D-v+0O_(1) for some vector
field v in S In other words, to leading ordex; is a divergence.
V. THE LARGE SPHERE LIMIT OF THE IQE This plays a crucial role in some of the results in H8B]. How-
ever, we will not need to use this fact, except to provide some
Let us now assume that the spacetifivkg) is asymptoti- insight into our discussion of the ‘solution’ of the Ricci embedding
cally flat, and evaluate the limit of the invariant quasilocal equation in Sec. VB.
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propriate reference spacetime is Minkowski space, and sterms obviously vanish, and witthS=r2d(Q (d€) the mea-
ooR™®=0. The only other terms to consider in Eq4.2)  sure on the unit round sphérene immediately gets IQE
and (4.3 are the shear termsk{—12) and &*—T12)"®. we =M, the ADM mass of the black hole. Now the main task is
will see below that these, too, fall off at least as fast a$ 1/ to investigate in detail the shear terms in E8}5), which we

in both the spatial and null infinity limits. In the large sphere Will do separately for the spatial and null infinity limits, re-

limit the unreferenced IQE thus behaves as spectively.
1 2 Ap — e
|QEunref: _ _f dS\/Z 4+ —x—ooR+ (k2— [ 2) A. The spatial infinity limit
8 Js ' ' Rather than proceed with complete generality, it is more
1 2 (2TA in_s';ructive to consider an asyrr_lp_totically flat metric that ex-
=~ | dsZi1+ — _3@_ ooR hibits angular momentum explicitly, and then see how this
8m s T alr angular momentum works its way into the shear terfiée
will be completely general in the more interesting null infin-
+(k2-T? +O(r‘2)]. (5.3 ity limit case) The spacetime far from any isolated station-
ary (nonradiating rotating source is described asymptoti-

cally by the Kerr metric(see Secs. 19.3 and 33.3 of Ref.
T29]), so let us takeM,g) to be the Kerr spacetime. We
choose the following basis of orthonormal one-forms:

The reference IQE behaves similarly, except we hav
ocoR®=0. Thus

2

|Q|5fef=—ifdsE 14— %—0+(T<2—~I2)r9f P
8w s r 4|3 e=Ndt el=—dr, e?=pde,
JA
+O(r2)]. (5.4
e3=\g,4(dp—wdt), (5.6)

In forming the difference of the previous two expressions it

is important to observe that not only do the divergent termgvhich are associated with locally nonrotating observers. The
coming from the 272 piece of R cancel, but also théinite) corresponding basis of orthonormal vector fields is
remainder termsA, are the same in both, and thus also

cancel, independent of whaty is. Thus we find that the 1 JA 1
large sphere behavior of tHeeferenced IQE is given by e0=N(at+ 3dy), e1=7a,, e2=;c70,
1 — o~ — o~
- _(k2_T2 2_T2yref
IQE 167 JSdS fooR—(ke—19)+ (k1) .
832—&¢. (57)
+0(r 1. (5.5 NP

Of course if the shear terms fall off ag 4/or faster they get The notation used is standars®=(t,r,6,¢) are Boyer-

absorbed into th@(r ~*) remainder term. It is worth empha- Lindquist coordinatese(r.6)= —a. ./ is an observer's
sizing that in the large sphere limit the square root in the IQEangl?Iar velocity S:S( ’ r%easgrtgdg%rom infinity,N

is eliminated by the fact thaR dominates over the other _ J029 00— O | ;
. : . =044~ 0y is the lapse function, et¢see, e.g., Sec. 33.4
terms. The areal radius factoroutside the brackets in Eq. of Ref.[29]). LetAB, . .. beindices labeling the basis vec-

(5.5 is really y2/R.*" In Sec. VI we will see a similar tors and one-forms, ranging from 0 to 3, andl . . . denote

mechanism at work in the small sphere limit. But in they,o gnset of these taking values 2 and 3. These indices are
intermediate regime the IQE is, in general, an integral of theraised and lowered with the flat Lorentz metrigg= 7
difference of two radicals. =diagonalc-1,1,1,1) .

As a quick check of Eq(5.5 let us evaluate the right- The vector’fi’elase 2 are tangent to any, t=constant
hand side for the Schwarzschild geometry. In the usua{wo-spheres and sou‘l"zzeoa andnir—e,” o respectively

Schwarzschild coordinatesis an areal radius, and it is a timelike and spacelike unit vectors orthogonal SoFrom

silmple tetxermsi to cqrrEpute tf}?_se;tt)zzl\i/ll /C‘g“’?;“fe Efra Egs.(2.8) we see that the orthonormal basis components of
—const two-sphere. The resuft esorR= r=. Iheshear ihe extrinsic curvaturek,, andk,, are given by

—_aan b _

1%This mechanism works even when the sphere is not asymptoti- hy=€"e"Valp=—woy), (5.8
cally round. In this case the shear terms contribute at a higher order,
viz. 1/2, in an effort to keep what is under the square root sign b

S . ; : ki;=€%,°Vnp=— : 5.9

positive, as discussed earlier. In other words, the fag@iR is T EEY Valle™ ™ @1 .9
modified in such a way that negatifeis likely not a problem. We
will not consider this more complicated case here. Here wcpa= —ex?esPV ,ecp, are Ricci rotation coefficients.
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Working out these coefficients | find that the trace-free (5.10], Eq. (5.14 shows that the connection in the normal

parts ofl,; andk,; are given by bundle measures itsdependence. Both are measures of an-
gular momentum.
~ 0 1 \/@ Calculating the exterior derivative & leads to the cur-
ly=a|, o wherea= 2Np dgw, (510 vature in the normal bundle:
_ 1 0 1 Gyss /A )_ 6aM )
k”:/j(o _1), where B:Zar In—\/gT“b. F P (99( 2Np dro 3 Cos6+ 0| 5/,
(5.11) (5.19

which is of order 17*. Inspection of the Ricci equatio#.8),
or Eq.(2.16 with the left-hand side set to zero, reveals that

) . i’;\ solution to the reference embedding equations, subject to
measures the precession of a gyroscope carried by a local ) = ref ~ref .
nonrotating observer, relative to the observer's orthonormafd- (4.10, requires that|; andk; be two matrices whose

frame [see Eq.(33.24 of Ref.[29]; compare also with Eq. commutator is of order if. On the other hand, one Tight
(3.2) above, and the discussion followind.ifThus, the un- guess that the trace of the difference of their squark, (
referenced shear term in EG.5) is given by —T?)"*" might be of order 1, as suggested above. It is not
difficult to convince oneself that these two conditions are not
incompatible, so the reference embedding equations at least
do not obviously forbid the reference shear tek?-(12)"

from being of the same order of magnitude &&<12), such
where the last expression on the right-hand side is the fargey, o neithgr contributes to the |QE.g 1)

asymptotic expansion. So clearly, being of order®1/k? In any case, assuming just thd‘ize"‘z)ref is at most
— 2) does not contribute to the Iarge Sphere limit of the |QEO<(|’_3)’ which is almost Certain|y true, we find that the

Geometrically, the coefficient is juste;- QP je. the
radial component of the angular velocity vecf®°es*that

4

~ o~ a
(K2=T2)=2(B?~ a?) = 5 gsirt' 6+ 0

1
r_7)’ (5.12

at spatial infinity. large sphere limit of the IQE at spatial infinity is given by
What about the reference terrk®12)" It is plausible

that the reference term is of the same order in d¢ the . 1

unreferenced term, viz. 09, or less, and so also does not r“”l IQE= r"”;@ Lds fooR. (5.1

contribute. However, to be certain one needs to solve the
embedding equation$4.6~(4.8), subject to the condition s jimit of the IQE thus has a simple geometrical interpre-

ef_ . .
F¥=F, as argued in Sec. IV. We will not attempt to do SO yation: apart from a factor proportional to the areal raditis

here, but it is instructive to at least work out wifats for the 4 just the average oveé of the sectional curvature o)

Kerr geometry. From E¢2.11) we see that the orthonormal ¢ ambedded in the physical spacetifikg).

basis components of the connection in the normal bundle are \,\ jet us assume thaM,g) is vacuum R,,=0) near
l a

given by spatial infinity, so that there the Riemann tensor reduces to

the Weyl tensor,C,pc.q- From the definition of the two-
surface metric given in Eq2.3), and the fact that the Weyl
éensor is traceless, one immediately gets

A|:e|bchbUC: — wWoyq - (513)

Evaluating these Ricci rotation coefficients reveals that th
one-formA=Ae' (pulled back to the two-sphe® is given

by ogoR=2E,,n?n®. (5.1
Ae g Thus the sectional curvature ofS5(r) is just (twice) the

=vdo, radial-radial(Coulomb component of the electric part of the

where Weyl tensor,E,p:=— CaeplU’. Inserting this result into

Eqg. (5.16 we see that in this limit the IQE is precisely the

coordinate-independent expression of the ADM mass given
(514 by Ashtekar and Hansd39].1?

