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Diffusion of particles moving with constant speed

S. Anantha Ramakrishna* and N. Kumar†

Raman Research Institute, Sadashivanagar, Bangalore 560 080, India
~Received 25 February 1999!

The propagation of light in a scattering medium is described as the motion of a special kind of a Brownian
particle on which the fluctuating forces act only perpendicular to its velocity. This enforces strictly and
dynamically the constraint of constant speed of the photon in the medium. A Fokker-Planck equation is derived
for the probability distribution in the phase space assuming the transverse fluctuating force to be a white noise.
Analytic expressions for the moments of the displacement^xn& along with an approximate expression for the
marginal probability distribution functionP(x,t) are obtained. Exact numerical solutions for the phase space
probability distribution for various geometries are presented. The results show that the velocity distribution
randomizes in a time of about eight times the mean free time (8t* ) only after which the diffusion approxi-
mation becomes valid. This factor of 8 is a well-known experimental fact. A persistence exponent of 0.435
60.005 is calculated for this process in two dimensions by studying the survival probability of the particle in
a semi-infinite medium. The case of a stochastic amplifying medium is also discussed.
@S1063-651X~99!03808-8#

PACS number~s!: 05.40.2a, 42.25.Dd, 78.90.1t
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I. INTRODUCTION

The propagation of light through a stochastic medium
traditionally described in the context of astrophysics by
Boltzmann transport equation for the specific intens
I (rW,VW ,t) in a heuristic radiative transfer theory@1#. How-
ever, since the general analytic solutions are unknown,
resorts to the diffusion approximation which can be shown
arise out of the radiative transport equation in the limit
large length scalesL@ l * , where l * is the transport mean
free path of light in the medium@1,2#. Recently there has
been considerable interest in the description of multiple li
scattering at small length scales (L; l * ) and small time
scales (t;t* wheret* is the transport mean free time!, both
from the point of fundamental physics@3# and from the point
of medical imaging, where the early arriving ‘‘snake’’ pho
tons are used to image through human tissues@4,5#. It has
been experimentally shown that the diffusion approximat
fails to describe phenomena at distances ofL,8l * @6#.
Moreover, the diffusion approximation which is strictly
Wiener process for the spatial coordinates of a particle
physically unrealistic. It holds in the limit of the mean fre
path l *˜0 and the speed of propagationc˜` while keep-
ing the diffusion coefficientD05cl* /3 constant. Thus the
diffusion approximation accounts neither for a finite me
free path nor for a finite and constant speed of the part
which is charecteristic of light propagation in a stochas
medium. While approximately describing light as a partic
the constancy of speed should be preserved at the very l
Hence it is of importance to develop better and alterna
schemes to the diffusion approximation and also address
difficult question of the process of the randomization o
directional beam in such media.

For a particle moving with fixed speed in a on
dimensional disordered medium, it has been shown that
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probability distribution functionP(x,t) for the displacement
satisfies the telegrapher equation exactly. However, gene
zations of the telegrapher equation to higher dimensions@7#
have been shown not to yield better results than the diffus
approximation@8#. Recently there have been a few attemp
to overcome the shortcomings of the diffusion approxim
tions and attack this problem using the concept of pho
paths. In Ref.@9#, a Monte Carlo approach was used to sim
late photon paths and calculate their probabilities. An imp
tant advance was made in Refs.@10,11#, where the propaga
tor for photons in highly forward scattering media w
expressed as a Feynman path integral. However, this atte
has had only limited success in that it was possible to ca
late the probability distribution subject to the constraint
constant photon speed only in the weaker~average! sense
i.e., *0

t @(drW/dt)22c2#dt50. Moreover, in addressing th
backscattering from a semi-infinite medium@10# and reflec-
tion and transmission from a finite slab@11#, the absorbing
boundary conditions have not been rigorously implemen
and it would be inappropriate to compare these to exp
mental data. It should be mentioned here that the Ornst
Uhlenbeck~OU! theory of Brownian motion@12# would also
be able to incorporate the finiteness of the mean free p
and a well-defined root-mean-squared~rms! velocity but as-
suming, of course, a distribution of speeds. This process
been compared with Monte Carlo simulations@13# and used
to explain the lowering of the effective diffusion coefficie
measured in pulse transmission experiments through
slabs@3#. It can be shown that the finite rms speed defined
the fluctuation-dissipation theorem for the OU process i
stronger global constraint than the average speed const
imposed in Refs.@10,11#.

