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Quantum gravity effects in the CGHS model of collapse to a black hole

Madhavan Varadarajan*
Raman Research Institute, Bangalore 560 080, India

~Received 3 October 1997; published 11 February 1998!

We show that only a sector of the classical solution space of the CGHS model describes the formation of
black holes through the collapse of matter. This sector has either right or left moving matter. We describe the
sector which has left moving matter in canonical language. In the nonperturbative quantum theory all operators
are expressed in terms of the matter field operator which is represented on a Fock space. We discuss the
existence of large quantum fluctuations of the metric operator when the matter field is approximately classical.
We end with some comments which may pertain to Hawking radiation in the context of the model.
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I. INTRODUCTION

We regard the Callan-Giddings-Harvey-Stroming
~CGHS! model @1# as a 2D classical field theory in its ow
right rather than as string inspired. We view the dilaton fie
as just another classical field rather than as string coupl
The theory shares two important features with 4D gene
relativity—it is a nonlinear diffeomorphism invariant fiel
theory in which the solutions describe spacetime metrics
someof these solutions correspond to black hole format
through matter collapse. Since the model is classically
actly solvable and, modulo certain very important qualific
tions, has been~non-perturbatively! canonically quantized
via the Dirac procedure@2#, we use it as a toy model fo
these features of 4D quantum general relativity.

In this work we prove some results regarding the prop
ties of classical solutions to the model using a general r
tivist’s point of view. Next, we discuss some quantum pro
erties of the spacetime geometry along the lines of@3#. We
end with a few speculative remarks concerning Hawking
diation in the model. The discussion and analysis of
quantum mechanics of the model are based on recent w
@2#.

The outline of the paper is as follows. In order to interp
the quantum theory of@2# it is essential to understand th
classical solution space@4#. In Sec. II, we show that ‘‘most’’
classical solutionsdo notcorrespond to matter collapsing t
form a black hole. More specifically, we show that if bo
left and right moving matter is present, the spacetime d
not represent black hole formation through matter collap1

However, if only ‘‘one-sided’’ matter is present, it is po
sible to obtain solutions describing the collapse to a bl
hole.

In fact, without the restriction to one-sided collapse, it
difficult to characterize the broad properties of the spacet
in terms of the properties of the matter field distribution~see,
however,@4#!. We have very little control over the solutio
space and do not understand exactly what facets of 4D
eral relativistic physics, if any, are modeled by the solutio

*Email address: madhavan@rri.ernet.in
1A similar result is asserted in section 8 of@4#.
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In order to retain the solutions corresponding to the colla
ing black hole spacetimes as well as to have a better con
on the space of solutions, we restrict our attention to
one-sided collapse sector in the remainder of the paper.

Solutions to the CGHS model are most simply describ
in Kruskal-like null cone coordinatesX6 @2#. The one-sided
collapse solutions which we analyze describe a single bl
hole spacetime and correspond to the restrictionX6.0.
These solutions can be analytically extended through the
tire X6 plane ~indeed, the quantum theory of@2# seems to
require consideration of such extensions!. We show, through
Penrose diagrams, how the physical spacetime is embe
in, and analytically extended to, the fullX6 plane. This com-
pletes our analysis of the classical solution space.

In Sec. III we turn to the Hamiltonian description of th
model. Since we are interested in the one-sided collapse
ation, we restrict the description in@2# suitably, by setting
the left mass of the spacetime and the right moving ma
modes to zero. We adapt the quantization of@2# to the one-
sided collapse case. To make contact with the semiclass
treatment of Hawking radiation in the literature~see, for ex-
ample,@5#!, left and right moving modes are needed. Sin
one set of modes is frozen in our analysis, we do not disc
Hawking radiation related issues except for some comme
in Sec. V. Instead, we focus on other issues in quant
gravity. We calculate quantum fluctuations of the metric o
erator when the matter fields are approximately class
~metric operator fluctuations were discussed earlier in@6#
and, in the context of spacetimes with an internal bounda
in @7#!. We show that large quantum gravity effects as in t
case of cylindrical waves@3# are manifested even far awa
from the singularity~although not at spatial infinity!.

The discussion of this section pertains to the quant
version of the analytic extension to the entireX6 plane, of
the one-sided collapse solutions. In contrast, in Sec. IV,
deal with ~the canonical classical and quantum theory!
only the physical spacetime regionX6.0. To do this we
appropriately modify the analysis of asymptotics in@2#. The
most direct route to the quantum theory is to first gauge
~in the manner of Mikovic´ @6#! and then quantize the resul
ing description. We obtain a Fock space representation ba
on the time choice ln(X1/X2) in contrast to the Fock space o
Sec. III which was based on the time choice (X11X2)/2.
3463 © 1998 The American Physical Society
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3464 57MADHAVAN VARADARAJAN
We repeat the analysis of Sec. III regarding large quan
gravity effects. In the process we find that the operator c
responding to the spacetime metric at large values ofX1

cannot be represented on the Fock space of the quan
theory. The implication is that the most natural represen
tion ~which we have chosen! for the quantum theory may no
be the correct one. We leave this as an open problem.
tion V contains concluding remarks including some co
ments on Hawking radiation in the context of the model. W
do not attempt to review the vast amount of pertinent lite
ture but instead refer the reader to review articles such as@5#.

Notation. Besides standard conventions, we will use t
following notation ~from @2#! throughout this paper: In the
double null coordinatesXa5(X1,X2), many quantities de-
pend only onX1 or X2, but not on both variables. We wil
emphasize this by using onlyX1 or X2 as an argument o
that function or functional. For example, whilef (X) means
that f is a function of bothX1 and X2, f ,1(X1) and
f ,2(X2) mean that the derivativesf ,1 and f ,2 depend only
on X1 andX2, respectively. Moreover,f ,6(X6) will serve
as a shorthand notation to denote the function dependen
both f ,1 and f ,2 simultaneously.IL

2 ,IR
2 ,IL

1 , andIR
1 denote

past left, past right, future left, and future right null infinit
respectively.