One more remark is in order here: Hayward’s work on

guasilocal energy8] resembles what is done here in the
Recall thatw=w(r,6) is a measure of the frame dragging sense that the Gauss embedding equation plays a central role,
produced by the rotating geometry. While the shear in theand that the analysis is boost invariant in spirit, i.e., no ref-
time direction measures thiedependence ab [seea in Eq. erence is made to a spacelike three-surface spar@inith

GpgVA _ 3aM _ 1
2Np é’rw— —rrsm26+0

r4)

The easiest way to do this is to recognize that, ifithO or 1, 12y Ref. [39] a different definition ofE,, is used, namelE,,
wz31=a(y)z, Where a®yg=ic i, de°. Thus we need only com- =C,.,n°n9 but accounting for this difference in notation the two
pute the exterior derivative a' . results agree.
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its attendant preferred time direction &and so on. How- We assume the following expansions for the various terms in
ever, Hayward’s quasilocal energy is distinct from the IQEthis metrict®
here: it does not involve a square root. Basically, Hayward

starts with an integral ove8 of the 2+ 2 Hamiltonian den- V=1-2mr +0_(r %), (5.19
sity, which yields a dimensionless quantity, and then multi-
plies this quantity by the areal radius 8fto correct this U=1—1(X2+Y?)r 2+0_(r 2 (5.20

defect, i.e., give it the dimensions of energy. This is in the
same spirit as the areal radius factor appearing in the Hawk-
ing mass[25]. For the large sphere limit at spatial infinity
Hayward arrives at the same result given in E§16), ex-
cept withr outsidethe integral, so to speak. His quasilocal W?=cscO(2Y cotf+dyY —cschdyX)r ~?+0-(r?),

W= (2X cot O+ dgX+csChd,Y)r 2+ 0(r~2),

energy has the very appealing feature of not requiring a ref- (5.2
erence subtraction term, at least when the sectional curvature

ooR falls off as 1f2 [however it diverges if, e.g., the space- , 1 0 X Ysing

time is asymptotically anti—de Sitter space—recall Eq. “i=" o sitol "%\ vsing —xsirtg) T O<("):
(4.5)]. In our case, the square root in B4.2) ensures that (5.22

the IQE has the dimensions of energy, but the price paid

is that a reference subtraction term is need@dfithout  The functionV contains the mass aspeat(w, 6,¢). Ob-
the square root the large sphere limit of the unreferencederve that the metric o8 is of the same form given in Eq.
IQE would just be(negative the Euler number of, whichis  (5.1) (with Z= — X because is an areal radius hexeexcept
finite, but carries no information about energf¥he areal now X(w,8,¢) and Y(w,#8,$) have a significant physical
radius factorr in Eq. (5.16 appears inside the integral: as interpretation: they are the real and imaginary parts of Sachs’
mentioned before, it arises from the dominant scalar curvacomplex asymptotic shear=X+iY [41]. Thus the scalar
ture term R, and is really V2/R. | emphasize that this curvature of §,¢) will be given by Eq.(5.2), and we can
is a geometrically natural mechanism—s not put in by  begin our discussion of the IQE at E.5). Our first task is
hand. Finally, while one might feel that there is somethingto compute the unreferenced shear tek12).
unattractively ad hoc about a reference subtraction term, Inspecting the metric in Eq5.18, we choose the follow-
the flexibility it affords makes it possible to deal with the ing basis of one-forms:

wide range of boundary conditions possible in general rela-

tivity. In Sec. VII we will consider an interesting example e =1Udw, e"=dr+3Vdw, e'=4'(dxX+W dw),

of this. (5.23
where indicesl,J, . .. take the values 2 and 3, and; is
B. The null infinity limit defined by demanding that; = 8,;7';”; . A suitable choice

for 9!, is given by

We now suppose that the physical spacetiiey) is as-
ymptotically flat at future null infinity. As in the preceding r+X 0
subsection we begin with the generic large sphere form of Yi= . +0.(1). (5.24
the IQE given in Eq(5.5), except now we take the larg® 2Y  (r=Xsing
limit in the future null direction. More precisely, oM we
introduce the Bondi coordinat§40] x2= (w,r, 6, ), and as  In this matrix expression,(i) is a row(column index. Let
before, denote the subs@, ¢) of spherical coordinates by the indicesA, B, ... take values in the s¢t-,+,1}. Then the
x. The retarded timav labels a one-parameter family of Mmetric is given byg,,= 7as€”2e%,, where
outgoing null hypersurfaces, amds an areal radiuglumi-
nosity parametgralong the outgoing null geodesic genera-
tors of these hypersurfaces. Ther =constant surfaces are  13ye are following closely the notation used in RES8], as well
topologically two-spheres, any one of which we denot&as a5 the spirit of the discussion in their footnote 2. The meaning of the
This setup is the same as discussed at the beginning of SagtationO_(r ") was described following Eq5.1). The motiva-
V, wherew here is what we there called the time coordinate tion for this level of generality is that Chreigl et al. [42] have
7. We are interested in the one-parameter family of two-recently shown that one can allow polyhomogeneous terms of the

spheresSin the limit asr —o, with w arbitrary but fixed. formr~"In™r in these expansions and still have a consistent frame-
In the Bondi coordinates our asymptotically flat metric work for solving the Bondi-Sachs—type characteristic initial value
takes the standard forfd1,42 problem. Allowing only expansions in powers of inversis tanta-

mount to Sachs’ outgoing radiation conditipfl], which they ar-
gue is overly restrictive. However, besides making the calculations

gabdxadxb= —UVdwP—2U dwdr+ crij(dxi +W dw) tighter as regards remainder terms, and slightly more general, we
_ ) would get the same results had we assumed Sachs’ outgoing radia-
X(dx +W! dw). (5.19 tion condition.
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(’RZ—T2>E—s+.JsJJ=%<xX+Y'W+O<<f‘3>
(5.32

[cf. Eq.(4.9].
We thus learn that, in contrast to the spatial infinity limit

This matrix, and its inverse;”B, are used to raise and lower [see Eq.(5.12], in the null infinity limit the unreferenced
the the basis indices. The vector fields dual to the one-formshear term is of order 4, and sodoescontribute to the

in Eq. (5.23 are given bye,®= 7,5g%"e®,, or explicitly

1 :
e_=— V(?r_WIO’)i y

0 3w_§ e=v'd,

(5.2

wherey,! is defined byy,'= 836"y’ ,a'! being the inverse
of the matrixoy; .

e+:&r,

Inspection ofe; in Eq. (5.26) shows that these vectors are

tangent taS, and sce-. are two null normals t&. Since their
normalization is such thae,-e_=-2, we can setd
=e% , where&d was previously defined bgf :=u?+n? [see
Eqg. (3.8)]. Thus, from Eqgs(2.8) we have the following re-
sult, in basis components:

(5.27

Working out the required Ricci rotation coefficielts find

lytkiy=e?e,’Vaerp=—w.y.

2 V
ly+kiy=Byy, IIJ_kIJ:U AIJ_EBIJ_D(IWJ) ,
(5.28
where

Lo1(xX Y i
AIJ:'Y(II')’J)i:F | +O0(r7Y),  (5.29

o110y 1(x Y

Bia=vq YTy o 1/ r2ly —x
+0_(r?). (5.30

Here we use an overddprime) to denote differentiation
with respect tav(r). Observe thaDW;, in Eq. (5.28) is of
order 1t2. Taking the trace-free part of Eq&.29 gives us

the basis components of the shears in the two null direction

s.y=11;=k,. Explicitly,

1(X Y B
S+n=" 2 Y X +0_(r 9),
2(X Y
S,UZF Y _X +O<(ril). (53])

Thus the unreferenced shear term in Eg5) is given by

Hsee footnote 11, witZ= =*.

IQE. We will argue below that the reference shear tekh (
~T?)™"is also of order ¥f, but that it is a total derivative
and therefore does not contribute. So as not to interrupt the
flow or our discussion, for the moment let us assume this is
true, in which case Eq5.5 becomes

. 1 4 . .
r'Tl IQE_JE@ JSdSr{acr —r—3(XX+YY) )
(5.33

Because of thec+cc=2(XX+ YY) term, this result looks
like it could very well be the Bondi-Sachs mdgd]. To see
that in fact it is, a straightforward calculation of the Riemann
tensor ofg,,, projected intoS gives the following sectional
curvature of §,0):

4 .
00R=r—g(m+XX+YY)+O<(r_3). (5.34

Inserting this result into Eq(5.33 we see that the shear
terms cancel, leaving only the mass aspett,

) 1
lim IQE= EdeQ m(w, 0,).

r—oo

(5.39

In obtaining this expression, recall that because an areal
radius we can(and did take Jo=r?sing, and sodS
=r2dQ, wheredQ)=sin9#ddd¢ is the measure on the unit
round spheré® Thus the future null infinity limit of the IQE
is the Bondi-Sachs ma$41].

Now there is an important lesson to be learned from this

result. The unreferenced shear terkf€12) is solely re-

sponsible for producing the all-importaot—+cc term that
accounts for the mass loss due to gravitational radiation.
Hence this term isiecessaryunder the square root in Eq.

Y4.2), and so there is no natural way to avok?€12)"" in

IQE™', and its attendant embedding problem. Moreover, we
learn that these shear terms are not only associated with an-
gular momentum, as | have been stressing, but also encode
information about gravitational radiation. We will see pre-
cisely the same phenomenon emerge in the small sphere

150n this note, it might be helpful to point out an important detail
in the calculation of the sectional curvature given in Eg34). One
of the terms that arises in the calculation is the tracégfin Eq.
(5.29, which appears to be of ord@_(r 1). If this were so it
would be problematic. But in fact it is zero, becausg=y,'¥';
=(1/2)5/5=0, sincec=r*sir? 6 does not depend ow.
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limit in Sec. VI. Furthermore, it is emphasized in Rp43]  and F with its curl. This is an explicit example of a point
that it is easy to construcgb initio, an integral expression made earlier, namely that both curvatures are on the same
involving the Riemann tensde.g., an integral oroR over  geometrical footing: To capture the two pieces of informa-
9 that is conserved under certain circumstances. One is thu®n in W—its divergence and its curl—requires precisely
tempted to interpret such a conserved quantity as an energhoth R and F.

However, such attempts fail to produce, in the null infinity  Let us now turn to the null shears 8fas they appear in
limit, the crucial null-surface-dependent shear terms seen ithe physical spacetime, E(5.31). The form of these shears
Eqg. (5.33, and it is difficult to see how to modify them in a suggests we make the following ansatz for the null shears of
covariantway to produce these ternid3]. The shear term Sin the referencéMinkowski) spacetime:

(k?=T?) is precisely such a covariant modification. More-
over, it arises naturally from simply replacing the Brown-

York k with the boost invariant quantityk?—12. [Of course s = %( “ _'8 +0.(r7?),
a similar observation can be made concerning, say, the r\B «
Hawking mas$25], which has the same large sphere limit as
in Eq. (5.5, except without theeferenceshear term. S
These clean results rely on our assumption that the refer- Sre{J:_( +0_(r Y. (5.39
ence shear termkf—12)"f does not contribute to the null r\o —v

infinity limit of the IQE. I claimed above that this is so

because it is a total derivative. To prove this would requiregpgserve that we might expect the péir,8) to play a role
solving the embedding equation®.6)—(4.8), which we  gistinct from the pair(y,5). Comparing Eqs.(5.39 and
know is a very difficult task. However, | will now present a (5 39 suggests that and 8 will be like X andY in that they
heuristic solution of the Ricci equation that leads to a suby,5ye something to do with tHatrinsic geometry of §,c).
stantiation of this claim. Moreover, we will see how demand-The more important terms will ber and 8, because they
ing F"*'=F plays a crucial role in achieving this result, occur at the dominant power of inverseAlso, we expect

which provides our first bit of indirect but concrete evidenceihem to be related to thextrinsicgeometry ofS, since their
that this condition is required to properly account for angular

momentum(and as we now see, also gravitational radigtion counterpartsX andY, measure hows;; changes as a func-

. ’ 9 L tion of the retarded time~—they are the two “news” func-
To begin we need to calculate the connection in the NOT%:ons [41]

mal bundle,Aa, and 'th(.an Its corrgquncjmg curvatute, With these observations in mind, we will now heuristi-

Proceeding as we did in the spatial infinity cdsee Eq.