The next important step in describing these photon r
dom walks with a constant speed was undertaken in R
@14#, where the authors describe this process as a n
Euclidean diffusion on the velocity sphere and intuitively p
down a kind of a general Boltzmann equation for photons
a highly forward scattering medium. The solution to th
equation was expressed as a path integral, which was
1381 © 1999 The American Physical Society
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1382 PRE 60S. ANANTHA RAMAKRISHNA AND N. KUMAR
evaluated by a standard cumulant decomposition@15# trun-
cated after the second cumulant. This yields a Gaussian
tribution similiar to the Ornstein-Uhlenbeck process. Mo
recently, an explicit derivation of the Feyman path integ
representation for the propagator of the radiative tran
equation has been given@16#. Here it was again evaluated b
truncating the cumulant expansion after the second te
This was justified by declaring that photons are massless
noninteracting. However, the imposition of the speed c
straint would not allow this Gaussian approximation.

In this paper, we describe the light propagation in stoch
tic media as the motion of a kind of Brownian particle o
which the fluctuating forces act only perpendicular to t
direction of its velocity. This is effective in strictly and dy
namically preserving the speed of the particle. This proc
is shown to correspond to a diffusion in the angular coor
nate in the velocity space for a white noise disorder. Ex
expressions for the moments of the space variables are
sented and the second cumulant approximation is show
yield a Gaussian expression similiar to the tradition
Ornstein-Uhlenbeck theory of Brownian motion. An expre
sion is derived for the probability distribution for large forc
strengths which preserves the light cone. The exact Fok
Planck equation for the probability distribution is derive
from the stochastic Langevin equations for a white no
process. Numerical solutions of this equation are presen
It is shown that the probability distribution in infinite med
is strongly forward peaked for short times and randomi
only at times of about 8t* –10t* . We have also solved nu
merically the equation for a semi-infinite geometry and o
tained the persistence exponent of 0.43560.005 in two di-
mensions for this process. Solutions for a finite geometry
also given, showing that the effective diffusion coefficient
measured in a pulse transmission experiment through
thin slabs (L; l * ) would be lowered. The effect of ligh
amplification in the slab is examined briefly.

II. MODIFIED ORNSTEIN-UHLENBECK PROCESS

Light scattering in a stochastic medium is treated a
probabilistic process where each scattering event o
changes the direction of the photon. The wave nature
polarization effects are ignored and light is treated as a
ticle in a medium which exerts transverse fluctuating for
on the particle. It should be remarked here that while
actual disorder is maybe in space~quenched disorder!, all
current treatments, including ours, are in terms of a Brow
ian motion ~temporal disorder, i.e., a stochastic proces!.
This is a valid approximation for incoherent transport in t
weak scattering limit (kl* @1 wherek52p/l, l being the
wavelength of light in the medium. The equation for t
motion of a randomly accelerated particle with the spec
condition that the random forces always act only perpend
lar to the velocity can be written as

rẄ5rW3 fW~ t !. ~1!

This we term as the modified Ornstein-Uhlenbeck proce
We will consider two dimesions for simplicity, and write

ẍ52 f ~ t !ẏ, ~2!
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ÿ5 f ~ t !ẋ, ~3!

where the force termf (t) is a random function of time. We
will assume ad-correlated force with Gaussian distributio
i.e.,

^ f ~ t !&50, ~4!

