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Imaginary potential as a counter of delay time for wave reflection from a one-dimensional
random potential
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We show that the delay time distribution for wave reflection from a one-dimensionatchannglrandom
potential is related directly to that of the reflection coefficient, derived with an arbitrarily small but uniform
imaginary part added to the random potential. Physically, the reflection coefficient, being exponential in the
time dwelt in the presence of the imaginary part, provides a natural counter for it. The delay time distribution
then follows straightforwardly from our earlier results for the reflection coefficient, and coincides with the
distribution obtained recently by Texier and Comft€t Texier and A. Comtet, Phys. Rev. Le&2, 4220
(1999], with all moments infinite. The delay time distribution for a random amplifying medium is then
derived. In this case, however, all moments work out to be finite.

When a wave packet centered at an endfdgy scattered of the distribution is amply supported by numerical simula-
elastically from a scattering potential, it suffers a time delaytions for different models of disordéf
before spreading out dispersively. This delay is related to the In this work we reexamine this question of the universal-
time for which the wave dwells in the interaction region. Fority of the delay time distribution for a 1D random system and
the general case of a scatterer coupledtopen channels relate it to the universality of the distribution of the reflection
leading to the continuum, one defines the phase-shift timeoefficient, a quantity that we have direct access to from our
delays through the Hermitian energy derivative of Swma-  earlier work® To this end we introduce a counter that liter-
trix, —i#S 19S/JE, whose eigenvalues give the proper de-ally clocks the time dwelt by the wave in the scattering re-
lay times. These delay times then averaged oveiNtisean-  gion, obviating the need for calculating the energy derivative
nels give the Wigner-Smith delay times introduced byof the phase shift® This involves adding formally an arbi-
Wigner! for the one-channel case, and generalized later byrarily small but uniform imaginary paitv; to the 1D ran-
Smitl? to the case oN open channels. Thus the scatteringdom potentiaV, . Now, the reflection coefficient, being ex-
delay time is the single most important quantity describingponential in the time dwelt in the scattering region in the
the time-dependent aspect, i.e., physically, the reactive apresence ofV,, provides a literal “counter” for this time.
pect of the scattering in open quantum systems, e.g., th€he distribution derived by us agrees exactly with the uni-
chaotic microwave cavity and the quantum billigmhose  versal time-delay distribution of Texier and ComteRe-
classical motion is chaoticand the solid-state mesoscopic sides, our technique allows us to treat the time-delay distri-
dots coupled capacitively to open leads terminated in théution for the important case of light reflected from a
reservoir. The delay time is, however, not self-averaging andandom amplifying medium equally well. In this case, how-
one must have its full probability distribution over a statisti- ever, unlike the case for the passive random medium, all
cal ensemble of random samples. The latter may be relatadioments of the delay time are finite for long samples.
ergodically to the ensembles generated parametrically, e.g., Consider first the electronic case for a 1D disordered
by energyE variation over a sufficient interval. Thus we sample of length. having a random potentidl, , O<x<L,
have the random matrix theofRMT) for circular ensembles and connected to infinitely long perfect leads at the two ends.
of the S matrix giving delay times for all three Dyson uni- Let the electron wave of energg=%2k?/2m be incident
versality classes for the case of a chaotic cavity connected tPom the right atx=L, and be partially reflected with
a single open chann&iGeneralization to the case Nfchan-  a complex amplitude reflection coefficientR(L)
nels corresponded to the Laguarre ensefnbfeRMT. The  =|R(L)|exdif(L)] and |R(L)|2=r(L), the real reflection
RMT approach has been treated earlier through the supegoefficient. Inside the sample we have the Sdimger equa-
symmetric technique for the case of a quantum chaotic cavityion
having a few equivalent open channglslowever, it has
been suspected for quite sometime that the RMT-based re-
sults and the universality claimed thereby may not extend to d2i(x) )
a strictly one-dimensional(1D) random system where V’Lk [1+ 7.0 ]¢(x)=0, @
Anderson localization dominates, and that the 1D random
system may constitute after all a different universality cfass.
This important problem has been reexamined recently byvith 7,(x)=—V,(X)/E.
Texier and Comtétwho have derived the delay time distri-  As we will be interested in the reflection coefficient, it is
bution for a 1D conductor with the Frish-Lloyd model ran- apt to follow the invariant imbedding techniqtié? and re-
domness in the limit of high energy and weak disorder andluce the Schiinger equation(1) to an equation for the
the sample lengtk> the localization length. The universality emergent quantityR(L):
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dR(L)
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d—L=2ikR(L)+IE77r(L)[1+ R(L)]2

2
We now introduce a uniform imaginary paw;, with V;
>0, and accordingly definep(L)=n+in;, with 7,
—V,/E. For an analytical treatment, we take fgf(x) a
Gaussians-correlated random potentighe Halperin model
with (7,(L))=0 and {7,(L) 7, (L"))=A28(L—L"). The
Fokker-Planck equation corresponding to the stochasti
equation(2) can be solved analytically in the limlt— oo,

giving®
D exp< - 1)

P.(r)=
(r) —1?