. . . cally solve the Ricci embedding equatidd.8). We first
(5.13] we find that the basis componentsAf are given by compute(in basis components

1

1 1
E W,+§e|(InU), (536)

A|: :m

o 1 | ref ref1J 2 2 @ ’8
—pedsy ST =g (ad—By)= zde y &)
(5.40

wheree,(In U) denotes the derivative of ld along the vec-
tor field e,. This term is pure gauge. As for the other term,
since we only knoww, to leading order we can pui=1
here—see Eqg5.20 and(5.21). Thus, up to a gauge trans- Next we impose the conditia™'= F, and observe thaf in
formation, the normal bundle connectiok, is just (1/r Eqg. (5.37) can also be expressed as a determinant, i.e.,
times W, . And the curvature is thus proportional to the curl

of W

f 2 [D, Ds
2 2 ffe:fzrde Wo Wal® (5.41)
F== e”D,WJ=F(D2W3—D3W2). (5.37 2 T3

Keep in mind that the numerical indices here refer to basid he Ricci embedding equation instructs us to equate the two
components, not coordinate components. It is easy to see thfevious determinant expressions. One solution is to make
Fis of order 1f2. It is interesting to comparé with the  the identificationsx—rD, and g rDs (which are consis-
scalar curvaturéR, whose form was given in Eq5.2). Us-  tent with our expectation that and B be associated with

ing the metric in Eq(5.22) it is not difficult to evaluate the intrinsic geometry, together with y<>rW;, and d<rWs
remainder termA . The net result i$38] (which are consistent withy and § being associated with
extrinsic geometry, sinc@/ is proportional to the connection

in the normal bundle—a measure of extrinsic geometxp-

tice that this means'®!; is a derivative operator. To make

_ this more palatable one may go to a Fourier transform space,
Note from Eq.(5.21) that W' is of order 1f?, so the term where the derivative operatof become momenta;, . Ac-
above involvingW is, indeed, of order 17, as it should be. cepting these heuristic identifications, and recalling @),

Thus we see thaR is associated with the divergence\®f  the key point now is to observe that

2 2
R:r—2+FD-W+O<(r’3), (5.39
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(k2—=T2)rel= — g'efl gred, Lau, and York[19] also consider this same limit of the
Brown-York quasilocal energy. We will be borrowing some
2 results from these two references.
=~ lay+po) Explicitly, for a given value of the parameter Sis de-
fined as a submanifold ¢M,g) by embedding a topological
two-sphere with coordinate®,¢) into the Riemann normal
coordinate system, as follows= ar, x'=r sinf cos¢, x>
=r sin@sing, x>=r cosé. Since(with t=ar) the deviation
(542 from the flat metric in Riemann normal coordinate©ig ?),
o T the induced metrie,;, on Swill differ from that of the round
the result we desired: being a total derivative; < 1°) sphere to this same order, and so the scalar curvature of

does not contribute to the IQE. _ , (S,0) will have an expansion in of the form
Nevertheless, the result in E¢.42 might seem peculiar.

It has been stressed that by solving the reference embedding 2 o D o 5

equations subject to the conditigf®'=F, (k?—T2)"" will R= r_2+R( I RWErZRP L O(r9), 6.1
carry information abouf into IQE™ [see Eq(4.3)], and it is

through this mechanism that important information about anwhere each of the coefficien®®™ is a function of6, ¢, and
gular momentum is envisioned to enter the IQE. But accordthe parameterr. To evaluate the IQE we will also need
ing to Eq.(5.42, (~k2—~I2) ref not only does not contribute to similar expansions for the other quantities appearing in Egs.
IQE™', it is in fact functionally independent of (the former  (4.2) and(4.3). These are written as follows:

depends on the divergence\df and the latter the curl oiv).

2 2
== 7 (DWo+ DsWa)=— - D-W,

e 4l JeEVH an _ _ 0 2 2 3
The explanation is that in this simple case there is no need ~ oR=00R®+rooRM +r200R?+0(r%), (6.2
for (k*—T2)* to carry any information about angular mo- .. . o~
2T\ _ 22 _T2\(2 3
mentum (or gravitational radiationbecause all of the rel-  (K=T?)=r?k*=T%)@+0(r?), (6.3
evant information is already carried in thenreferenced So el 2T T2 (2yef s
-~ ~ ref— re
shear term ¥2—T2). This is not to say that the condition (K*—19)™=ra(k®=1%)""=+0(r>), (6.4)

ef _ i i i
F_ F h?? not played an [npo~rt2a:1£ rol_e here. Itis pre_CISelywhere each of the coefficients on the right-hand side is simi-
this condition that leads tokf—12)"" being a total deriva-

b larly a function of 6, ¢, and . Since the appropriate refer-
tive, without which &—12)"*" might have spoiled the deli- ence spacetime in this case is Minkowski space, we have
cate Bondi-Sachs mass result. ooR™®'=0. Substituting these expansions into E4.2) we

Thus the null infinity limit is a simple case that only mini- find that in the small sphere limit the unreferenced IQE be-
mally exercises the consequences of the condifiti= F. haves as
In the generic strong field cas&~12)" will almost cer-

tainly depend on, and play a nontrivial role. 2

r
1+ 4| (R®-00R®)

|QEunref: _ i f dSE
87 Js r
VI. THE SMALL SPHERE LIMIT OF THE IQE (R - goRD)
Having considered the large sphere case, we now turn our
attention to evaluating the IQE wheB, () is a small sphere. +r2
The large and small sphere limits are similar in that in both
casesS approaches an asymptotically flat region(lef,g). In 1
the latter case, the asymptotically flat region is the infinitesi- — Z(RO— 0'0'R<O))2)
mal neighborhood of a generic spacetime piatM, which 8
is the center of our shrinking sphere. For simplicity we will
suppose that§, o) is asymptotically round. Another feature
in common with the large sphere limit is that in this 1 2
codimension-two setting, the limit can be approached from|QE™'= — _J ds—
different directions, either spatial or null. More precisely, fix 8m s T
a set of Riemann normal coordinatesx() about the poinp,

R —gaR?+(k2-T2)@

+O(r5)]. (6.5

Similarly, the reference IQE behaves as

I.2

04 rRM
2 R rR

1+

set r?:=8;x'x}, and defineS, by the condition (,t) 4r2 R<2>+(T<2_T2)(2)ref_E(R(O))z +O(r5)].
=(r, ,ar,), where« is a direction parameter. Then con- 8
sider the limit ofS, asr, —0. As before, we will henceforth (6.6)

omit the subscript. The casex=0 is a spatial limit, since

thenSalways lies entirely in thé=0 spacelike three-surface Notice that, unlike in the large sphere limit, neither the un-
containingp. @= * 1 is the null limit, in whichSlies in the  referenced nor reference energies diverge-a®. Neverthe-
future/past light cone of the poirt. The latter case was less, the reference subtraction procedure is still necessary to
considered by Horowitz and Schmif20] in their classic eliminate the leadin@(r) term in IQE™®! which has noth-
work on the small sphere limit of the Hawking mass. Brown,ing to do with energy. Thus, forming the difference of the
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previous two expressions we find that the small sphere bainreferenced IQE involves the mean curvature itséf; H,

havior of the(referencefl IQE is given by the Hawking mass is constructed from the square of the
mean curvature. As mentioned above, the square root in

IQE= if dS fooR—(K2—=T2)+ (k2—T2)"f VH - H effectively disappears in the sma#nd large sphere
167 Js limits due to the presence of the dominant scalar curvature

term, and consequently the leading order contribution to the
IQE reduces to essentially the Hawking mass.

. There are two subtleties worth mentionirig:Replacing
The sectional curvature and shear terms have been resummec{h JAI(4m) is in general not valid because it requires that
according to Eqs(6.2)—(6.4), and the resulting expression is wi (4m)ising vall use it requires

valid to the order indicated. Notice that, as in the Iarge(r:ebr?am ?sretzl |E)?/t,j(leﬁ (\;vrglgrhirlrn \?vi?c??/tilllttl)z gﬂtfﬁggme% err, it
sphere limit, the scalar curvatur®R dominates the other y h BU 10 hi ’h d d the Hawk
terms under the square root, allowing us to expand the radPU" Purposes here. But to higher order, {fnd the Hawk-

_ 16 .~ "Ing mass will in general give different resulig.) It is well
cal abouty4/r2=2/r .*® And after the reference subtraction is Fnown that the Hawking mass runs into difficulties when

performed what remains again is the sectional curvature o S, is not a round spherks,20], a problem that was ad-

(S,0) as the dominant term contributing to the energy. Com- . : )
paring Eqs.(6.7) and (5.5 we observe that both the small dressed by Hayward in Rd8]. It might be that this problem

and large sphere limits of the IQE are very nearly formallyiS a_result O.f having to insert b_y *_‘af?d the fz_actgﬂ /(4)
identical. outside the integral, versus havingnside the integral gen-
We will split the IQE into three pieces, each to be dis- erated automatically by2/R. A related issue was discussed

cussed separatelv: | E, +IQE,+IQE,+O(r®. where at the end of Sec. V A in connection with Hayward’s defini-
P y: IQHQE, +1QE; +1QEs+0(r7) tion of quasilocal energy.