^ f ~ t ! f ~ t8!&5Gd~ t2t8!, ~5!

and all higher moments off (t) being zero. This makes ou
treatment most valid for a very dense collection of high
forward scattering weak anisotropic scatterers. This se
stochastic Langevin equations yields on integration a fi
constant of integrationẋ21 ẏ25c2, wherec is the constant
speed. So we can chooseẋ5c cosu(t) and ẏ5c sinu(t)
whereu(t) is some function oft. u is recognized to be the
angular coordinate in the velocity space. Substituting th
expressions back into Eq.~2,3!, we obtainu̇5 f (t) or

u~ t !2u05E
0

t

f ~ t !dt. ~6!

Henceu(t) follows a Wiener process and we can write t
probability for u(t) as

Pt~u!5S 1

2pGt D
1/2

expH 2
~u2u0!2

2Gt J . ~7!

This is the result for a diffusion inu the angular coordinate
in the velocity space, and we recognize this modified O
process to be a random walk on the circle of radiusc in the
velocity space. Constrainingu to the range@0,2p#, we get
the marginal probability distribution foru:

Pt~u!5 (
n52`

` S 1

2pGt D
1/2

expH 2
~u2u012np!2

2Gt J . ~8!

The value ofu0 can be conveniently chosen to be zero.
Now we will derive the probability distribution function

in the phase space. Consider the system of stochastic La
vin equations

ẋ5u, ~9!

ẏ5v, ~10!

u̇52 f ~ t !v, ~11!

v̇5 f ~ t !u. ~12!

Let P(x,y,u,v) be the phase space density of points for t
given system andU be the vector (x,y,u,v). Now, P satis-
fies the stochastic Liouville equation.

]P

]t
1¹U•~U̇P!50, ~13!

where¹U5(]/]x,]/]y,]/]u,]/]v). Substituting forU and
averaging over all possible configurations of disorder, by
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PRE 60 1383DIFFUSION OF PARTICLES MOVING WITH CONSTANT SPEED
van Kampen lemma@17#, the probability distribution
P(x,y,u,v)5^P(x,y,u,v)& and satisfies

]P

]t
1u

]P

]x
1v

]P

]y
2v

]

]u
^ f ~ t !P&1u

]

]v
^ f ~ t !P&50.

~14!

By the Novikov theorem@18# for a white noise processf (t),

^ f ~ t !P@ f ~ t !#&5
G

2 K dP@ f #

d f ~ t ! L 5
G

2 S v
]P

]u
2u

]P

]v D . ~15!

Using the above, we obtain forP(x,y,u,v) the differential
equation

]P

]t
1u

]P

]x
1v

]P

]y
5

G

2 S u
]

]v
2v

]

]uD 2

P. ~16!

Now expressingu andv in terms of the angular coordinat
u, we finally get

]P

]t
1c cosu

]P

]x
1c sinu

]P

]y
5

G

2

]2P

]u2
. ~17!

This differential equation explicitly preserves the constan
of the speed of the photon. This Fokker-Planck equatio
the same equation~in two dimensions! which was written
down in Ref.@14#. It is rigorously proved therein that this ha
a path integral solution and the two approaches are equ
lent. It appears that this equation has solutions in terms
Mathieu functions. However, we have not been able to a
lytically solve the equation.

The moments of the displacements can, however, be
culated analytically. The displacements can be written
terms ofu as

x2x05E
0

t

c cosu~ t8!dt8 , ~18!

y2y05E
0

t

c sinu~ t8!dt8 . ~19!

Using these and a Gaussian distribution forf (t), we get

^x2x0&5
2c

G
cosu0~12e2Gt/2!, ~20!

^y2y0&5
2c

G
sinu0~12e2 Gt/2!, ~21!
y
is

a-
of
a-

l-
n

^~x2x0!2&5c2F2t

G
2

2

3 S 2

G D 2

~12e2Gt/2!2
1

12S 2

G D 2

3~12e2Gt!G , ~22!

^~y2y0!2&5c2F2t

G
2

4

3 S 2

G D 2

~12e2Gt/2!1
1

12S 2

G D 2

3~12e2Gt!G , ~23!

^~x2x0!~y2y0!&50. ~24!

