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Quantum gravity effects in the CGHS model of collapse to a black hole
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We show that only a sector of the classical solution space of the CGHS model describes the formation of
black holes through the collapse of matter. This sector has either right or left moving matter. We describe the
sector which has left moving matter in canonical language. In the nonperturbative quantum theory all operators
are expressed in terms of the matter field operator which is represented on a Fock space. We discuss the
existence of large quantum fluctuations of the metric operator when the matter field is approximately classical.
We end with some comments which may pertain to Hawking radiation in the context of the model.
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I. INTRODUCTION In order to retain the solutions corresponding to the collaps-
ing black hole spacetimes as well as to have a better control
We regard the Callan-Giddings-Harvey-Stromingeron the space of solutions, we restrict our attention to the
(CGHS model[1] as a 2D classical field theory in its own one-sided collapse sector in the remainder of the paper.
right rather than as string inspired. We view the dilaton field Solutions to the CGHS model are most simply described
as just another classical field rather than as string couplingn Kruskal-like null cone coordinate¥™ [2]. The one-sided
The theory shares two important features with 4D generatollapse solutions which we analyze describe a single black
relativity—it is a nonlinear diffeomorphism invariant field hole spacetime and correspond to the restriction>0.
theory in which the solutions describe spacetime metrics andihese solutions can be analytically extended through the en-
someof these solutions correspond to black hole formationtire X* plane (indeed, the quantum theory §2] seems to
through matter collapse. Since the model is classically exrequire consideration of such extensipn&/e show, through
actly solvable and, modulo certain very important qualifica-Penrose diagrams, how the physical spacetime is embedded
tions, has beer{non-perturbatively canonically quantized in, and analytically extended to, the f}F plane. This com-
via the Dirac procedur¢2], we use it as a toy model for pletes our analysis of the classical solution space.
these features of 4D quantum general relativity. In Sec. Il we turn to the Hamiltonian description of the
In this work we prove some results regarding the properimodel. Since we are interested in the one-sided collapse situ-
ties of classical solutions to the model using a general relaation, we restrict the description i{i2] suitably, by setting
tivist's point of view. Next, we discuss some quantum prop-the left mass of the spacetime and the right moving matter
erties of the spacetime geometry along the line§3df We  modes to zero. We adapt the quantizatiorf2jfto the one-
end with a few speculative remarks concerning Hawking rasided collapse case. To make contact with the semiclassical
diation in the model. The discussion and analysis of thdreatment of Hawking radiation in the literatufsee, for ex-
guantum mechanics of the model are based on recent wodmple,[5]), left and right moving modes are needed. Since
[2]. one set of modes is frozen in our analysis, we do not discuss
The outline of the paper is as follows. In order to interpretHawking radiation related issues except for some comments
the quantum theory of2] it is essential to understand the in Sec. V. Instead, we focus on other issues in quantum
classical solution spadd]. In Sec. Il, we show that “most” gravity. We calculate quantum fluctuations of the metric op-
classical solutionslo notcorrespond to matter collapsing to erator when the matter fields are approximately classical
form a black hole. More specifically, we show that if both (metric operator fluctuations were discussed earlief6h
left and right moving matter is present, the spacetime doeand, in the context of spacetimes with an internal boundary,
not represent black hole formation through matter colldpse.in [7]). We show that large quantum gravity effects as in the
However, if only “one-sided” matter is present, it is pos- case of cylindrical wavef3] are manifested even far away
sible to obtain solutions describing the collapse to a blackrom the singularity(although not at spatial infinijy
hole. The discussion of this section pertains to the quantum
In fact, without the restriction to one-sided collapse, it isversion of the analytic extension to the enté plane, of
difficult to characterize the broad properties of the spacetim¢éhe one-sided collapse solutions. In contrast, in Sec. IV, we
in terms of the properties of the matter field distributisee, deal with (the canonical classical and quantum theory of
however,[4]). We have very little control over the solution only the physical spacetime regiofr->0. To do this we
space and do not understand exactly what facets of 4D gemppropriately modify the analysis of asymptoticd . The
eral relativistic physics, if any, are modeled by the solutionsmost direct route to the quantum theory is to first gauge fix
(in the manner of Mikovid6]) and then quantize the result-
ing description. We obtain a Fock space representation based
*Email address: madhavan@rri.ernet.in on the time choice In(*/X7) in contrast to the Fock space of
A similar result is asserted in section 8[| Sec. Il which was based on the time choicét(+X™)/2.
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We repeat the analysis of Sec. Il regarding large quantunand in the conformal gaudd]