1 o The connection between IQENd the Hawking mass al-
IQE;= Ef dS fooR—(k*~17)], (6.8  lows us to borrow some results from RER0], which are
s calculated for the null limit casea(=1). When matter is

present Horowitz and Schmidt find that, to lowest order,in

+3r200RY(gaRO-2R©)+0(r3)]. (6.7

1 . .
IQE,= Ton Lds PlooRO(goR® the Hawking mass is
—2RO)], 6.9 4 slimata b 4
IQE;= 3 TapuuP[,+0O(r%). (6.13
1 — o~
IQEs= 75— JSdS i (k2—T12)"e1. (6.10
Here TN is the stress-energy tensor of matter, and the ex-

We begin with IQE, and show that this piece is essentially pression is to be evaluated at the popmtwhere the unit
the Hawking mas$§25]. To see this, we combine Eq&l.1)  timelike vectoru? is just (9/4t)® in our Riemann normal

and(2.10 to get coordinates. This is a standard result in the literature on
L guasilocal energy19-24, and a very significant one. As
ogoR—(k2=T?)=R—% (k*~12)=R—2H-H. emphasized in the Introduction, the quasilocal idea asserts

(6.1)  that the time-time component of the stress-energy tensor of
mattera priori has nothing to do with energy. It is only from
. : the small sphere limit of the quasilocal energy that we learn
using the Gauss-Bonnet theorem {o integrat€Rherm, we  his quantity is an energy volume density, i.e., multiplying it
find by the volume factor 4r3/3 gives the energy in an infini-
1 A tesimal sphere of proper radiusHowever, integrating this
IQE;= — [ , (6.1  energy volume density over a finite volume to determine the
4m N 4w total energy inside is not, in general, valid unless one wishes
) . __ toignore gravitational effects which, as we will see in mo-
where we pulled outside the integral and replaced it with ment, come at higher order int” It is in this sense that the
VAI(4m), whereA is the area of §,0). This form of IQE  quasilocal idea implies that even energy due to matter is not
is precisely the expression of the Hawking mass given inpcalizable in the context of general relativity.
Ref.[20]. [OurH® in Eq. (2.10 is theirN®/2, and the sign of
their metric signature is opposite to oyr€omparing Eq.
(6.12 with Egs. (3.7) and (3.9 we observe that, while the

Replacing the integrand of IQRvith the last expression, and

1
2w——deH.H
2 s

1A well-established example of this phenomenon is the Tolman
density, which integrates to the Komar mass, and is defined in the
special case that the spacetime is stationary and asymptotically flat

16As remarked in footnote 10, if the sphere is not asymptotically[1]. It is noteworthy that is nofl,, that appears in the Tolman
round the shear terms will contribute at order?L/and the 2/ term density, but rather the combinatidn,— (1/2)Tg,,. The extra term
outside the braces in Eq&.5) and (6.6) will be modified accord- involving the trace ofT,, is associated with gravitational effects—
ingly. We will not consider this more complicated case here. see Ref[44], and problems 4 and 5 in Chap. 11 of Rf].
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Now let us assume the spacetime is vacuum in the neigh- 1 s RO
borhood ofp. Then the leading order contribution to the IQE,= — g5 (5+4a)r EijEkJ dQ n'n'n*n’.
Hawking mass i$20] (6.18

_15 a; by ¢y ,d 6 By symmetry, the integral over the product of radial vectors
1QE:= gp" Tapedt UL [p O™, (614 must be proportional t&1 sV, Transvecting both this term
and the integral in question with); 5y, , we easily obtain that
whereT 4,cq iS the Bel-Robinson tensdd5]. Thus gravita- the proportionality constant ism5. Using the fact thak,
tional energy begins to appear@(r®). This same result is is symmetric, trace-free, and orthogonalu®y we find that
obtained for the Brown-York quasilocal energy for a suitable
choice of reference embedding9]. However, this is not a IQE,= — &5 (5+ 4a?)r°E,,E2P (6.19
universal result in the literatul®1-24. For example, Hay-
ward’s quasilocal mass gives a similar result as above, b
with the numerical factor 1/90 replaced with2/45 [22].
Given that gravitational energy is such a difficult problem it
is not surprising that a consensus has not yet been reache

Lgo IQE is negative, as expected, and this negative contribu-
tion is to be added to IQEN Eq. (6.14). Of course we can
8nly consider thex=1 case, since this is the case assumed
m Eq. (6.14. Recall that the time component of the Bel-

We now turn our attention to the second contribution to : . !
. X . : Robinson tensor can be expressed in terms of the electric and
the IQE, namely IQEgiven in Eq.(6.9). This quantity rep- : ) a b e d
0 : magnetic parts of the Weyl tensdd5]: T,pcqu?u’uu
resents a deviation from the Hawking mass due to the fact_E Eab1+ B B2, so IQR is non-negative. Inspection of
that the IQE is roughly the square root of the former. Actu—g 3(‘8 19 shgb < that add% o Etheg — 1 val epofl
ally, it is clearer to compare with the Brown-York quasilocal 9. (6. W Ing to IQfhe =1 valu QB

energy, since in constructing the IQE we simply replaced th akes the energy have indefinite sign. It is positiuega-

A ST . Tive) if the magnetic(electrig part dominates. This seems
quwn—Yprk k.W'th K*=17. In the context of our gener'ah.- like a strange result, but it is only an intermediate result. We
zation given in Eq.(3.4), we therefore have the heuristic

have not yet considered the last contribution, {QmEvolv-

comparison: ing the reference shear term. But unfortunately at present |
5 1 do not know how to solve the embedding equations to deter-
m=VE2—52=F— —— . — JK2— |2 mine this term.
P 2E 8m Now one can construct a heuristic argument much like the
1 2 one given at the end of Sec. VB, which suggests that (
Z%( —ﬂ—‘“> (6.19 -T2 s a total derivative, and so does not contribute.

However, the argument is much less believable in this case.
Therefore IQE might be thought of as the analogue of the !n contrast to Eq(5.39 it tumns out that, becausg is O(1)

term —12/(2k), and as such would be expected to reduce thén ' (asre\fNe shall see lagrwe must expand the reference

magnitude of the IQE from the result given in H§.14). sc,)hegrssio overthrﬁte?rdetrs oLma.gT}tude n, froT O(llz. o ¢
In order to calculate IQEwe need to evaluate the quan- Iegdi)r{ o?germlt?ut b(relljizviﬁ t?\tgliilch:rrggrrggrncc\)lrroerctlil?aas Ois
tities R(® and coR® in Eq. (6.9). To do so we appeal to 9 : 9 g

. : ; —less palatable. In short, | do not know what energy prediction
g:;?:;;ss equatiof.1). Up to zeroth order in, this equa the IQE gives aO(r®), and until a solution to the embed-

ding equations is found there is no sense in speculating.
However, before leaving this section | will provide an
oaR<°)=32+R(°)— l(k2—|2)+0(r), (6.16 intriguing interpretation_ of how a definition of c_]uasilocal en-
r 2 ergy such as the Hawking ma&gs the 1QB provides a mea-
sure of the gravitational energy contained inside a small

where we made use of E(6.1). We will show later that sphere.
In the =1 null limit case, the lowest order contribution
4 4 to the gravitational energy, namely (1/98Y pcqu?uPucu?|,

(k2—=1%)= 2t §(1+2a2)Eabnanb+ O(r), (6.17  inEq.(6.14, originates in theD(r?) terms inside the square
brackets of the integrand of IQEN Eq. (6.9). In the termi-

where « is the direction parameter introduced at the begin—_noIogy of Eqs.(6.2) and (6.9), this means we are interested

. . . . . . ici (2) k2 —-T2y(2) i
ning of this sectionE,,n®n® is the radial-radial component N the coefficientscoR™ and k“—1%)™. Inspecting the

of the electric part of the Weyl tensor, which we saw earlier\PPendix of Ref.[19] reveals that these two coefficients

in Eq. (5.17). This quantity E,,n°n®) is to be evaluated at differ @Iy by a numerical factor. They are both proportional

the pointp, where in our Riemann normal coordinates theto ¥oWol, (in Newman-Penrose notatiprand the two nu-
radial unit vectom? has on|y Spatia| components, given by merlcal factors conspire to produce the 1/90 factor in the
n'=x/r. We also neediS to lowest order, which is just final result. Thus, to understand how the integrand of JQE
r2d(, dQ being the measure on the unit sphere. Puttingehcodes information about gravitational energy it suffices to
these results together we have study the shear termkf—T2)(®). We will now compute this
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term for arbitrarya e[ —1,1] to see how it behaves in both
the spatial and null limit cases of the small sphere. shall restrict ourselves to the vacuum case. In our basis com-

Denoting our Riemann normal coordinatesx() collec- ponents the electric and magnetic parts of the Weyl tensor
tively asx?®, the metric in these coordinates take the form are defined by46]

(6.20 (6.28

where Japeq= (Racha+ Ragnd/2 is the Jacobi curvature ten- Where * Capcp=(1/2)eas™ Cercp. These are symmetric
sor[29]. We first construct a pair of mutually orthogonal unit trace-free  three-dimensional tensors associated vtith

Since we are interested in purely gravitational energy we

Uab= Nab— 3 JabedX X+ 0O(x3), Eup=—Conop and B,z=—*Couop,

normal vector fieldsi® andn® on S, with u? normal to the
t=const surface passing throughThese are given by

1 ) 1 )
w=g, u=-3zrPp%+00rd), u=-N, u=0,
(6.21)
Xi X
=0, w=p S+ it o),
1 ) X} 3 Xi
No=—3T BO]T+O(r ), Ni=p (6.22
where
N=1+ 2 r?Boo+0O(r?), (6.23
1, Xix) .
le_gr ,gijr—2+0(r ),
(6.29
, X Xix]
Bab=a*Japoot 2a\]ab0jT+Jabij_2'
(6.29

Since the Jacobi tensor in E(.20 is evaluated at the co-
ordinate originp, its indices, and thus those ¢,,, are
raised and lowered with the flat spacetime metjig= 7P
=diagonal(-1,1,1,1). Similarlyx;:=g;x’.