II. ANALYSIS OF THE CLASSICAL SOLUTION SPACE

A. The action and the solution to the field equations

We briefly recall the action and the solution to the fie
equations for the CGHS model in the notation of@2# ~for
details, see@2#!. In units in which the velocity of light,c, and
the gravitational constant,G, are unity, the action is

S@y,gab , f #5
1

2E d2Xugu1/2~yR@g#14k22gab f ,a f ,b!.

~1!

Herey is the dilaton field,gab is the spacetime metric@sig-
nature (21)#, and f is a conformally coupled scalar field
R@g# denotes the scalar curvature ofgab , andk is a positive
definite constant having the dimensions of inverse length

To interpret the theory, we will treatgab as an auxiliary
metric and

ḡab :5y21gab ~2!

as the physical ‘‘black hole’’ metric. Sincey is a conformal
factor, it is restricted to be positive. However, note that sin
the field equations and Eq.~1! are well defined fory<0,
solutions with positivey admit analytic extensions toy<0.
The solution to the field equations arising from~1! is as
follows ~for details, see@2#!. gab is flat. The remaining fields
are most elegantly described in terms of the double null
ordinatesX65Z6T, where (Z,T) are the Minkowskian co-
ordinates associated with the flat auxiliary metric. Then
spacetime line element associated with the metricgab is

ds25dX1dX2, ~3!

the matter field is the sum of left and right movers:

f ~X!5 f 1~X1!1 f 2~X2!, ~4!
m
r-

m
-

c-
-
e
-

e

of

e

-

e

and in the conformal gauge@1#

y~X!5k2X1X21y1~X1!1y2~X2!. ~5!

Here

y6~X6!52EX6

dX̄6E X̄6

dX̄̄6
„f ,6~ X̄̄6!…2. ~6!

Finally, the line element corresponding to the physical me
ḡab is

d s̄25
dX1dX2

y
. ~7!

Its scalar curvature is

R̄54S y,12

y
2

y,1y,2

y2 D . ~8!

For smooth matter fields, it is easy to see that curvat
singularities can occur only wheny50 or y5` ~the con-
verse may not be true!.

B. Unphysical nature of solutions with ‘‘both-sided matter’’

We now analyze the physical spacetime structure co
sponding to the solutions described above. We are intere
in those solutions which describe matter collapse to a bl
hole. So for spacetimes of physical interest we require
following.

~i! A notion of ~left past and future, right past and future!
null infinities exists such that any light ray originating with
the physical spacetime, traversing a region of no curvat
singularities and reaching null infinity should exhaust infin
affine parameter to do so. Further, null infinity is the locus
all such points. Each of left past, right past, left future, a
right future null infinity is a null surface diffeomorphic to th
real line and forms part of the boundary of the spacetime

~ii ! Only future singularities should exist. Note that sin
y is a conformal factor~7!, it is required to be positive. Any
regionwithin the physical spacetime wherey<0 is defined
to be singular.

For simplicity we restrict the spacetime topology to
R2. We also assume that the matter fields be of comp
support at past null infinity. Since the null infinities are nu
boundaries of the spacetime, they are labeled by lines
constantX6 ~the constant could be finite or infinite!. Thus,
the physical spacetime is a subset of the entire Minkowsk
plane framed by boundaries made up of lines of constantX6

and a future singularity. With this picture in mind let u
further analyze the consequences of~i! and ~ii !.

Further consideration of~i! results in the following
lemma.

Lemma.If a section of null infinity is labeled byX150 or
X250 then~i! implies thaty50.

Proof. Let a section of~right future or left past! null in-
finity be labeled byX150. ApproachX150, through a
nonsingular region along anX25 constant5a2 line from
X15a1 (a1 is finite!. Let the normal to this line beka
5a(dX2)a . For this line to be a geodesic]a/]X150.
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Choosea51. Let the affine parameter along this geode
be l. ~i! implies

ul~X25a2,X150!2l~a2,a1!u5U E
a1

0 dX1

ay U5`. ~9!

From ~i!, if X150 is to label null infinity,y→0 asX1→0
in such a way as to make the integral diverge. Hen
y(a2,0)50.

We now show that~i! or ~ii ! is violated if both left and
right moving matter is present. For this, we examine Eqs.~5!
and~6! and choose the lower limits of integration in Eq.~6!
as follows. Let the least value ofX2 beX0

2 on left future null
infinity and that ofX1 beX0

1 on right past null infinity. Then
we specifyy as

y~X!5k2X1X21y1~X1!1y2~X2!1a1X11a2X21b,
~10!

wherea6 ,b are constants and

y6~X6!52E
X0

6

X6

dX̄6E
X0

6

X̄6

dX̄̄6
„f ,6~ X̄̄6!…2. ~11!

The auxiliary flat metric determinesX6 only up to Poincare
transformations. In this section, ifX0

1 (X0
2) happens to be

finite, we use the translational freedom inX1 (X2) to set
X0

150 (X0
250).

Our strategy will be to demand„i… or „ii … and use the
lemma for exhaustive choices of ranges ofX6. Thus we
assumethat the physical spacetime satisfies~i!, ~ii ! and that
the boundaries of these ranges label the infinities of
spacetime. Singularities will occur inside the ranges wh
y,0.

~A! 2`,X6,`. Past timelike infinity is labeled by
(X2,X1)5(`,2`). As we approach this point, the firs
term on the right-hand side of Eq.~10! becomes arbitrarily
negative and since it dominates the behavior ofy, it drivesy
to negative values. The regiony,0 must ‘‘intersect’’ past
left and past right infinity. Sincey cannot be negative, ther
must be a past singularity in the spacetime. Thus„ii … rules
out this range forX6.

