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Imaginary potential as a counter of delay time for wave reflection from a one-dimensional
random potential
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~Received 17 June 1999!

We show that the delay time distribution for wave reflection from a one-dimensional~one-channel! random
potential is related directly to that of the reflection coefficient, derived with an arbitrarily small but uniform
imaginary part added to the random potential. Physically, the reflection coefficient, being exponential in the
time dwelt in the presence of the imaginary part, provides a natural counter for it. The delay time distribution
then follows straightforwardly from our earlier results for the reflection coefficient, and coincides with the
distribution obtained recently by Texier and Comtet@C. Texier and A. Comtet, Phys. Rev. Lett.82, 4220
~1999!#, with all moments infinite. The delay time distribution for a random amplifying medium is then
derived. In this case, however, all moments work out to be finite.
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When a wave packet centered at an energyE is scattered
elastically from a scattering potential, it suffers a time de
before spreading out dispersively. This delay is related to
time for which the wave dwells in the interaction region. F
the general case of a scatterer coupled toN open channels
leading to the continuum, one defines the phase-shift t
delays through the Hermitian energy derivative of theS ma-
trix, 2 i\S21]S/]E, whose eigenvalues give the proper d
lay times. These delay times then averaged over theN chan-
nels give the Wigner-Smith delay times introduced
Wigner1 for the one-channel case, and generalized later
Smith2 to the case ofN open channels. Thus the scatteri
delay time is the single most important quantity describ
the time-dependent aspect, i.e., physically, the reactive
pect of the scattering in open quantum systems, e.g.,
chaotic microwave cavity and the quantum billiard~whose
classical motion is chaotic! and the solid-state mesoscop
dots coupled capacitively to open leads terminated in
reservoir. The delay time is, however, not self-averaging
one must have its full probability distribution over a statis
cal ensemble of random samples. The latter may be rel
ergodically to the ensembles generated parametrically,
by energyE variation over a sufficient interval. Thus w
have the random matrix theory~RMT! for circular ensembles
of the S matrix giving delay times for all three Dyson un
versality classes for the case of a chaotic cavity connecte
a single open channel.3 Generalization to the case ofN chan-
nels corresponded to the Laguarre ensemble4 of RMT. The
RMT approach has been treated earlier through the su
symmetric technique for the case of a quantum chaotic ca
having a few equivalent open channels.5 However, it has
been suspected for quite sometime that the RMT-based
sults and the universality claimed thereby may not extend
a strictly one-dimensional~1D! random system where
Anderson localization dominates, and that the 1D rand
system may constitute after all a different universality clas6

This important problem has been reexamined recently
Texier and Comtet7 who have derived the delay time distr
bution for a 1D conductor with the Frish-Lloyd model ra
domness in the limit of high energy and weak disorder a
the sample length@ the localization length. The universalit
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of the distribution is amply supported by numerical simu
tions for different models of disorder.7,8

In this work we reexamine this question of the univers
ity of the delay time distribution for a 1D random system a
relate it to the universality of the distribution of the reflectio
coefficient, a quantity that we have direct access to from
earlier work.9 To this end we introduce a counter that lite
ally clocks the time dwelt by the wave in the scattering
gion, obviating the need for calculating the energy derivat
of the phase shift.10 This involves adding formally an arbi
trarily small but uniform imaginary partiVi to the 1D ran-
dom potentialVr . Now, the reflection coefficient, being ex
ponential in the time dwelt in the scattering region in t
presence ofiVi , provides a literal ‘‘counter’’ for this time.
The distribution derived by us agrees exactly with the u
versal time-delay distribution of Texier and Comtet.7 Be-
sides, our technique allows us to treat the time-delay dis
bution for the important case of light reflected from
random amplifying medium equally well. In this case, ho
ever, unlike the case for the passive random medium,
moments of the delay time are finite for long samples.

Consider first the electronic case for a 1D disorde
sample of lengthL having a random potentialVr , 0<x<L,
and connected to infinitely long perfect leads at the two en
Let the electron wave of energyE5\2k2/2m be incident
from the right at x5L, and be partially reflected with
a complex amplitude reflection coefficientR(L)
5uR(L)uexp@iu(L)# and uR(L)u25r (L), the real reflection
coefficient. Inside the sample we have the Schro¨dinger equa-
tion

d2c~x!

dx2
1k2@11h r~x!#c~x!50, ~1!

with h r(x)52Vr(x)/E.
As we will be interested in the reflection coefficient, it

apt to follow the invariant imbedding technique9–12 and re-
duce the Schro¨dinger equation~1! to an equation for the
emergent quantityR(L):
3163 ©2000 The American Physical Society
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dR~L !

dL
52ikR~L !1

ik

2
h r~L !@11R~L !#2. ~2!