Now define onS a pair of mutually orthogonal unit tan-
gent vector fieldg,*, where indices,J, ... take the values
2 and 3. The sefey*:=u?, e;?:=n? e} thus comprises an
orthonormal basis adapted ® Let basis indiceAB, . ..
run from 0 to 3, andw,3, ... from 1 to 3. Beginning with

=const spacelike hypersurfaces. As such, each has five in-
dependent components, which together comprise the 10 in-
dependent components of the Weyl tensor. In terms of these
fields, the components of the Jacobi curvature tensor relevant
to Egs.(6.26—(6.27) read:

Jous=—*Bys,

Joo11= —E11,  Joas=—Eis,

Jiny=—Ey—Endy. (6.29

HereB,; is the trace-free part d,;, and*B,;= ¢ By, is

its dual in (S,0), which is also trace-free. The tracelf; is

5IJE|J = 6aﬁEaﬁ_ E11: - Elll S'nce Eaﬁ |S tl’ace-free
Thus, the trace of the extrinsic curvatures in E@s26—

(6.27) is found to be

(6.30

|: _% raE11+ O(rz),

2 1
k= -t §r(1+2a2)E11+ o(r?). (6.3D)

Squaring these and forming their difference leads to Eq.
(6.17 written earlier. The trace-free parts are

TV=%r(aE)y++B)y) +0(r?), (6.32
P|J=%r(1—a2)E|J+O(I’2). (633

Now E,; andB,; each have two independent components,
and it is useful to introduce the notation

this setup it is straightforward to compute the basis compo-

nents of the extrinsic curvatures defined in E@s8). | find

li3=e%,°V qup=— 5 rladogs + Jous] +O(r?),

(6.26
an b 1 2
kiy=e/%€; Vansz 5|J_§r Jaug—a®| Joo

> Joor1di3 | [ +O(r?).

(6.27

In these equations a quantity such aky; means
[eo?e;”e,%€,%Japedl|p, Which is a function of only the angles
fand¢ on S

- 3 (Ex—Eg) E2s g2 €8
EIJ: . = e3 _e2 s
Eos — 3 (Ex—Eg)
(6.39
5 ( 3 (B~ Bgy) B3 ) ( b2 bd )
|J: =i — 3 _ 2
Bas —3 (B2~ Bga) b b
(6.35

and thus define a pair of two-vectod=e'e,® and b

:=b'e,® tangent tcS Sinceé andb represent the pullbacks to
Sof E,z andB,z, respectively, they are to be thought of as
gravitoelectric and magnetic fields induced®hy the Weyl
curvature thaSis embedded in. It is easy to see that under a
rotation of the basis vectors? through an angle, the com-
ponents of andb rotate through an angley2soé andb are

not true (spin one vectors, but rather spin two objects, as
one would expect.
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Thus we arrive at the results we are interested in. Tqe. /2/R. This distinction betweems is suggested by the

lowest order inr we have close analogy betweeh and the shear term responsible for
o 42 = ma g2 2x a2 . radiation in the null infinity limit—see Eq95.32—(5.33.
I“=5r°(aE+*B)*=gr°(a"€-€é+b-b—2a€Xb), This additional factor ofr has the interpretation of a time

(6.36 lapse, i.e.r [sdSP is the amount of electromagnetic energy
radiated fromS between timeé=0 andt=r. Thus, the fol-
K2=1r2(1-a?)?E%=2r%1-a??%6- 6. (6.37  lowing picture has emerged regarding F6.38. The gravi-
toelectromagnetic energy on the surf&&€or equivalently,
The difference of these two gives ti@(r?) piece of the the gravitational energy in the volume spanniBgat time
unreferenced shear term appearing in the integrand of IQR=r is the energy at=0 minus the amount of energy radi-
in Eq. (6.8). Notice that it is the appearance ©B,; (rather  ated during this time interva{Keep in mind thag andb are
than B,;) that gives rise to the cross product tegxb  €evaluated ap, and hence at=0.)
=e?b%—e%b? in Eq. (6.36. The casew=—1 is similar, except novg lies in the past
We first consider the case=1, in which S lies in the  light cone of the poinp. Inspection of Eq(6.36) reveals that
future light cone of the poinp. Thenk?=0 and so the shear the radiation term in Eq(6.38 now appears with the oppo-

=2 oy . o= =15 . site sign. The fact that this sign change comes out correctly
term (k°—1%) is proportional tor"(E++B)%. As a quick is reassurance that our picture is correct: The energy at time

check, it is easy to verify tha{++*B)?, in turn, is propor-  t= _ is the energy at=0 plusthe amount of energy that is
tional to WyWy|,, in agreement with Ref19]. | mentioned  radiated from the sphere during the interval from—r to
above that in this case theoR term in Eq.(6.9) also con- t=0.8
tributes a term proportional 1 oWy, [19]. Putting in the ~ Finally, we consider the spatial limit case;=0. Accord-
numerical factors | find that ing to our discussion above we would expect |Q& be the
same as in Eq6.38, except with the radiation term absent.
3 1 . 1 . Inspection of Eqs(6.36—(6.37) reveals that this is not the
|QE1=f dSo|g=(6-é+b-b)——@éxb|+0O(r®. case. However, it is only whea=1 (and presumably also
S 9 87T 47T (2) . .
6.39 when a=—1) tNhat we know thateoR'“ in Eq. (6.9 is
proportional to k>—12)®, in which case it suffices to con-

Now (&- &+ b-b)/(8) looks like the energgurfacedensity sider only the shear term. Unfortunately, it is not possible to

2 i 2
of the gravitoelectromagnetic field, but we must be carefuCCMPUteooR to O(r?) within the framework of ouO(r?)
o . e e . g Riemann normal coordinates, so we cannot learn if this
about its dimension.g- €+b-b)/(87) has dimensior.™“,

L simple proportionality between the two persists wHei
whe_rgL means Ien%th, .Wh'Ch.'S not correct, However,. t.he< 1. One might guess that it almost certainly does not, but |
additional factor ofr°/9 in the integrand suggests that it is

ly Ex=r( 5-B)/(72m) that is th will leave this question for future work. Nevertheless, since
really £:=r*(€-&+b- ) thats the proper energy sur- o aynecii? to play the key role with regards to radiation
face density£ has dimensior. ™1, consistent with it being b play y g '

. . ; 9 Eq. (6.30 is still of some qualitative value whef|<1.
interpreted as the gravitoelectromagnetic energy per unit argg j " s equation we see that the radiation term is zero
of S Besides giving the right dimension, the additional when is zero, and tumns on in proportion tg precisely as
factor forces[sdSE& to go to zero as®, consistent with the it should since, the time lapse is naw, instead off

fact that there can be no gravitational energy at ordeWe ’ :

) ; . As satisfying as it might seem, the picture just given is not
interpret [<dSE as the total gravitoelectromagnetic energy trul iocal. in th tréandh luated at th
that was onS att=0, or equivalently, the total gravitational ruly quasiiocal, in the sense hadb are evaiuated at the

energy that was in the small volume spannigt t=0. point p. To be truly guasilczcal we need gravitoelectromag-
To further justify this interpretation we now turn to the Netic fields, call thenf andB, evaluated ors This is where
radiation term in Eq.(6.38. Clearly 6x 5/(47T) might be observers reside, and measurements are made, according to

thought of as the gravitational analogue of the electromagt-he quasilocal idea. Such a quasilocal picture is achieved
netic Poynting flux, directed radially outward fro® But

again, its dimension is wrong. Of course the factor &/

will fix this problem, as before, but the situation is more !®The reader may have noticed tHatin Eq. (6.35 was defined
interesting this time. Multiplying by ?/9 we get the proper with an awkward minus sign. This sign was chosen to give the
Poynting flux, P:=r2éx 5/(3677). P has dimensionL "2, picture just described. Reve;sing tfje sigrj is equivalent to replacing
consistent with interpreting it as the gravitoelectromagnetiox with —«. Insofar asg andb (like E andB in electromagnetisin
energy per unit time per unit area. JedSP gives the are defined by their physical interpretation, choosing the sigm of
gravitoelectromagnetic energy per unit time radiating fromto give a result with the correct interpretation is legitimate. But this
(or through the surfaceS. The factor ofr? indicates that the assumes we know what the correct interpretation is, and it is not
efficiency of a small volume to radiate gravitationally grows certain we do. For example, | mentioned above tha@t®) Hay-

in proportion to its surface area, in analogy with an electroward's quasilocal energy gives a negative gravitational enkgly
magnetic antenna. But there is one more factor,offhich If this is correct, then we should replace the definitionboWith

one might imagine is the outside the brackets in E¢6.9), -b.
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very naturally as follows. The basic idea is tiEaandb are F=2Bq1+0O(r). (6.46
certain components of the Weyl tensor evaluated &t

:O)'. But this mformanop s contained in th@(r) piece of So to leading order the curvature of the normal bundle is
certain connection .cogfflmen»ts_evaluatedS)(w>Q). Thu§ (twice) the radial-radial component of the magnetic part of
we expect the desirell andB fields to be associated with the Wweyl tensor, and is thus associated with gravitational
connection coefficients. _ magnetic charge. There are both local and global dimensions
For simplicity we will restrict ourselves to the cage g this result. Locally,F is associated with frame dragging, a
=1, which also allows us to borrow some results from Ref.ready example being for the Kerr black hole given in Eq.
[19]. We first observe that (5.15, which is proportional to the angular momentum. Glo-
_ . bally, it is known that in exact analogy with the scalar cur-
W°|P_ —2[(e*~b?) +i(e+b?)]. (639 vatureR, the integral ofF overSis proportional to the Euler