~B! 2`,X2,`, 0,X1,`. Left past null infinity is
labeled byX150. From the lemma,y(X2,0)50. From Eq.
~10! this gives, on left past null infinity,

y2~X2!1a2X21b50. ~12!

Differentiating this equation with respectX2 yields f ,250.
Thus„i… implies that there cannot be right moving matter f
this choice of range.

All other choices of range can be handled by using
arguments in~A!,~B!. The conclusion is that either there is
past singularity in the spacetime so that the correspond
range is ruled out orf ,2 or f ,1 vanish. Thus we have prove
the following statement:

In the conformal gauge, if (i) and (ii) hold, then either le
moving or right moving matter must vanish.Note that we
havenot proved the converse of this statement.
c

e

e
n

e

g

C. One-sided collapse to a black hole

Having established that classical solutions of physical
terest contain only ‘‘one-sided’’ matter, we turn to the ana
sis of Eq.~10! with f 250 ~a similar analysis can be done fo
f 150).

We first identify the region of theX6 plane corresponding
to the physical spacetime. Let us fix the translation freed
in X6 by settinga650 in ~10!.2 Using arguments similar to
those in the lemma,~A! and ~B!, it can be shown that the
only possible labelings of past null infinity which do no
contradict„i…, „ii … and f ,1Þ0 are past left null infinity at
X150 and past right null infinity atX25`.

Thus the solution of interest for the rest of the paper i

y~X!5k2X1X21y1~X1!, ~13!

with

y1~X1!52E
0

X1

dX̄1E
0

X̄1

dX̄̄1
„f ,1~ X̄̄1!…2, ~14!

andX1.0. Let the support off 1 be a,X1,b. Note that
within the physical spacetimeX2>0, otherwisey(x) can
become negative. Note that

y~x!5k2X1X2 for X1,a, X2>0, ~15!

and the spacetime is flat. For this region the null lineX2

50 is part of IL
1 . Similarly, IR

2 is found to beX25`.
Consideration ofX1.b fixes IR

1 to be atX15`.
Next we examine the locus of the singularity:

y~x!50⇒k2X1X25E
0

X1

dX̄1E
0

X̄1

dX̄̄1
„f ,1~ X̄̄1!…2

~16!

⇒X25
1

k2X1E
0

X1

dX̄1E
0

X̄1

dX̄̄1
„f ,1~ X̄̄1!…2.

~17!

The singularity intersectsIL
1 at (X250, X15a). It can be

checked that the normalna5]ay to the curve corresponding
to the singularity has a norm in the auxilary metric given

nana5k2S E
0

X1

dX̄1E
0

X̄1

dX̄̄1
„f ,1~ X̄̄1!…2

2X1E
0

X1

dX̄1
„f ,1~X̄1!…2D ~18!

52k2E
0

X1

dX̄1X̄1
„f ,1~X̄1!…2. ~19!

This is clearly negative forX1.a. Thus the singularity is
spacelike. From Eq.~17! the singularity intersects future
right null infinity at

2This is a different choice from that used in Sec. II B.
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3466 57MADHAVAN VARADARAJAN
X25
1

k2E
0

`

dX1
„f ,1~X1!…2. ~20!

Equation~20! gives the position of the horizon for the blac
hole formed by the collapse of the left moving matter.

That there is a single spacelike curve solving Eq.~17! can
be seen from the following argument.3 Considery for fixed
X2 as a function ofX1. Let X15Xsing

1 .a solve Eq.~17!. It
can be checked that forX1.Xsing

1 , y,1,0. Thus, for a
given X2, y50 occurs at a single value ofX1.

This completes the discussion of the physical spaceti
As mentioned before, this solution admits an analytic ext
sion to the wholeX6 plane. We now analyze this extensio

The full Minkowskian plane is divided into the following
~1! X6.0. The physical spacetime lies within this rang

It has an analytic extension ‘‘above’’ the singularity in whic
y,0 and the metric acquires the signature12 instead of
21.

~2! X2.0, X1,0. Equation ~13! gives y5k2X1X2.
This describes a~complete! flat spacetime withy,0 ~there
is a ‘‘signature flip’’ for the analytically continued metric!.

~3! X6,0: y5k2X1X2 describes a complete flat spac
time with y.0.

~4! X2,0, X1.0. Both terms on the right-hand side o
Eq. ~13! survive and both are negative. So there is a sig
ture flip in this region withy,0.

The structure in the full Minkowskian plane is show
schematically in Fig. 1.

III. CANONICAL DESCRIPTION ON THE ENTIRE
MINKOWSKIAN PLANE

We describe the one-sided collapse situation in class
canonical language. This is achieved by switching off d

3I thank J. Samuel for suggesting this argument.

FIG. 1. The black hole spacetime is embedded in its anal
continuation to the entire Minkowskian plane. The curly line d
notes the singularity in the black hole spacetime and the sha
region the~left moving! matter.
e.
-

.

-

al
-

grees of freedom associated with the right moving ma
fields in a consistent manner, in the description of@2#.
Hence, we shall use the results and the notation, and a
the procedures, of@2#. Rather than repeat the content of th
paper here, we refer the readers to@2#. Henceforth we shall
assume familiarity with that work. We shall also use t
results from@8# regarding the canonical transformation to t
Heisenberg picture. Although that work dealt with a spa
time topologyS13R, the transformation to the Heisenbe
picture as well as other basic ideas such as the relatio
canonical data with the spacetime solution of the Klein G
don equation go through in theR2 case which is of relevance
here.