This reproduces the result of the traditional Ornste
Uhlenbeck process in that the first moment saturates
mean free pathl * and the second moment increases linea
with time at long times (Gt/2@1). For short times (Gt/2
!1), the longitudinal spread̂Dx2&;t2 and the lateral
spread^Dy2&;t3 which are considerably slower than th
diffusive linear behavior. From these relations, we ident
the mean free timet* to be 2/G and the transport mean fre
path l * 5ct* . The diffusion coefficient is identified as th
coefficient of the linear term of the second moment, i.
c2/G.

It is of interest to note that an analytic expression
moments of all orders for the displacements can be obtain
This expression is given in the Appendix. The margin
probability distribution functionP(x,y,t;x0 ,y0,0) can be
written in terms of a cumulant expansion~see the Appendix!.
Truncation of the cumulant series after the second te
yields the result of Ref.@14# for the probability distribution:

P~x,y,t;x0 ,y0,0!5
1

2p det~M !
expH 2

Mi j
21

2
~rW2rW02aW ! i

3~rW2rW02aW ! j J , ~25!

aW 5
2c

G
~12e2Gt/2!~cosu0 ,sinu0!,

Mi j 5^~rW2rW0! i~rW2rW0! j&2^~rW2rW0! i&^~rW2rW0! j&.

The distribution is Gaussian in this approximation and sim
iar to the distribution for the traditional OU process@12#.
Thus it does not exactly preserve the light cone and wo
appear to constrain the speed only in an average se
Higher cumulants would be required to describe this feat
of fixed speed.

An approximate solution which preserves the light co
can be obtained under the assumption thatu is completely
randomized in timet* , so thatu has a uniform distribution
over @0,2p#. This can be justified in the limit of large forc
strength (G), when the scattering events change the mom
tum by a large amount. Now the time can be discretized
this time scale and the probability distribution can be writt
as ~see the Appendix!
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FIG. 1. The marginal probability distribution
P(x,t;x0,0) predicted by the approximate solu
tion given by Eq.~28! at different times indicated
in the figure. There is a clear cutoff at the ligh
front and initially the probability accumulates a
the light front ~for t5t* ).
h
,
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g.
n

a
-

P~x,t;x0,0!5
1

2pE2`

`

dveiv(x2x0)

3K expF2 ivc(
j 51

n

cosu j t* G L , ~26!

where we have used that, att50, the angleu was uniformly
distributed. To evaluate the average, we will use the fact t
in this approximation eachu j is independent of all others
giving

K expF2 ivc(
j 51

n

cosu j t* G L 5@J0~vct* !#n, ~27!

where J0 is the ordinary Bessel’s function of order zer
Using n5t/t* , we have
at

P~x,t;x0,0!5
1

2pE2`

`

dveiv(x2x0)@J0~vct* !# t/t* .

~28!

Using the fact that the Fourier transform ofJ0(vct* ) is zero
for ux2x0u.ct* and the fact thatP(x,t,x0,0) is annth con-
volution of J0(vct* ), it is seen thatP(x,t,x0,0) is zero for
ux2x0u.nct* 5ct. Thus the light cone is preserved. In Fi
1, we plot theP(x,t,x0,0) obtained by numerical evaluatio
for different times. It is seen that, fort5t* , the probability is
accumulated at the light front, and all the curves show
cutoff at ux2x0u5ct. At long times, using the Laplace ap
proximation, we have~for largen)

@J0~vct* !#n.expH 2
c2t* 2v2n

4 J ,
e-
ly
t

e

FIG. 2. The probability distributions~P! in
the phase space of a particle in an infinite m
dium at different times obtained by numerical
propagating Eq.~17!. The particle is released a
x50 along the positivex direction (u50) at t
50. The probability distribution is clearly for-
ward peaked and becomes almost flat along thu
axis only at times of about 8t* .
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FIG. 3. The first and second moments of th
displacement for the probability distribution of
particle in an infinite medium. The solid line
show the analytical result of Eqs.~20! and ~22!
while the symbol (s) show the result obtained
from the numerical solutions.
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P~x,t;x0,0!.S 1

pc2t* t
D 1/2

expH 2
~x2x0!2

c2t* t
J . ~29!