We now introduce a uniform imaginary partiVi , with Vi
.0, and accordingly defineh(L)5h r1 ih i , with h i
52Vi /E. For an analytical treatment, we take forVr(x) a
Gaussiand-correlated random potential~the Halperin model!
with ^h r(L)&50 and ^h r(L)h r(L8)&5D2d(L2L8). The
Fokker-Planck equation corresponding to the stocha
equation~2! can be solved analytically in the limitL→`,
giving9

P`~r !5

D expS 2
D

r 21D
~r 21!2

, r>1,

50, r ,1, ~3!

with D5(4Vi)/(ED2k). This result is obtained in the high
energy and weak-disorder limit. Now, clearly for a pass
medium, i.e., withVi50, the distributionP`(r ) must col-
lapse to ad function d(r 21) asL→`. However, withVi
Þ0, for a short dwell timeT in the sample, the reflection
coefficient r 5uRu25exp(2ViT/\), giving r 2152ViT/\ to
first order inVi asVi is taken to be arbitrarily small. Thus
P`(r ) can at once be translated into the dwell time distrib
tion P`

0 (t):

P`
0 ~t!5

a

t2
expS 2

a

t D , ~4!

wherea52(D2k)21 and the dimensionless timet5ET/\.
This is precisely the result of Texier and Comtet.7 Note that
Vi , the counter, drops out in the limitVi→0, as it should. It
should also be noted that the invariant imbedding equa
for the energy derivative of the phase shift10 also yields the
same result for the delay time distibution when the hig
energy limit (k→` while keepingVr /k constant! is explic-
itly taken. This again reconfirms our delay time distributi
given above.

At this point, it is perhaps apt to demystify our time del
counter, viz., the introduction of an imaginary potential (Vi)
in the limit Vi→0 as a mathematical artifice for the ele
tronic case, in terms of the well-known analytic property
the S matrix, corresponding to wave reflection from the 1
infinitely long disordered system. TheSmatrix in this case is
simply the complexamplitude reflection coefficientR(E)
5exp@iu(E)# with uRu251 for realE. Now from the analyt-
icity of the S matrix in the complex energy plane, we ha
](Reu)/](ReE)5](Im u)/](Im E), where ‘‘Re’’ and
‘‘Im’’ denote the real and imaginary parts, respectively. A
we approach the real axis, i.e., in the limit ImE→0, we have
](Reu)/](ReE)5T/\ ~Wigner time delay!, while
](Im u)/](Im E)→Im u/Vi as Vi→0 ~along with Imu).
Thus we haveuRu25exp@2ViT/\#, giving uRu22152ViT/\
in the limit Vi→0 ~the latter corresponds to treating our ele
tronic problem as a limit of vanishing imaginary part of th
scattering potential!. This is what has been used above
obtain the delay time distribution from the reflection coef
cient distribution given by Eq.~3! in the limit Vi→0.
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Encouraged by this result for for the electronic case,
now turn to the case of a light wave reflected from a rand
amplifying medium. The latter has received much attent
in recent years in the context of random lasers.13–15 To fix
ideas, consider the case of a single-mode optical fiber do
with Er31, say, optically pumped and intentionally diso
dered refractively. All we have to do now is to keepVi finite,
a measure of medium gain, and useT5(\/2)(] ln r/]Vi) for
the dwell time, and translateP`(r ) into P`(t):

P`~t!5~Dj!

expS 2
D

ejt21
D

~ejt21!2
ejt, ~5!

wherej52Vi /E. Again, P` vanishes in the limitt→` as
also for t→0. Also, P`(t)→P`

0 as Vi→0. All moments
^tn& are, however, finite in this case. An explicit expressi
can be obtained for the first moment as

^t&5
1

j
@ ln D1C2eD Ei~2D !#, ~6!

whereC is the Euler’s constant16 and ‘‘Ei’’ is the exponen-
tial integral.16 This expression diverges asVi→0. In Fig. 1,
we show the delay time distributions given by Eq.~5! for
different values of the parameterj, keepinga fixed corre-
sponding to different values of the imaginary potentialVi
while keeping the disorder fixed.

Several interesting points are to be noted here. T
counter introduced by us literally counts the dwell time
the interaction region for total reflection in the 1D, i.e., t
one-channel case. A large delay time is dominated by
dwell time when the wave penetrates deeper into the sam
which is true at high energy and low disorder. It is th
‘‘equilibrated’’ part of the reflected wave, and not th
prompt part, that is expected to give universality. Hence
universal 1/t2 tail in Eq. ~4!. Indeed, the universality of the
delay time distribution directly reflects that of the reflectio
coefficient given by Eq.~3!.17–19 Indeed, we have verified
that Eq.~3! is obtained for telegraph disorder also. It is to

FIG. 1. The delay time distribution from an amplifying medium
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remarked here that this universal delay time distribution as
Eq. ~4! is not obtained for a chaotic cavity connected to
reservoir by a single open channel.3 Here the localization
picture may not hold. As for the finiteness of all the momen
^tn& for the case of the random amplifying medium, it i
quite consistent with the known fact that amplification e
hances localization and thus prevents deep penetration in
random sample. Of course, there is also an enhanced pro
part of the reflection resulting from the increased refracti
index mismatch with respect to its imaginary part at th
sample-lead interface.
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In conclusion, we have introduced a ‘‘counter’’ that me
sures the dwell time in the scattering medium. We have u
it successfully to derive the delay time distribution in term
of that of the reflection time. Both passive and amplifyin
media have been treated. Our counter can be used eq
well in principle to calculate the traversal time for the pro
lem of tunneling across a potential barrier.20,21
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