It would be straightforward, in what follows, to use th
gauge fixing procedure of@6#. Unfortunately, the gauge fix
ing conditions~67! in conjunction withthe asymptotic con-
ditions of @2# result in a foliation inappropriate for the entir
Minkowskian plane. More precisely, the foliation consists
boosted planes all passing throughX15X250 and does not
cover the timelike wedgesX1X2,0.4 Such a foliationdoes
cover the regionX6.0 and this is why we use it in Sec. IV

In what follows,x is a coordinate on the constantt spatial
slice and the 111 Hamiltonian decomposition is in the con
text of a foliation of spacetime by such slices. We use no
tion such that for a given fieldg(x,t), ]g/]x is denoted by
g8 and]g/]t is denoted byġ.

A. Classical theory

In @2# the CGHS model is mapped to a parametrized fr
field theory on a flat 2D spacetime. The transformation fro
Eq. ~1! ~after parametrization at infinities! is made to a de-
scription in terms of embedding variables and the~canonical
form of the! action in these variables is

S@X6,P6 , f ,p f ,N̄,N1;p,mR!5E dtE
2`

`

dx ~P1Ẋ1

1P2Ẋ21p f ḟ 2N̄H̄

2N1H1!1E dt pṁR .

~21!

HereX6 are the embedding variables~they correspond to the
light cone coordinates we have been using to describe
solution in earlier sections!, P6 are their conjuagte mo
menta,f is the scalar field andp f its conjugate momentum
N̄ andN1 are the rescaled lapse and the shift, andH̄ andH1
are the rescaled super-Hamiltonian and supermomen
constraints which take the form of constraints for a para
etrized massless scalar field on a 2-dimensional Minkow
spacetime. It is convenient to deal with the Virasoro com
nations

4This does not necessarily rule out the existence of adifferentset
of asymptotic conditions, which together with the same gauge
ing conditions ~67!, gives a foliation which covers the entir
Minkowskian plane.
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H6:5
1

2
~H̄6H1!56P6X681

1

4
~p f6 f 8!2'0. ~22!

mR is the right mass of the spacetime andp, its conjugate
momentum, has the interpretation of the difference betw
the parametrization time and the proper time at right spa
infinity with the left parametrization time chosen to agr
with the left proper time. It is useful to recall from@2# that

y~x!5k2X1~x!X2~x!2 Èx

d x̄ X28~ x̄! È x̄
d x̄̄ P2~ x̄̄!

1E
2`

x

d x̄ X18~ x̄!E
2`

x̄
d x̄̄ P1~ x̄̄!

1E
2`

`

dx X1~x!P1~x!1
mR

k
. ~23!

Note that the right mass is related to the left mass by

mL

k
5

mR

k
1E

2`

`

dx X1~x!P1~x!2E
2`

`

dx X2~x!P2~x!.

~24!

That the right mass appears in Eq.~21! rather than the left
massmL is a matter of choice. In@2# if the authors had
chosen to synchronize the right parametrization clock w
the right proper time, the last term in Eq.~21! would be
*dtp̄ṁL , where p̄ denotes the difference between the l
parametrization and the left proper time. So an act
equivalent to Eq.~21! is

S@X6,P6 , f ,p f ,N̄,N1; p̄,mL!5E dtE
2`

`

dx ~P1Ẋ1

1P2Ẋ21p f ḟ 2N̄H̄

2N1H1!1E dtp̄ṁL .

~25!

Note thatmL ,p̄ are constants of motion. To make conta
with the solution in Sec. II C, we first freeze the left mass
zero and simultaneously putp̄50. The reduced action, with
out this pair,

S@X6,P6 , f ,p f ,N̄,N1; p̄50,mL50!

5E dtE
2`

`

dx ~P1Ẋ11P2Ẋ2

1p f ḟ 2N̄H̄2N1H1! ~26!

reproduces the correct equations of motion. Alternatively
one is not familiar with the procedures for parametrization
infinities, it can be checked from Eq.~21! that mR ,p are
constants of motion. We can, therefore, consistently fre
this degree of freedom by settingmR ,p equal toconstantsof
motion and then simply use the reduced action~26!. Since
n
al

h

t
n

t

if
t

e

m

k
:52E

2`

`

dx X1~x!P1~x!1E
2`

`

dx X2~x!P2~x!

~27!

commutes with the constraints, it is a constant of a mot
and we can consistently setmR5m andp50.

Next, in order to have a description of the one-sided c
lapse situation, we must setf 250. This is done in the ca-
nonical treatment as follows. Through a Hamilton-Jaco
type of transformation we pass from the description in E
~26! to the Heisenberg picture@2,8#. The new variables are
the Fourier modes~they can be interpreted as determinin
the matter field and momentum on an initial slice! a6(k)
(k.0), their complex conjugatesa6* (k), the embedding
variablesX6(x) ~these are unchanged!, and the new embed
ding momentaP̄6 . The Fourier modes and the new embe
ding momenta are given by

a6~k!5
i

2Apk
E

2`

`

~p f6 f 8!eikX1~x!, ~28!

P̄65
H6

X68
. ~29!

Thus, the vanishing of the constraints is equivalent to
vanishing of the new embedding momenta. The only n
trivial Poisson brackets for the new variables are

$a6~k!,a6* ~ l !%52 id~k,l !, $X6~x!,P̄6~y!%5d~x,y!.
~30!

To summarize, the scalar field and momenta are replace
their Fourier modes, which can be thought of as coordina
ing their values on an initial slice given byX1(x)2X2(x)
50. The embedding coordinates are unchanged and the
embedding momenta are essentially the old constraints.

Setting f 250 is equivalent in the canonical language
demandingp f2 f 850 @8#. From Eq.~28!, this is achieved by
settinga2(k)5a2* (k)50 and this can be done consistentl
since the1 and 2 modes are not dynamically coupled. S
the final variables for the theory area1(k), a1* (k), X6(x),

andP̄6(x). The latter vanish on the constraint surface. T
connection to the variablesX6,P6 , f ,p f @2# is through Eqs.
~28! and ~29!. The X6,P6 variables are related to the geo
metric variables of interest~the dilaton and its canonically
conjugate momentum, the induced metric on the spatial s
and its conjugate momentum! in @2#. Since we are dealing
with 2`,X6,` @2#, this analysis~and the next two sec
tions on quantum theory! pertains to the analytically ex
tended one-sided collapse solution.