On the left-hand side is a component of the Weyl tensor irpumbe.r of the normal bund[Q?J. For a Euclidean-signature
Newman—PenroséNP) notation. Using Egs(6.289 and SPacetime the normal bundle is an @D[rather than SQ.,
(6.34—(6.35, W, is easily converted to the expression given 1)] bundle, and there can be a nontrivial winding number,

on the right-hand side. From E(B5b) of Ref.[19] we have corresponding to a gravitational magnetic monopole. In the
case of the Kerr spacetime there is no monopole present

r since, as is obvious from inspection of E§.15), the inte-
o=3Wolpt o(r?), (6.40  gral of Fis zero. It might be interesting to explore topologi-
cally nontrivial cases in the context of the IQE.
wherea is one of the NP spin coefficients. Thus we find that  The result in Eq(6.46 can actually be obtained immedi-
ately by inspection of Eq(2.16), assuming that the shear
o 3 terms are higher order inthanF is. To lowest order im we
200=g[€-€+b-b=28Xb]+O(r). (64D  then see thatF=—2Rg1ps. But Ryips=Corzs is identically
true, and thus we are led to E.46). So this equation is
Comparing this with the integrand in E@.39 we are led to  true whether or not matter is present, and is also independent
define of a. It is instructive to compare this result with the sectional

curvature ofSin vacuo:
r

;
3 3

E=3

8+0(r?), B:==b+0(r?), (6.42

or in other words,

This is essentially the same as the spatial infinity limit result
given in Eq.(5.17), and is derived similarly. Comparing the
previous two equations we see a striking electric/magnetic
duality between the sectional curvature ${electrig, and
the curvature of its normal bundlenagnetig. When matter
is present, the right-hand side of the equation above acquires
1 1 an additional term, and it is precisely this term that is respon-
IQE,= f ds ,{_ E-E+B-B)— —EXB|+0(r®). sible for theO(r3) matter contribution seen in E¢.13. So
S 8w the sectional curvature is the dominant term in the energy
(6.44 that encodes information about the matter content of the
. . spacetime. It seems reasonable to expect inertial effects
Observe that the mysteriond/9 fa_ctor _hag dlsapp%eared,eand (frame dragging produced by this matter to also play a role
the analogy with electromagnetism is improvégi:and B i the energy. But consideration of such effects is subtle,
now have their usual dimensiori. (%), as do the energy pecause the magnetic part of the Weyl tensor has no New-
density and Poynting flux terms. | emphasize again that, ifonian gravity analogue. | have argued that the procedure
contrast to2 andb in Eq.(6.38, E andB are fields measured suggested in Sec. IV is a geometrically natural way to incor-
by observers residing o8 in the true quasilocal spiri€ is porfate such inertial effects into the energy: one demands
clearly associated with tidal forcésngentialto S, andBisa 7. —~ and then solves the embedding equations for the
measure of frame dragging effects. Notice EandB van- referencg shgar_term, pr.esent in t_he re_ference energy. In this
: . . : o way the inertia information contained i makes its pres-
IShTisrc:n%lL;r(;eaiﬁ?srds\e/v(;ir:);hsveeqcu(;\rlglizgtr:ihpenr;glr?:gction i ence felt in the energy. Moreover, by inspection of the purely
the normal bundle and its associated curvature. | find that r%panal (g—O) c§§e of Eq(6.43,ﬁone ot?serves thatthe sgt of
magnetic quantities?, A;, andb, precisely encode the five

o=—2[(E?>-B%) +i(E3+B?)]+0(r?. (6.43

Thus, toO(r), E and B are related to connection coeffi-
cients, as we expected.
Substituting Eq(6.42) into Eq. (6.38 we have

1 ) independent components of the magnetic part of the Weyl
Ay=3 T aByyt 5% By +0(r), (6.49  tensor. It seems likely that the phenomenon of gravitational
energy is subtle enough to be sensitive to this full set. Out of
where*B,;=¢,Bx, and this set, in this section we have seen only the rol&.offo
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see whether or not the other components play a joi@ invariant mass to be redshifted. This is why the terminology
(k2—T2)"] will have to wait until a solution to the embed- invariant quasilocal energy was chosen rather than invariant

ding equations is found. quasilocal mass, even though the IQE is the analogue of the
massm in the formula:m= E?— p2.
VIl. ASYMPTOTICALLY ANTI —DE SITTER SPACETIMES However, one can easily modify the definition of the

IQE—to give it the interpretation of mass—by multiplying
In this last section we will explore the significance of the the right-hand side of Ed3.4) by a lapse function. Thus one
ooR™ term in Eq.(4.3). Suppose our physical spacetime replaces Eq(4.2) with
(M,g) is asymptotically anti-de Sitter space. TherR"™f
term in IQE®' gives us the freedom to specify the Riemann 1
tensor of a reference spacetime, which in this case is natu- IQE[Ns]=— sx LdS NsV2[R—o0oR]
rally the Riemann tensor of anti—de Sitter space. Thus, ac-

cording to Eq.(4.5 we haveocoR"®'=—2//2, and so
1
IQE™= — —f dS\/Z o . .
8mJs (ignoring the shear termsHere the smearing functioiN;,
o ~isthe lapse function in the timelike three-bounddy swept
In the |al’ge Sphere limit it is clear that the Cosmolog|calout by the two-parameter fam"y of Observéd_ Eqs(ll)
constant term will dominate, rather th@& and the behavior gpg (13) in Ref.[36]]. In the AdS—Schwarzschild example
cally flat spacetimes. _ What are we to put foN[s"? The answer that works NS’
Let us now specialize to the case thdil,g) is the — _ N \hich is intuitively justified as follows: we are al-
AdS,-Schwarzschild spacetime, so that our main argument ISeady isometrically embeddingS(o) into (M™,g™®), and

not obscured by consideration of the shear terms, which will " <00 e jref N represents the next would-be step to-
ref=

obviously be just zero. The line element in this case is given, ;4o an isometric embedding @6.y) into (Mg

+ % Lds NEV2[R—ooR™T (7.5

2 Yy~
Z2+RA(K=TA™. (7.0)

by wherey,, is the three-metric if8. [“Would-be” step in the
1 sense that, while the lapse carries some information about

ds?=—N2dt>+ ?dr2+r2d02, Yab. We still only need to embedS{c) into (M',g™®", not

(B,y) into (M™" g"®").] By comparing Eq.(7.5 with (7.4),

where and using the fact that the lapse function goes /as for

large r, it is easy to see that witH\lg*f: Nz we get
2 12 lim,_,.. IQE[Ngz]=M for the AdS-Schwarzschild case. Thus
N(r)=f(r)=(72+ 1- T) , (7.2 |QE[N,] has the interpretation of a mass, as claimed. Unlike
the original IQE, it is not redshifted to zero, and is thus a
and dQ?=d#?+sir? 6d¢? is the line element on the unit different physical quantity. Regarding the comment at the
round sphere. LeB be at, r = constant two-sphere. Its scalar €nd of the previous paragraph, since special relativity does
curvature isSR=2/r2, and a simple calculation shows that its Not know about lapse functions, the generalization given in

sectional curvature is given by Eq. (3.4) is open to this ambiguity: one can define both an
invariant quasilocal energy and an invariant quasilocal mass.
2 4M It is instructive to evaluate IQE ] also at the horizon,
ooR=-"7+ 13, 7.3 =r_ [whereNg(r,)=0], and compare with what one gets

using the unsmeared IQE. The following results for the
the dominant term coming from the anti-de Sitter “back- AdS,—Schwarzschild example are easily established:
ground.” Substituting these results into E@4.2) and (7.1)

we find OE= V2Mr, atr=r,, .6
QE= 1 st\/2'2+2 4M} 0 at r=oo,
87 Js 22 % . [0 atr=r,, -
— BI= .
1st\£2 2]_m7 (2 M atr=e.
g7 s 2T Ol

We thus learn that the IQHEecreaseswith increasingr,
(7.4y  which can be interpreted as the result of negative binding
energy—another reason to think of the IQE as an energy. On
The divergent terms due to the cosmological constant cancethe other hand, IQHEN] increaseswith r, which might be
so the limit of the IQE as — o exists, and this limit is zero. interpreted as saying that, for larger more mass is en-
This would be the expected result if the IQE had the interclosed; it starts from zero at the horizgno mass in the
pretation of arenergy which should be redshifted to zero by interior of the black holeand accumulates tbl at infinity.
the cosmological horizon. In contrast, we do not expect aThis is reminiscent of the old notion that the substance of
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mass is nothing but the curvature of spacetime itself. A simiinfinity.'® To render it finite, Brown and York suggest the
lar behavior is observed for the usual Schwarzschild case: use of a reference subtraction term that involves an isometric
embedding of(B,y) into a suitable reference spacetime.
However, like their prescription to embe&,¢) into a suit-
2M at r=2M, able three-dimensional reference space, this prescription suf-
'QE:[ M at r—o (7.8 fers from the drawback that such a codimension-one embed-
' ding does not always exist. Recently, Balasubramanian and
Kraus[36] have proposed an alternative procedure: Since it
is always possible to add to the action a local functional of
(7.9 the intrinsic geometry of the boundary without affecting the
M atr=oo. equations of motion or the symmetri¢isut of course this
aItersT%b), their idea is to choose this functional such that its
o _ divergences cancel those of the origiﬁ'%lb, rendering the
The only qualitative difference occurs at=<, where improved boundary stress-energy tensor finite3ds taken
IQE[N5]=IQE in the Schwarzschild case because, ofig infinity. No recourse is made to a reference embedding.
course, the quse functlon goes to one in this limit. There isrpig procedure was first applied to spacetimes that are as-
no cosmological horizon. . ymptotically AdS space, in which case the required counter-
Despite these appealing features of [Qg], it is unsat-  terms amounted to a simple finite polynomial in the curva-
isfactory from the point of view taken here because the presyre invariants of3 [36]. This idea is exactly analogous to
ence of the lapse function means it depends on a choice @he standard prescription for removing ultraviolet diver-
three-surface passing throughThe situation might be im-  gences in quantum field theory by adding to the Lagrangian
proved by replacing with Nzk andl with Nsl in Eq.(3.4), 3 finite polynomial in the fields. Moreover, the conjectured
and then proceeding as before. HalgandNy are time and  aAds/conformal field theorfCFT) correspondencf47] im-
radial lapse functions, respectivelgqual toN and 1f inthe  piies that the two procedures are not merely analogous, they
AdS;-Schwarzschild exampleAdmittedly such a procedure zre one and the saniae).
is ad hoc, and unless it can be improved upon we are not Now since flat spacetime is recovered from AdS space by
particularly interested in IQEN]. It was introduced simply  taking / to infinity, one might expect that in this same limit
to illustrate the distinction between mass and energy, but fofhe counterterms found by Balasubramanian and Kraus
the remainder of this section we will return to the original would produce counterterms suitable for asymptotically flat
definition of the IQE. spacetimes. It is not obvious that this is [86]. However,