Thus we recover the diffusion limit at long times.

III. NUMERICAL SOLUTIONS AND RESULTS

In this section, numerical solutions for the differenti
equation~17! are presented. The particle is released in
x-y plane at the origin~generally! along an initial direction
u0. Hereu is the angle made by the velocity vector with th
x axis. Let us first further simplify by assuming invarian
with respect toy; i.e., we have a line source along they axis.
Then the derivative with respect toy drops out and and we
have a partial differential equation in three variables. This
essentially a parabolic equation with an advective term.
e

s
o

numerically propagate the probability distribution in tim
we use an alternating direction implicit-explicit method@19#
for x and u. A local von Neumann stability analysis@19#
shows that this differencing scheme is unconditiona
stable. The initial condition is ad function atx50, u50
which is approximated by a sharp Gaussian for numer
purposes. For infinite media, the boundary conditionP(x,t)
50 for uxu.ct is used. For a semi-infinite medium2`,x
,L with an absorbing boundary atx5L, the appropriate
boundary condition is given byP(L,u,t;x0 ,u0,0)50 for
2p,u,2p/2 and p/2,u,p, corresponding to no flux
entering the medium from free space. Also, we can write
Fokker-Plank equation in the form of a continuity equatio

]P

]t
1¹W •W50, ~30!
-

FIG. 4. The marginal probability distribution
P(x,t;x0 ,u0,0)5*2p

p P(x,u,t;x0u0,0)du at dif-
ferent times. The marginal probability distribu
tion becomes almost a Gaussian at times of 8t* .
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FIG. 5. The probability distributions~P! in
the phase space of a particle in a semi-infin
medium at different times. The particle is re
leased atx50 along the positivex direction (u
50) at t50. The absorbing boundary is locate
at 4l * . The probability distribution is zero in the
range 2p,u,2p/2 and p/2,u,p at the
boundary, implying that there is no incoming flu
into the medium.
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¹W 5êx

]

]x
1êu

]

]u
,

W5êx cosuP1êu

G

2

]P

]u
.

SinceG50 outside the medium, we can conclude that
current densityW in the real~x! space is conserved across t
boundary in the forward direction (2p/2,u,p/2) while
the current density in the velocity (u) space is not conserved
This explains why the output flux at the boundary is prop
tional to the value of the probability distribution function
the boundary itself@rather than the space derivative of th
probability distribution (]P/]x) given by Fick’s law# as ob-
served in experiments@20#. For a finite slab we use a similia
boundary condition at the other boundary.
e

-

In Fig. 2, we show the probability distributions in an in
finite medium with the initial condition,P(x,u,t50)
5d(x)d(u). It is clearly seen that the probability distributio
for times up to 5t* is peaked in the forward directionu;0
for x.0, with a tail in the backward direction (u;6p) at
x,0. There is also a clear cutoff atuxu5ct, which is promi-
nently noticeable for positivex. The small amount of tailing
arises from the finite width of the Gaussian by which thed
function was approximated. One can also note that the p
ability distribution becomes almost flat along theu axis only
at times of about 8 times the mean free time (8t* ). In Fig. 3,
the first and second moments of thex coordinate are shown
The solid lines show the analytical results of Eqs.~20! and
~22! and the symbols (s) represent the results of the nu
merical solutions. Excellent agreement is found betwe
them. In Fig. 4, we show the marginal probability distrib
tion for x, i.e.,P(x,t;x0 ,u0,0)5*2p