In this paper we examine only the dilaton field~23!. As
mentioned in@2#, solving the constraintsH6 expressesP6

in terms ofX6 and the scalar field and its momentum. Su
stituting this in Eq.~23! and usingp f1 f 852X18 f ,1 from
@8#, one is led back to the spacetime solution

y~X!5k2X1X22E
2`

X1

dX̄1E
2`

X̄1

dX̄̄1
„f ,1~ X̄̄1!…2.

~31!
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For the next section it is useful to examine the largeX1

behavior of Eq.~31!. For X1 large enough that it is outsid
the support of the matter

y5k2X1X22X1H1
mR

k
~32!

with

H5E
2`

`

dX̄1
„f ,1~X̄1!…2 ~33!

andmR given by the right-hand side of Eq.~27!.

B. Quantum theory

The passage to quantum theory is straightforward. Fr
@2#, the operatorsX̂6 are represented by multiplication,P̂6

52 i\d/dX6 andâ1(k),â1
† (k) by representation on a Foc

space. Note thatAkâ(2k), (k.0) in @2# corresponds here to
â1(k) and that the commutator

@ â1~k!,â1
† ~ l !#5\d~k,l !. ~34!

The imposition of the quantum version of the classi
Heisenberg picture constraints leads us to the quan
Heisenberg picture, wherein states lie in the stand
embedding-independent Fock space. Note that the F
space here is spanned by the restriction of the Fock bas
@2# to negative momenta because we have frozen the r
moving modes.

In the next section, we show the existence of large qu
tum gravity effects at largeX1. This involves a calculation
of fluctuations of operators,Q̂, of the form

Q̂5E
2`

`

dX1Q~X1!:„ f̂ ,1~X1!…2: , ~35!

where Q(X1) is a c-number function, :: refers to norma
ordering, and

f̂ ~X1!5
1

2Ap
E

0

` dk

Ak
@ â1~k!e2 ikX1

1â1
† ~k!eikX1

#.

~36!

Consider the coherent state

ucc&5e2~1/2\!*0
`uc1~k!u2dkexpS E

0

`dk

\
c1~k!â1

† ~k! D u0&

~37!

whereu0& is the Fock vacuum andc1(k) are the (c number!
modes of the classical fieldf c(X

1),
m

l
m
rd
ck
of
ht

n-

f c~X1!5
1

2Ap
E

0

` dk

Ak
@c1~k!e2 ikX1

1c1* ~k!eikX1
#.

~38!

The mean valueQ̄ of the operatorQ̂ in this coherent state is
given by

^ccuQ̂ucc&5E
2`

`

dX1Q~X1!„f c,1~X1!…2 ~39!

as expected.
The ~square! of the fluctuation inQ̂ is given by

~DQ!25^ccuQ̂2ucc&2Q̄25
\2

8pE0

`

dkk3uQ~k!u2

1
\

4E0

`

dkkuQf~k!u2, ~40!

whereQ(k) is the Fourier transform ofQ(X1) andQf(k) is
the Fourier transform of the function Qf(X

1):
5Q(X1) f c,1(X1). The Fourier transform of the function
g(X1) is

g~k!5
1

Ap
E

2`

`

dX1eikX1
g~X1!. ~41!

Note that by virtue of its being independent off c(X
1) the\2

term in Eq.~40! is the vacuum fluctuation ofQ̂.

C. Large quantum gravity effects

We examine the fluctuations of the dilaton field,y, which
plays the role of a conformal factor for the physical met
and hence encodes all the nontrivial metrical behavior. T
expression fory simplifies at largeX1 and we shall calculate
the fluctuations ofŷ in this limit. y(X) is turned into the
operatorŷ(X) by substituting the appropriate embedding d
pendent Heisenberg field operators~36! in Eq. ~31!. Simi-
larly H and mR are turned into operatorsĤ and m̂R . Note
that y(x) is not a Dirac observable. However, it can b
turned into one using the evolving constants of motion int
pretation~see@9# and references therein!.

Straightforward calculations result in the following e
pression for the ratio of the fluctuation inŷ to its mean value,
at largeX1:
S Dy

ȳ
D 2

5
~DH !21~DmR /kX1!22~1/X1k!~@Ĥ,m̂̄R#122H̄m̄R!

~k2X2!2~12H̄/k2X21m̄R /k3X1X2!2
. ~42!
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Here

@Ĥ,m̂̄R#15^ccuĤm̂R1m̂RĤucc&. ~43!

To make contact with the classical solution of Sec. II,
choose the coherent state to be such thatf c(X

1) is of com-
pact support. Further,

f c~X1!50 for X1<0. ~44!

Ĥ corresponds toQ(X1)5:H(X1)51 in Eq. ~35! and
m̂R /k to Q(X1)5:mR(X1)/k5X1. From Eq.~39! and the
fact that f c(X

1) is of compact support, it is easy to see th
H̄,m̄R are finite.

Using Eq.~40! it can be seen~in obvious notation! that

~DH !25
\

4E0

`

dkkuH f~k!u25\E
0

`

dkk2uc1~k!u2. ~45!

Since f c is of compact support, its Fourier modes decre
rapidly at infinity and have a sufficiently good infrared b
havior that the integral above is both ultraviolet as well
infrared finite. This shows that the fluctuation inĤ is finite.

The fluctuation inm̂R is

~DmR!25
\2

8pE0

`

dkk3umR~k!u21
\

4E0

`

dkkumR f~k!u2.