The main point of this section is to draw attention to amann [48] has suggested the following generalization of
remarkable similarity between the reference subtraction teritheir counterterm action:

given in Eq.(7.1), and a certain counterterm action recently

suggested in the context of the conjectured AdS/CFT corre- 1 3
spondence. We begin by observing that when the reference 'ctng’B d X\/__7’ 2
shear term vanishes, E(.1) reduces to precisely the same ”

reference subtraction term suggested by [3, in the con-  whereR(y) is the scalar curvature ¢8,7), andB., indicates
text of the Brown-York quasilocal enerdgxcept that Lau’s  that we are to take the limit a8 goes to infinity. For smalt’
expression has a lapse function present in the manner difann’s formula reduces to the one given by Balasubrama-
cussed above However, our derivations of this expression nian and Kraus, but in addition it has a smooth flat spacetime
are different. Lau employs a light cone reference embeddingmit as /—. Moreover, Mann showed that in many ex-
of (S,0), together with a rest frame assumptioff=0, to plicit examples it leads to a cancellation of all divergences,
derive an expression fd«*, which is then used to construct and the remaining finite part agrees with that obtained using
his reference subtraction term. In our case we get the samfie reference spacetime proced[#8,49. While a counter-
end result, but we get it without any recourse to an explicitterm action and a reference energy are not the same thing,
reference embedding. This is because the cosmological cofhe resemblance between the expressions in &0 and
stant term in Eq(7.1) comes from the direct dependence of (7.1) is nevertheless striking.

|QEref on the Riemann tensor of the reference Spacetime, i.e., To see that the connection between [@E] Eq (7]_) and

the termaoR™ in Eq. (4.3). An explicit reference embed- the AdS/CFT-inspired counterterm action is probably much
ding of (S, o) into (M, g™ is required only to evaluate the

reference shear term,k{—T12)"". This higher order

correction—which | have qrgued accounts  for angu!ar 1%As elsewhere in this paper, we use the synmiBtdosely to refer
momentum—is not present in Lau's reference SUbtraCt'o'?o either a timelike three-surface in the interior Mf bounding a

term. Also, his additional rest frame assumption is not rejite spatial region, or the boundary at infinity. The meaning should

quired here because the IQE is already naturally a rest framgs clear from the context in which it is used.

energy. 20| am indebted to R. B. Mann for pointing out to me the signifi-
Let us now return to Eq.1.5). We know that when space cance of theraR™ term in IQE®!, and emphasizing that it provides

is noncompact the boundarfor quasilocal stress-energy at least some measure of geometrical motivation for his expression

tensorTgb: —TI12°/(87) diverges in general a8 is taken to  in Eq. (7.10.

0 atr=2M,
IQE[NB]:[

2
7+R(y)}, (7.10
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deeper than mere resemblance, we now turn to recent work / Ve ~

done by Kraust al.[50]. Besides providing an independent E(ctl)=/GabUan=§UacUbdRabchE(R— 1%).

derivation of Mann’s formula, and its generalization to (7.13
higher dimensions, of most interest to us here is their geo-

metrical argument suggesting what the countertermif8?  The second equality is an easily derived identigglid in

in Eq. (1.5 should be in order to cancel divergences. Theirany codimension-one settingelating theuu component of
result is an expansion in powers 6f Denoting their coun-  the Einstein tensor to the sectional curvature of the hypersur-
terterm (1,,) as II1$, and specializing their result to a face orthogonal ta? (in this case the hypersurfagin 3).

three-dimensional boundaty, they find The third equality follows from contracting E¢7.12 with

20?4, and using the fact that=0 by our choice ofi® (and

> as usual] 2 is shorthand fof ,,1 2°). Thus, to ordet we have
I5,=— 7 YabT /(Rap=3 YabR) + /{3 Yap(RegR*

E —2+/R T2 +0(/3
—§R?)+ 3 RRyy— 2R Rycpg o7t g (REHTOUD
+1D,DyR—OR,p+ 2y, ,ORV+O(/P). (7.1 2 -
3 Uallp abt 7 YabIR} (7). (7.1 2\/224_7%_'2_'_0(/,2). (7.14

The curvatures and covariant derivatives in this expression ) ) )

all refer to the induced timelike three-metrig,, on . Comparing the last expression with Eq.1) suggests the
Now consider our usual two-surfacs, ) in the physical ~correspondence:

spacetim&M, g), the latter an asymptotically AdS space. As o moref )

we did at the end of Sec. IV, suppose ti&ts such that (k2=T9)®l —T2+0(/?). (7.19

(k*—12)>0 andk>0. Then we can always find a timelike

unit vectoru® normal to'S such thatl =0, and so\k?>—1? Immediately we see something odd: we are identifying a
—K=TI,u" is the Brown-York energy surface density boost~|n\_/arla¥nt.quantlty Wlth. one that |§ not, |:e., it seems
ab 2
[modulo the factor of- 1/(8x)]. In other words, our unref- that ak is missing from the right-hand side. 1 will comment
erenced IQE reduces to the unreferenced Brown-York CQEQN this shortly. Let us assume for the moment that the right-
which would be called the unrenormalized energy in Refhand side readskf—12)+O(/?), in which case Eq(7.19
[50]. The counterterm required to renormalize the energyseems reasonable: it suggests that, if we solve the embedding
surface density is thusISiudu®, which we will denote at  equations(4.6)—(4.8) for (k2—T12)"" we will find that, to
E«. Hence, our task is to compaRe,:=I15,u?u® with the  lowest order i/, the reference shear term is the same as the
integrand of IQE" in Eq. (7.1); we expect to see at least unreferenced shear term, the difference to be seen at a higher
some measure of agreement between the two. order in/. On the other hand, this seems like a problem:
This comparison will not be straightforward, however, be-Would it not mean, e.g., that the shear terms in Eg9
cause on the one hand we expect the integrand oféi@E  basically cancel, thus ruining the Bondi-Sachs mass result in
depend onR, F, and their derivatives ir§ as discussed Eq. (5.35, which depends so crucially ork{—T%)? The
previously, whereas on the other hakg depends on the answer is No, because E§.5) is valid in the asymptotically
three-metricy,,. Nevertheless, let us see how far we canflat case, not the asymptotically AdS case. To make a state-
get. LetB be a three-surface ifM,g) passing througiSina  ment that is valid in the asymptotically flat casé-( ) we
direction tangent te® on S Different choices of3 satisfying  need to knowE, to all orders in/, then sum the infinite
these conditions will lead to different induced metrigs,, series, and finally take the limif—o. So being at the other
but this ambiguity will not affect our considerations. At leastend of the series, Eq7.15 has nothing to say about the
vap ON S is uniquely determined, and some information asymptotically flat case. But we also expectf&a_(TZ)ref to
about yy, in the neighborhood of is determined by the gepend orR, 7, and their derivatives. Why do we not see
condition|=0. Our choice of5 means that,, defined in  these quantities on the right-hand side of E§15? The

Egs.(2.8) is the extrinsic curvature ofy o) as embedded in  answer is, we will—we just have to calculae, to the next
(B,7), and so the corresponding codimension-one Gauss eMgrder in/.

bedding equation reads But before doing so | will comment on the missik§ in

Eqg. (7.195. Kraus et al. [50] have devised an algorithm to
PEPLPIPIRe1gh= Ravcat (ladba—lbda)- (712 compute the extrinsic geometrical quantifig,, from the in-
trinsic geometry of3. Insofar asl,;, (and thusl?) depends
This is just a truncated version of E(R.14, except here only on the metricy,,, there is no doubt that the T? term
Rergn is the Riemann tensor d@B,7), not (M.g). in Eq. (7.15 is correct. On the other hank,;, (and thusk?)
Now let E{f) denote the term i, of order/™. Inspec-  depends on the extrinsic geometry®fbeing just a certain
tion of Eq.(7.11) shows thaE{; V=2/". The termE’) can  projection ofII,y, into S. The algorithm of Kraut al. relies
be written in terms of5,,,, the Einstein tensor df3,y), and  on the fact[51] that thedivergentpart of the derivative of
we have 1, in the direction normal t& can be expressed in terms of
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just the intrinsic geometry df. In essence, their algorithm is is not surprising, since the algorithm of Kraesal. [50] is a
designed precisely to compute tldévergentpart of I1,,,. means of solving a Gauss embedding equatior Iy, and
The correctness of the accompanying finite part is a subtlénis equation is quadratic iflS,. But it is significant. Be-
issue. For example, in a slightly different context they dis-ginning simply with the definition of the quasilocal stress-
cuss two different counterterm actions that both properlyenergy tensor as the functional derivative of the action with
cancel divergences, but that lead to different finite terms inrespect to the boundary metrf@], in which there is no
the action. Furthermore, they point out that their algorithm.square root in sight, the counterterm energy required to can-
when carried to all orders irf, might imply singularities in  cel divergences unmistakably involves a square root. More-
the bulk spacetime, but that this is of no concern becausgver, it concurs with the square root introduced here, in the
they truncate their counterterm expressions to a finite numeontext of the IQE, as the general relativistic analogue of the
ber of terms, enough at least to cancel the divergences. In Odpecial relativistic formulam= VE2— pZ. | believe it is un-
case we have the quasilocal idea in mind, and so are intefiely this is a mere coincidence. Given that it is nonanalytic,
ested inall of the finite terms—it matters what happens in 3 square root is too unusual an object to occur without good
the bulk. But going further with this discussion will take us yegson.

beyond the scope set for this simple comparison. | will just second, under the square rdat our casg is 2//2+R
conclude by saying that, insofar as the shear terms almosj; (~k2_~|~2)ref In the case of the AdS/CFT-inspired counter-
certainly represent a finite contribution to the energy, we dc{erm energy.{SO] it is 2//2+ R+ X whereX is an infinite

not necss sarilyexpect thg algorithm _Of Krauet al. to pro- series in increasing powers gf. ThatX is clearly not zero
duce ak” term on the right-hand side of Eq7.15. Our .o strong support for our additional terrk?¢12)™",
goals are slightly different, and it is too much to expect exac hich is thus seen to be a necessary generalization of Lau’s

angeg\r/r;?geli)eest\;veﬁEf; asr][ﬁl t?nest'rnl}iﬁ\rgn?oc’f rlc()jc%e d with the suggestion[37]. | have argued that its necessity is closely
comparison to t’he next order i, In light opf my previous linked to t_he proper inclusion of angular momentum ir_1 thg
remarks, we will make the simhlifying assumption that theenergy. lee_n _that angu_lar momentum Is a s_ubtle notion in

’ general relativity, especially so at the quasilocal level we

i a b_ _ N2A4t2
metric On[f has a produ;:t struicture/abdx dx*= . N"dt envision here, it is not surprising that our biggest difficulty
+ 0 (x)dx dx), wherex®=(t,x') are local coordinates on =~ Lo s . . .
lies in evaluating kK“—19)"". In light of the algorithm given