p duP(x,u,t;x0 ,u0,0). At
s
g

he
ar
ry.
FIG. 6. The marginal probability distribution
in a semi-infinite medium with an absorbin
boundary atx54l * . The plot on the right shows
an expanded view of the distributions near t
boundary. The solid straight lines are the line
extrapolations of the behavior near the bounda
All of them are seen to cross thex axis roughly at
0.7l * outside the boundary.
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FIG. 7. The surviving probability of the par
ticle inside the semi-infinite medium for an ab
sorbing boundary at 4l * (s) and 2l * (*). The
persistence exponentq is obtained from the long
time behavior of the survival probability. The
dotted and dot-dashed lines show the linear
and give a persistence exponent of 0.4309 a
0.4364, respectively.
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short times (t.3t* ), there is a clear ballistic peak, separa
from the more randomized tail. The probability distributio
for these times is also clearly forward peaked. One can
note that the probability distribution randomizes and b
comes almost Gaussian, centered atx; l * only at timest
>8t* . As noted above, this is also the time by which t
angular coordinateu randomizes. This is when the diffusio
approximation becomes valid. This can be understood
noting that, by Eq.~7!, the time required forPt(u) to attain
an angular width of 2p is T where T is given by ^Du2&
5(2p)2;2GT. This yields ~using G/25t* ) a value ofT
5p2t* .10t* for the randomization time. Thus we no
have a clear picture of the reason for this long known exp
mental fact@6#. This forward-peaked behavior at short tim
also illustrates the deficiency of the second cumulant
proximation where the probability distribution is a Gauss
so
-

y

i-

-

and symmetric about the first moment. Higher cumulants
clearly required to describe these asymmetric features.

The probability distribution functions for a semi-infinit
medium are shown in Fig. 5. Here the particle is release
the origin inside the random medium and the initial directi
is towards the boundary~in this case atx54l * ). For times
lesser than 4t* , there is no difference in the probability dis
tribution from the case of the infinite medium. This is b
cause the wave front has not propagated up to the boun
and the effect of the boundary is not felt. This is to be co
trasted with the diffusion approximation where the effect
the boundary is felt everywhere simultaneously and causa
is violated. At long times the probability distributions atta
a typical shape with a long tail at negativex within the me-
dium and a sharp cutoff at the boundary. In Fig. 6, we sh
the marginal probability distribution for x, i.e.,
e
-

-
a
re

the
FIG. 8. The first and second moments of th
displacement of a particle in a finite slab of thick
ness 2l * ~left plot!. The right plot shows the sur
vival probability in a semi-infinite medium and
finite slab. The distance between the point whe
the particle is released and the boundary is
same in both cases (2l * ).
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FIG. 9. Total light emitted~from both sides!
by a disordered slab with amplification for differ
ent values of the gain coefficientA in the me-
dium. The output increases exponentially at lo
times.
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P(x,t;x0 ,u0,0)5*2p
p duP(x,u,t;x0 ,u0,0). The value of

P(x,t;x0 ,u0,0) is finite at the boundary and zero outside.
seen in Fig. 6~b!, if the points near the boundary are linear
extrapolated outside the boundary, they all roughly cross
x axis at about 0.7l * which is the value of the extrapolatio
length used in the diffusion approximation@21#. In Fig. 7, the
surviving probability inside the medium, Ps
5*dx*duP(x,u,t;x0 ,u0,0), is plotted with time. For long
times, this quantity should scale ast2q whereq is the per-
sistence exponent for this process@22#. We have performed
these calculations for several source-boundary distances
obtained a value of 0.43560.005 as the persistence expone
for this process in two dimensions.

Finally we present solutions for a finite slab with abso
ing boundaries atx56L. The particle is released from th
origin at t50 along the positivex direction. Figure 8~a!
shows the first and second moments of the probability w
time in a thin slab of thickness 2l * . The first and second
moments initially increase as in an unbounded medium u
the photon front hits the boundary and dips before increas
again and saturating at an almost constant value. The
occur because just after the ballistic and near-ballistic co
ponents exit the slab, only the photons which are effectiv
moving in the opposite directions are left behind. In fact,
first moment is seen to become negative, implying that
net transport is in the backward direction for some time. T
dip in the second moment implies that the photon cloud
effectively expanding at a slower rate. This would caus
lowered ‘‘effective diffusion coefficient’’ to be measured
a pulse transmission measurement. This reinforces the
clusions reached in Ref.@13# based on Monte Carlo simula
tions and explains the experimental results of Ref.@3# on a
more rigorous footing. Figure 8~b! shows the survival prob
ability for the case of a finite slab. This decays considera
faster than in the case of the semi-infinite slab, though
early times (t;t* ) the decay rates are comparable. The i
tial rates of decay are comparable because of the forw
peaked nature of the probability distribution at early tim
when the effect of the boundary at the back is hardly f
e
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til
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ps
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ly
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e
e
s
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n-

ly
at
-
d-
,
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This is to be compared with the mirror-image solution in t
diffusion approximation, where equal weightage is given
both boundaries at all times.