~46!

Again, the fact thatf c is of compact support renders th
second term on the right hand side of Eq.~46! UV and IR
finite. We now argue that the first term corresponding to
vacuum fluctuation,

~D0mR!2:5
\2

8pE0

`

dkk3umR~k!u2 ~47!

is finite. SincemR(X1)5kX1, its Fourier transformmR(k)
is ill defined. We calculate, instead, the vacuum fluctuat
of the regulated operatorm̂R

(D) defined by setting

mR
~D !~X1!5kX1e2~X1!2/D2

. ~48!

We shall take theD→` limit at the end of the calculation to
obtain the vacuum fluctuation ofm̂R5m̂R

(`) .
Now mR

(D)(X1) is a function of sufficiently rapid decreas
at infinity that (D0mR

(D))2 exists. It is evaluated to be

~D0mR
~D !!25

\2k2

6
, ~49!

which is finite and independent ofD. Thus theD→` limit
can be taken and we have

~D0mR!25
\2k2

6
. ~50!

Finally, a straightforward calculation shows Eq.~43! also to
be finite. We evaluate Eq.~42! for two cases:

Case I. Near right spatial infinity:
HereX6→`. So
t

e

s

e

n

S Dy

ȳ
D 2

→0 ~51!

as O„1/(X2)2
…. Thus, unlike the cylindrical wave case@3#,

there are no large quantum fluctuations of the metric n
spatial infinity. This is because the leading order behavio
the metric is dictated byk2X1X2, which is a state-
independentc-number function, unlike in the cylindrica
wave case.

Case II.X25H̄/k22m̄R /k3X11d andX1 large:
Hered is a real parameter. It can be checked thatd mea-

sures the distance inX2 from the singularity which occurs a
d50, see Eq.~17!. It is easy to see that

S Dy

ȳ
D 2

5
~DH !2

k4d2 1OS 1

~X1!2D . ~52!

This expression makesno assumptions on the size ofd. Us-
ing Eq.~45! in Eq. ~52! and reinstating explicitly the factors5

of G ~and keepingc51), we find that up to leading order in
X1

S Dy

ȳ
D 2

5
\G2

k4d2E
0

`

dll 2uc1~ l !u2 ~53!

5
\G

k2d2E
0

`

d
l

kS l

k D 2

„Gkuc1~ l !u2….

~54!

Note that in c51 units, @G#5M 21L21, @k#5L21,
@c1( l )#5M1/2L, and@\#5ML. Thus\G is the dimension-
less Planck number, andkd, lk, and Gkuc1( l )u2 are all
dimensionless. From Eq.~54! there are large fluctuations inŷ
when

\G@
k2d2

E
0

`

d~ l /k!~ l /k!2
„Gkuc1~ l !u2

…

. ~55!

This does not required to be small. Large fluctuations ca
occur even ifkd@1, provided the integral in Eq.~55! is
large enough. Two cases when this is possible is when th
are a large enough number of low-frequency scalar field
citations or if there is a high-frequency ‘‘blip’’ in the scala
field. This is very similar to what happens in@3#. Note that in
a classical solution with massmR , the classical scalar cur
vature at a distanced from the singularity as a function o
X1 is at a large enoughX1,

R5
mR

kX1d
~56!

and vanishes atX15`.
The horizon is located~approximately! at XH

2 :5H̄/k2

~20!. Therefore, ifd,0, the region under consideration lie
within XH

2 ; if d.0 andX1 is large enough, the region lie

5Units are discussed in@2#.
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outsideXH
2 . Thus, for states satisfying Eq.~55!, large quan-

tum fluctuations in the metric occur both within and outsi
the mean location of the horizon. But from Eq.~20! this
location itself fluctuates byDH/k2. Thus, if the Planck num-
ber is much less than 1, the above calculation does not s
the existence of large quantum fluctuationsoutsidethe fluc-
tuating horizon.6

IV. CANONICAL DESCRIPTION ON THE X6>0 SECTOR
OF THE MINKOWSKIAN PLANE

Section III is applicable to the analytic extension of t
one-sided collapse situation to the full Minkowskian plan
In this section we attempt to dealonly with the physical
spacetime and not with its analytic extension. We modify
analysis of@2#, pertinent to the entire Minkowskian plan
2`,X6,` in order to treat the case whenX6.0. This
involves a modification of the asymptotics at left spatial
finity. Now, x is restricted to be positive andx50 labels left
spatial infinity. As mentioned in Sec. III, the simplest rou
to quantum theory is through gauge fixing@6# the description
in terms of the original geometric variables rather than
transforming to embedding variables.

A. Classical theory

As in the previous section we assume familiarity with@2#.
The canonical form of the action in the original geomet
variables is

S@y,py ,s,ps , f ,p f ,N̄,N1#5E dtE
2`

`

dx ~pyẏ1psṡ

1p f ḟ 2N̄H̄2N1H1! ~57!

with

H̄52pysps1y92s21s8y822k2s21
1

2
~p f

21 f 82!

~58!

and

H15pyy82sps81p f f 8. ~59!

Herepy is the momentum conjugate to the dilaton,s is the
spatial metric~induced from the auxiliary spacetime metric!,
andps is its conjugate momentum.

The asymptotic conditions at right spatial infinity~which
corresponds tox5`) are unchanged from@2#. The left spa-
tial infinity is labeled byx50. We require, asx→0,

y5k2x21O~x3! s511O~x2! ~60!

py5O~x! ps5O~x2! ~61!

N̄5aLx1O~x3! N15O~x3!, ~62!

whereaL is a real parameter.

6I thank Sukanta Bose for comments regarding this point.
w

.

e

-

y

Equation~57! is augmented with surface terms to rende
functionally differentiable. The result is

S@y,py ,s,ps , f ,p f ,N̄,N1#5E dtE
0

`

dx ~pyẏ1psṡ1p f ḟ

2N̄H̄2N1H1!