B, N is a constant lapse, ang;(x) is the metric on any by K L [50 ki i
=const two-surfac& The idea is thaE and the integrand y raqse;t al. | ],.WOI’ Is currently in progress to try tp
apply similar techniques to solve the embedding equations

of IQE™" should agreeat leastin their dependence on the . : . .
intrinsic geometry of §,o). Assuming such a product struc- (4.6)—(4.8). Since these embedding equations are manifestly

ture for y,, is a convenient was to isolate this dependenceP00st invariant, | expect at least to recover the missifig

In this case the only nonvanishing components of the Rie-
mann tensor ofy,;, are Rjj =Rjj , the Riemann tensor of VIIl. SUMMARY AND DISCUSSION

. = (1) 5 . . _ .
aij . And clearlyl,,=0. ThusEy in Eq. (7,13)3)reduces to In this paper | have introduced a new definition of quasi-
/RI2, and it is a simple exercise to work dBfY. The net  |ocq energy that is a simple modification of the Brown-York

result is quasilocal energy. | just replace their energy surface density
5 s /3 k with Vk?—12, wherel is the radial momentum surface
Ey=—+ ~R— ;(R2—4AR)+O(/5) density.[For ease .of expo.f,itio.n here | will omjt thel/(8m)
;2 16 factors] The principle motivation for doing this stems from
> 2 an analogy with the formulan= JE?— p? in special relativ-
— /2| S+ Rr— AR+ O |, 71 ity. Identifying E with k (which are both energigsand p
\/ /2 2 (7 (7.19 with | (both momenty identifiesm with \k?—12. Like m,

_ o _ Jk?=12 is a boost invariant quantity, and hence the integral
whereA is the Laplacian in §,0). Comparing the last ex- of \[k?—1? over a spacelike two-surfac® gives rise to an
pression with Eq(7.1) we now have the higher order corre- jnyariant quasilocal energy, or IQE. In what follows | will
spondence: refer to the Brown-York quasilocal energy as the CQE—

2 canonical quasilocal energy.
=T, — AR+ O(/4 , 71 There are several important consequences of repldcing
( ) 2 7 (7.19 with VkZ—12:

(1) While k is always well defined for any spacelike two-

Thus we begin to see how a solution to our embedding equasurfaceS, \k?>— 12 is not. Roughly speaking, it is real whé&n
tions might yield an expression fok{—12)"® in terms ofR, lies in the exterior region of a black hole, zero when it is on
F, and their derivatives, as we have expected all along. the horizon, and imaginary in the black hole interior. Thus

To conclude this section we make two general observatagain roughly speakinghe IQE asserts that energy is real
tions. First, it is especially clear from the higher order ex-only outside of a black hole.
pression in Eq.(7.16 that the AdS/CFT-inspired counter-  (2) Both the CQE and the IQE require a reference energy
term energy is, in fact, the square root of some quantity. Thisubtraction procedure. Singds associated with a spacelike
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three-surface spannirfg) the reference space into whi&is We examined both the large and small sphere limits of the
to be isometrically embedded is inherently three-IQE, takingSto be asymptotically round for simplicity. In an
dimensional. Such a codimension-one embedding does nasymptotically flat spacetime, the large sphere limit of the
always exist, but when it does, it is essentially unique. ThidQE in a spatial direction yields the ADM mass. In the future
means the CQE, when it is defined, is unique. In contrastyull direction it reduces to the Bondi-Sachs mass, provided
Jk?=12 makes no reference to a three-surface spanBjng the reference shear term is a total divergence. Short of solv-
and so the reference spéitme) is inherently four dimen- ing the embedding equations, | gave a heuristic argument
sional. Such codimension-two embeddinigs least of a ge- which shows that is. It is significant that this argument relies
neric nonround sphere into Minkowski spa#ways exist on the conditionF®'=F, since this provides evidence that
[35], but are not unique. However, in this situation there arethe curvature of the normal bundle is involved in quasilocal
two curvatures associated wishits scalar curvatur&®k, and  energy, albeit its involvement in this simple example is mini-
the curvature of its normal bundl,. A necessary condition mal.
for an isometric embedding is th&®"'=R. | argued that The quantity\k?—1? is proportional to the mean curva-
demanding als¥®'= F is both a means to make the embed-ture of S as a two-surface embedded in the physical space-
ding essentially unique, and at the same time, a geometriime, and so the IQE is a natural geometrical invariang.of
cally natural way to properly incorporate angular momentunSince the Hawking mas$25] is constructed using k€
into energy at the quasilocal level. Indeed, since angular mo-12), the IQE can be thought of roughly as the square root
mentum is associated with rotational kinetic energghibuld  of the Hawking mass. In the small sphere limit the square
contribute to the energy in some way. root disappears, and to leading order the IQE reduces to the

(3) While CQE®' is associated with a referenemergy Hawking mass(but differs from it at higher ordér Thus,
densityk™', IQE™' is concerned with a referenshearterm  when matter is present, the lowest order contribution to the
(K2=T2)"*'. (k,, andT,, are the trace-free parts of the two IQE gives the standard result: £#4%3)Ty;u?u®, i.e., the
extrinsic curvatures o) In a certain sense, the IQE already expected matter energy contained in a small sphere of proper
inherently contains the correct reference energy, without reradiusr. Note thatu® here is not necessarily the four-velocity
course to a reference embedding. The reference embeddi®dany observer o, since the IQE is boost invariant, and so
is required only to determine the reference shear term, whicindependent of the observers’ velocities 8nRather,u® is
is a higher order correction to the energy associated witihe four-velocity that observers would haifethey were in
angular momentum. the rest frame determined I8 More precisely, in the small

(4) The CQE is sensitive to the sign kfwhereas since it sphere limit we considered, namelyt,a=const two-sphere
involves Vk?—12, the IQE is not. Thus one can easily con- in Riemann normal coordinategwith tecr), u=(a/dt)®
struct simple examples for which the two energies give dif-evaluated at the center of the sphere. In the limit0, the
ferent results, even wher=0. Thus the IQE is not simply four-velocity (9/dt)? corresponds to observers who at each
the rest energy version of the CQE. Note: the IQE naturallyoint onShave zero radial momentum, i.é= 0. In general,
assigns zero energy &mytwo-surface in flat spacetime. This since the IQE is an energy rather than a mass, the question
is because the natural reference spacetime in this case is tAgses, In whose rest frame is the energy measatetite
very same spacetime, namely flat spacetime. So obviousignswer is, The quasilocal rest frame determined by the con-
one can always reference-embed the two-surface identicallfition |=0 at each point or& Whenever k*~12)>0, ob-
(up to Poincargransformationpto the way it is embedded in servers or can always achieve this state of motion by ap-
the physical spacetime, and get IOB. The only subtlety propriate local radial boosts. Th{®r more precisely, K*
that may arise is if the two conditions: isometric embedding—lz)BO] is the same condition required for the unreferenced
and F**'= F do not uniquely determind?f—Tz)’ef. Thenthe |QE to be well defined in the first place—refer to the para-
flat spacetime result (IQE0) may be reduced to a choice, 9raph numberedl) above. _ _
rather than a necessary fact. To properly address this subtlety Réturning to the small sphere case, in vacuo the leading
requires an in depth understanding of the embedding equé)_&_)rder coptrlbutlon due to gravnatlona! energy occurs at ordgr
tions. But in any case, the fact that 188 in flat spacetime - At this order the IQE results are inconclusive because it
is independent of the motion of the observers. In contrastS €xPected that the reference shear term will play a signifi-
moving observers in flat spacetime could measure nonzerg®nt role, and without a solution to the embedding equations
energy in the Brown-York approadi81]. This is because (which is an extremely dlfflqult problemms term cannot pe
under a radial boost the Brown-York energy surface densitf€términed. Nevertheless, it was possible to show that in the
dilates by a Lorentz factor, as in special relativity, whereasmall sphere limit, the Hawking mass, which in this case is
the reference energy surface density does not. According fgjoSely related to the IQE, can be understood as a measure of
Ref.[7] the latter depends only on the intrinsic geometry ofthe gravitational energy containeddby considering certain
S, and therefore does not know about the time derivative ofangential gravitoelectromagnetic fielsandB induced on
this geometry’! Sby the Weyl curvatur&is embedded in. In terms & and

B, gravitational energy and radiation are essentially identical

2 Thanks to R. B. Mann and I. S. Booth for this remark on the
Brown-York case. 22 thank A. Ashtekar for posing this question.
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in nature to their counterparts in electromagnetism, except A final remark is in order. Most definitions of quasilocal
for one crucial difference: the densit{E-E+B-B)/(8%)  €nergy, including the IQE, assume that energy is associated
is integrated over theurface So determine the gravitational With a closed spacelike two-surfac8, Given such a two-
energy contained in the spatial volume th@tencloses surface one can always find a timelike unit normal vector
(which necessitates the additional factor of areal radjus field u?, which at each point o8 is supposed to correspond
Notice that this measurement of gravitational energy in &0 an observer's instantaneous four-velocity. But this may

volume is truly quasilocal, taking place on the surface of thehot be a general enough setting. While a two-parameter fam-
volume, S. ily of observers will always sweep out a timelike three-

The IQE was analyzed in the context of asymptoticallysurfaces, the two-surface elements orthogonal to their world

anti—de Sitter spacetimes. The fact that [®)Bepends ex- lines in B are not, in general, integrable. Thus a shift in
plicitly on the Riemann tensor of the reference spacetim&mphasis fronSto B, i.e., from Eulerian to Lorentzian ob-
(naturally taken to be anti—de Sitter sppees seen to play Servers 28], might lead to a deeper understanding of quasi-
a significant role. A connection was established betweefPcal energy, in particular of gravitational radiation at the
|QEref and a Certain counterterm energy that has recent'ﬂuasilocal IeVeI. Th|$ Sh|ft WOUId aISO bring the quaSi|Oca|
been proposed50] in the context of the conjectured €nergy idea closer in line with the conjectured AdS/CFT
AdS/CFT correspondence. Two similarities are strikifiy: corresp_ondence. Whether or not this is the _rig.htdirec_tion,.the
Both energies involve a square root, e(nd the two |eading results Il’.l Sec V“ S.trongly Suggest that this is the direction
terms under the square root match. The remaining term urihe IQE is pointing in.

der the square root in our case is the reference shear term,
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