Finally we turn to the case of an amplifying stochas
medium. The effect of medium gain can be incorpora
straightforwardly by noting that in our treatment the time
exit from the slab directly translates into a path length t
versed within the medium because speed is kept absolu
fixed. In the presence of amplification in the medium, the
fore, the net gain is directly proportional to the time. Th
the output flux at the boundary in a given direction is simp
P(L,u,t)cosu exp(at), wherea is the gain coefficient in the
medium. It is thus simple to obtain a picture of amplifie
emission from such a medium. In Fig. 9, we show the to
light emitted by a slab with boundaries atx562l * for sev-
eral amplification factors. The photon is released from
origin in the positivex direction. For large times, the outpu
increases exponentially because of the presence of an e
nential gain in the medium with no saturation. It is seen t
the ballistic part is only slightly amplified while the output i
the tail regions is increased considerably. To obtain a m
realistic picture of lasing in random media@23,24#, however,
one would have to consider the lasing level population dep
tion and saturation effects.
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APPENDIX: EXPRESSION FOR THE MOMENTS ŠXn
‹

The nth-order moment is given by

^~x2x0!n&5cnE
0

tE
0

t

•••E
0

t

dtndtn21•••dt1

3^cosu~ t1!cosu~ t2!•••cosu~ tn!&.

~A1!



ts

ss

-

lant
o-
u-

PRE 60 1389DIFFUSION OF PARTICLES MOVING WITH CONSTANT SPEED
Writing u(t i) asu i , the quantity within the angular bracke
can be expressed as follows:

^cosu1cosu2•••cosun&

522n^~eiu11e2 iu1!~eiu21e2 iu2!•••~eiun1e2 iun!&

522n (
s1 ,s2•••sn

s i561

K expF i (
j 51

n

s ju j G L . ~A2!

This can be expressed as a path integral using a Gau
distribution for f (t):

K expF i (
j 51

n

s ju j G L
5E D@ f ~ t !#expH 2E

0

tF f 2~ t8!

2G
1 i (

j 51

n

s j f ~ t8!Gdt8J
5expH 2

G

2 (
k51

n S (
j 5k

n

s j D 2

~ tk2r k21!J , ~A3!

where t050 and we assumed a time ordering oft1,t2
,•••,tn . Thus,

^~x2x0!n&5cn~n! !22nE
0

t

dtnE
0

tn
dtn21•••E

0

t2
dt1

3 (
s1 ,s2•••sn

s i561

expH 2
G

2 (
k51

n S (
j 5k

n

s j D 2

3~ tk2r k21!J . ~A4!
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A similiar expression can be obtained for the^(y2y0)n& by
noting that sinu5cos(p/22u).

Now we can obtain the joint probability distribution ofx
andy as

P~x,y,t;x0 ,y0,0!5K dS x2x02cE
0

t

cosu~ t8!dt8D
3dS y2y02cE

0

t

sinu~ t8!dt8D L .

~A5!

Expressing thed functions in terms of the Fourier trans
forms,

P~x,y,t;x0 ,y0,0!5S 1

2p D 2E
2`

`

dvx

3E
2`

`

dvye
i [vx(x2x0)1vy(y2y0)]

3K expF2 icE
0

t

@vx cosu~ t8!

1vy sinu~ t8!#dt8G L . ~A6!

This statistical average can be evaluated by a cumu
expansion@15#, and since we have an expression for m
ments of all orders, we can in principle evaluate the cum
lant expansion to any desired order.
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