1E dt S 2aR

mR

k D . ~63!

HereaR is related to the asymptotic behavior of the lapse
right spatial infinity@2#. It can be checked that withf ,p f of
compact support, all the asymptotic conditions are preser
under evolution. Note that Eq.~60! automatically ensures
that mL50.

To make contact with the one-sided collapse solution
right moving modes must be set to zero. We do this as
lows. Note that up to total time derivatives

2E
0

`

p f ḟ 5E
0

`

dxS E
0

x

p2~ x̄!dx̄Dp2
.
~x!

2E
0

`

dxS E
0

x

p1~ x̄!dx̄Dp1
.
~x!, ~64!

where

p6 :5p f6 f 8. ~65!

Thus, we can replacef ,p f by p6 , with the new Poisson
brackets being

$p6~x!,p6~y!%562
dd~x,y!

dx
, $p1~x!,p2~y!%50.

~66!

Sincep1 and p2 do not couple dynamically, we can con
sistently freezep250. This corresponds to settingf 250.

Now, with a view towards quantization we introduce th
gauge fixing conditions@6#

py50, s51. ~67!

Using Eq.~67! in the constraints, the general solution fory
andps , in terms ofp1 , consistent with the asymptotic con
ditions at left and right spatial infinity is

y5k2x22E
0

x

d x̄E
0

x̄
d x̄̄

p1
2 ~ x̄̄!

4
~68!

ps5E
0

x

d x̄
p1

2 ~ x̄!

4
. ~69!

Requiring the preservation of Eq.~67! under evolution along
with consistency with the asymptotic conditions fixes

N̄5ax, N150, ~70!

wherea is a real parameter. From@2# and Eq.~68!,
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mR

k
5E

0

`

dxx
p1

2 ~x!

4
. ~71!

Substituting this in Eq.~63! and using Eq.~64!, we get

S@p1~x!#52E dtF E
0

`

dxS E
0

xp1~ x̄!

2
dx̄D p1

.
~x!

2E
0

`

dxx
p1

2 ~x!

4 G . ~72!

In the above equation put

kr :5 ln~kx!, p̄15ekrp1 ~73!

to get

S@p̄1~x!#52E dtF E
2`

`

drS E
2`

r p̄1~ r̄ !

2
d r̄ D p̄1

.
~r !

2E
2`

`

dr
p̄1

2 ~r !

4 G . ~74!

Note that the last term (5mR /k) simplifies. The equations
of motion are

p̄1
.
~r ,t !5$p̄1~r ,t !,mR /k%5

]p̄1~r ,t !

]r
. ~75!

The appropriate mode expansion which solves this is

p̄1~r ,t !5
1

Ap
E

0

`

dkAk@2 i ā1~k!e2 ikr 1
1 i ā1* ~k!eikr 1

#,

~76!

where r 1:5r 1t. From Eqs.~66! and ~76!, the only non-
trivial Poisson brackets between the mode coefficients a

$ā1~k!,ā1* ~ l !%5~2 i !d~k,l !. ~77!

From @2# one can understand the slicing of the spaceti
corresponding to the gauge fixing conditions~67! we have
used. In particular, on a solution, one can see that (r ,t) is
related toX6 by

kX65ek~r 6t ! ~78!

and that the physical metric in these coordinates is m
festly asymptotically flat at spatial infinities.

The largeX1 behavior ofy is again given by Eq.~32!.
Now y, H, andmR /k, which are evaluated in new coord
nates, take the form

y5k2e2kr2ekr 1
H1

mR

k
, ~79!

H5E
0

`

dX1
„p1~X1!…2

4
5E

2`

`

dr1e2kr 1 „p̄1~r 1!…2

4
,

~80!
e

i-

and

mR

k
5E

0

`

dX1X1
„p1~X1!…25E

2`

`

dr1
p̄1

2 ~r 1!

4
. ~81!

In theX6 coordinatesH Eq. ~33! took the form of a conven-
tional Hamiltonian for the free-field theory on the entireX6

plane, butmR /k was more complicated. In the (r ,t) coordi-
nates,mR /k takes the form of a conventional Hamiltonia
for the free-field theory on the entire (r ,t) plane~this is just
the X6.0 part of the entireX6 plane!, but H is compli-
cated.

B. Quantum theory

The mode operatorsâ̄1(k),â̄1
† (k) are represented in a

standard way on the Fock space with vacuumu0̄&. They have
the standard commutation relations

@ â̄1~k!,â̄1
† ~ l !#5\d~k,l !. ~82!

Following the pattern of Secs. III B and III C we attem
to calculate the fluctuations ofŷ in the largeX1 region, in
the coherent state:

ucc&

5expS 2E
0

` dk

2\
u c̄1~k!u2dkD expS E

0

`dk

\
c̄1~k! â̄1

† ~k! D u0̄&

~83!

corresponding to the classical field

p̄1c~r 1!5
1

Ap
E

0

`

dkAk@2 i c̄1~k!e2 ikr 1
1 i c̄1* ~k!eikr 1

#

~84!

which is of compact support inr 1.
Formally, Eq.~42! again expresses the fluctuations inŷ.

However, now the crucial operator isĤ. It is obtained from
the corresponding classical expression~80! in an obvious
way. Similar calculations to those in Sec. III B give

~DH !25
\2

8pE0

`

dkk3uH~k!u21
\

4E0

`

dkkuH p̄~k!u2,

~85!

whereH(k) is the Fourier transform of

H~r 1!:5e2kr 1
~86!

andH p̄(k) is the Fourier transform of the function

H p̄~r 1!:5H~r 1!
p̄1c~r 1!

4
. ~87!