D

=0, r<i,

()
with D=(4V,)/(EAZK). This result is obtained in the high-
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FIG. 1. The delay time distribution from an amplifying medium.

energy and weak-disorder limit. Now, clearly for a passive Encouraged by this result for for the electronic case, we

medium, i.e., withV;=0, the distributionP_(r) must col-
lapse to as function §(r —1) asL—. However, withV;
#0, for a short dwell timeT in the sample, the reflection
coefficient r =|R|?=exp(2VT/4), giving r—1=2V,T/4 to
first order inV; asV; is taken to be arbitrarily small. Thus,

now turn to the case of a light wave reflected from a random
amplifying medium. The latter has received much attention
in recent years in the context of random lasgrs® To fix
ideas, consider the case of a single-mode optical fiber doped
with Er**, say, optically pumped and intentionally disor-

P..(r) can at once be translated into the dwell time distribu-dered refractively. All we have to do now is to ke¥pfinite,

tion P2(7):

PO(r)= S exp —= )
o\ T)= 7'2 T ’

where a=2(A%k) ! and the dimensionless time=ET/#.

This is precisely the result of Texier and Comftéiote that

V;, the counter, drops out in the limt;— 0, as it should. It

should also be noted that the invariant imbedding equatio

for the energy derivative of the phase sififalso yields the

same result for the delay time distibution when the high-

energy limit k—o while keepingV, /k constankis explic-
itly taken. This again reconfirms our delay time distribution
given above.

At this point, it is perhaps apt to demystify our time delay
counter, viz., the introduction of an imaginary potenti])(
in the limit V;—0 as a mathematical artifice for the elec-
tronic case, in terms of the well-known analytic property of
the S matrix, corresponding to wave reflection from the 1D
infinitely long disordered system. Tt&matrix in this case is
simply the complexamplitude reflection coefficientR(E)
=exdi®é(E)] with |R|?=1 for realE. Now from the analyt-
icity of the S matrix in the complex energy plane, we have
d(Red)/d(ReE)=4d(Im 6)/9(ImE), where “Re” and
“Im” denote the real and imaginary parts, respectively. As
we approach the real axis, i.e., in the limit En~0, we have
J(Red)/o(ReE)=T/A (Wigner time delay, while
d(lm 6)/9(ImE)—Im 6/V; as V;—0 (along with Imé).
Thus we havegR|?>=exd2V/T/#4], giving |R|?2—1=2V,T/#
in the limit V;,— 0 (the latter corresponds to treating our elec-
tronic problem as a limit of vanishing imaginary part of the
scattering potential This is what has been used above to
obtain the delay time distribution from the reflection coeffi-
cient distribution given by Eq(3) in the limit V;—0.

a measure of medium gain, and use (%/2)(d Inr/aV;) for
the dwell time, and translate,.(r) into P..(7):

exp —
e

(ef-1)2

ér_1

et’

Po(m)=(D§) ®)

where {=2V; /E. Again, P, vanishes in the limitr— as
also for 7—0. Also, P..(7)—P2 as V;—0. All moments
(") are, however, finite in this case. An explicit expression
can be obtained for the first moment as

1

()= g[InDJrC—eD Ei(—D)],

(6)

whereC is the Euler's constatft and “Ei” is the exponen-
tial integrall® This expression diverges &—0. In Fig. 1,
we show the delay time distributions given by E§) for
different values of the parametér keepinga fixed corre-
sponding to different values of the imaginary potent&l
while keeping the disorder fixed.

Several interesting points are to be noted here. The
counter introduced by us literally counts the dwell time in
the interaction region for total reflection in the 1D, i.e., the
one-channel case. A large delay time is dominated by the
dwell time when the wave penetrates deeper into the sample,
which is true at high energy and low disorder. It is this
“equilibrated” part of the reflected wave, and not the
prompt part, that is expected to give universality. Hence the
universal 1#2 tail in Eq. (4). Indeed, the universality of the
delay time distribution directly reflects that of the reflection
coefficient given by Eq(3).1"7° Indeed, we have verified
that Eq.(3) is obtained for telegraph disorder also. It is to be
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remarked here that this universal delay time distribution as in In conclusion, we have introduced a “counter” that mea-
Eq. (4) is not obtained for a chaotic cavity connected to asures the dwell time in the scattering medium. We have used
reservoir by a single open chanrieHere the localization it successfully to derive the delay time distribution in terms
picture may not hold. As for the finiteness of all the momentsof that of the reflection time. Both passive and amplifying
(") for the case of the random amplifying medium, it is media have been treated. Our counter can be used equally
quite consistent with the known fact that amplification en-well in principle to calculate the traversal time for the prob-

hances localization and thus prevents deep penetration in thgm of tunneling across a potential barf8r?
random sample. Of course, there is also an enhanced prompt

part of the reflection resulting from the increased refractive One of us(N.K.) was partially supported by the Max-
index mismatch with respect to its imaginary part at thePlanck Institut fu Komplexer Systeme, Dresden 01187, Ger-

sample-lead interface. many. We thank Y. V. Fyodorov for helpful comments.
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