The Fourier transform of the functiong(r 1) is

g~k!5
1

Ap
E

2`

`

dr1eikr 1
g~r 1!. ~88!
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Since e2kr 1
is not a function of rapid decrease in ther 1

variable, the first integral in Eq.~85! is ill defined. It can be
regulated by introducing the regulatore2(r 1)2/D2

. The rel-
evant regulated integral diverges in the limitD→` as
e2D2

/D2. Thus the vacuum fluctuations ofĤ diverge. There-
fore, in this representation we cannot proceed further w
the analysis andŷ, as it stands, cannot be given meaning
an operator on the Fock space.

V. DISCUSSION

One way of describing the spacetime geometries wh
arise in the CGHS model is as follows. Consider t
Minkowskian plane with a flat auxiliary metric~3!, on which
a scalar field propagates in accordance with the flat sp
wave equation. The spacetime metric is conformal to
auxiliary flat metric. The conformal factory is determined by
the matter distribution through Eq.~5! and is required to be
positive. The field equations continue to make sense foy
<0. If one removes the restriction of positivity ofy, then the
following picture emerges. The Minkowskian plane is d
vided into spacetimes, each of which hasy.0 or y,0. The
former have the signature21 and the latter12. As far as
we know, typically,y50 labels singularities or boundaries
infinity for these spacetimes and some of these singular
may be past singularities.

This is the classical picture which corresponds to
quantum theory in@2#. Among all these classical solution
there are solutions which describe black holes formed fr
matter collapse. It may be that the entire solution space
the associated quantum theory@2,6,10# is required in order to
understand issues that arise from black hole formation
particular it may be that an understanding of Hawking rad
tion from a nonperturbative quantum theoretic viewpoint
quires a treatment as in@6#.

However, in this paper we have adopted the viewpo
that only solutions which describe the physically interest
situation of black hole formation through matter collapse
to be taken as the basis for passage to quantum theory
have shown that these solutions have only left or right m
ing matter. We concentrated on the solution with left movi
matter which described a collapsing black hole spacetim
the X6.0 part of the plane. This solution admitted an an
lytic extension to the full Minkowskian plane and we show
the existence of large quantum gravity effects away from
singularity in a quantum theory based on this set of anal
cally extended solutions. Large quantum fluctuations of
metric occur even when the classical curvature is sm
However, since the position of the horizon also fluctuat
our calculation does not prove the existence of large fluc
tions outside the~fluctuating! horizon. Next, we dealt with
the classical and quantum theory based on only theX6.0
region. Note that even within this region there is an analy
extension of the solution above the singularity. In the qu
tum theory a quantity of interest,H ~80!, could not be rep-
resented as an operator on the Fock space of the theory.
is unfortunate because the classical theory captures ph
cally relevant collapse situations~modulo the extension
through the singularity!. Note thatmR /k takes the form of
usual Hamiltonian for the free-field theory and is also
h
s

h

ce
e

s

e

m
nd

In
-
-

t
g
e

e
-

in
-

e
i-
e
ll.
,

a-

c
-

his
si-

quantity of interest. We do not know if such a representat
of quantum scalar field theory exists so that bothH andmR

can be promoted to operators.
For the quantum theory based on the entireX6 plane

there were no such difficulties. In a sense, the quantum th
ries on the entire plane and theX6.0 region are unitarily
inequivalent. The former uses a positive-negative freque
split based on the time choiceT5(X11X2)/2 and the latter
on a time choicet5(1/k)ln T. This is very reminiscent of
what happens in the Unruh effect in 2D@11#, with the ex-
ception that there, both sets of modes are present. The ro
acceleration in the Unruh effect is taken byk.

The following comments regarding Hawking radiation a
speculative. It seems significant that the Hawking tempe
ture to leading order in the mass from semiclassical calc
tions @5# is independent of mass and is precisely the Un
temperature for observers accelerating withk. This line of
thought has been pursued in@12# in the semiclassical con
text.

It seems that both right and left moving matters are
quired to calculate the Hawking effect. Therefore, let
switch the right moving modes on and go back to the qu
tization of @2#. The quantum theory is a standard unita
quantum field theory on a Fock space. But, as emphas
before, it corresponds to an analytic extension of the us
CGHS model. We beleive that it is the analytic extensi
which plays a key role in obtaining a unitary theory. A po
sibility is that the correlations in the quantum field whic
appear to have been lost by passage into the singularity
appear in the analytic extension beyond the singularity in
new ‘‘universe’’ which lies in the other side of the singula
ity.

Note that instead of freezing the degrees of freedom c
responding to the right moving modes, as is done in t
work, one can continue to use the results of@2#, but evaluate
quantities pertaining to one-sided collapse by restricting
right moving part of the quantum states to the~right moving!
Fock vacuum. Then vacuum fluctuations of the right movi
modes would contribute to various quantities but we belie
that the large quantum gravity effects away from the sin
larity ~see Sec. II C! will persist. Maybe one can also exam
ine Hawking effect issues since the right moving modes
not switched off.

Finally, from the point of view of 4D quantum genera
relativity, we feel that the CGHS model could be improv
to a more realistic model of black holes if somehow an
ternal reflecting boundary in the spacetime existed@13,7#.
The lack of such a boundary and the fact that the matte
conformally coupled so that it does not ‘‘see’’ the singula
ties, are, we believe, the key unphysical features presen
the model but absent in the~effectively 2D! spherical col-
lapse of a scalar field in 4D general relativity. The latter is
course a physically realistic situation, but unfortunately te
nically very complicated. It would be interesting to try t
apply the techniques of@2# to the model with a boundary
described in@13,7# and to try to compute the metric quantu
fluctuations and to compare the results with those in@7#.
Since the boundary in@7# is itself dynamically determined, i
is not clear to us to what extent the model is solvable
would be good to have a technically solvable model wh
was closer to 4D collapse situations.
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