gravity effects. In the process we find that the operator cor-

responding to the spacetime metric at large value$of Y(X)= kXX +y (XT)+y_(X7). %)
cannot be represented on the Fock space of the quantum

theory. The implication is that the most natural representatiere

tion (which we have choserior the quantum theory may not . .

be the correct one. We leave this as an open problem. Sec- Yo (X*)=— jx’dyifx’dfi(f’i(ft))z_ 6)
tion V contains concluding remarks including some com-

ments on Hawking radiation in the context of the model. We__ . . ) )
do not attempt to review the vast amount of pertinent litera£inally, the line element corresponding to the physical metric
ture but instead refer the reader to review articles su¢blas  Vag IS

Notation. Besides standard conventions, we will use the o
following notation (from [2]) throughout this paper: In the d?:dx dX
double null coordinate¥“=(X*,X~), many quantities de- y '
pend only onX™ or X~, but not on both variables. We will
emphasize this by using onX* or X~ as an argument of Its scalar curvature is
that function or functional. For example, whiféX) means
that f is a function of bothX™ and X~, f ,(X") and _
f _(X~) mean that the derivativefs, andf _ depend only R=4
on X* andX~, respectively. Moreoverf . (X™) will serve
as a shorthand notation to denote the function dependence
bothf , andf _ simultaneouslyZ, ,Z5 ,Z," , andZy denote
past left, past right, future left, and future right null infinity,
respectively.

7

®

Y- Y4Y.-
y y2 )

EBr smooth matter fields, it is easy to see that curvature
singularities can occur only whep=0 or y=« (the con-
verse may not be triie

Il ANALYSIS OF THE CLASSICAL SOLUTION SPACE B. Unphysical nature of solutions with “both-sided matter

We now analyze the physical spacetime structure corre-
sponding to the solutions described above. We are interested
We briefly recall the action and the solution to the fieldin those solutions which describe matter collapse to a black
equations for the CGHS model in the notation[a@] (for  hole. So for spacetimes of physical interest we require the
details, se¢2]). In units in which the velocity of lightg, and  following.
the gravitational constan, are unity, the action is (i) A notion of (left past and future, right past and future
L null infinities exists such that any light ray originating within
_ 2 2 2 the physical spacetime, traversing a region of no curvature
LY, vap 1= Ef X HPAYRYI+AK =y of ). singularities and reaching null infinity should exhaust infinite
(1)  affine parameter to do so. Further, null infinity is the locus of
) _ ) ) ) ) all such points. Each of left past, right past, left future, and
Herey is the dilaton field,y, is the spacetime metrisig-  right future null infinity is a null surface diffeomorphic to the
nature (-+)], andf is a conformally coupled scalar field. real line and forms part of the boundary of the spacetime.
R[ y] denotes the scalar curvaturepfz, andx is a positive (i) Only future singularities should exist. Note that since
definite constant having the dimensions of inverse length. y is a conformal factot7), it is required to be positive. Any
To interpret the theory, we will treay, s as an auxiliary  regionwithin the physical spacetime wheye<0 is defined
metric and to be singular.
_ . For simplicity we restrict the spacetime topology to be
Yap:=Y "Yap 2 R2. We also assume that the matter fields be of compact
support at past null infinity. Since the null infinities are null
boundaries of the spacetime, they are labeled by lines of
€onstantx* (the constant could be finite or infinjteThus,
the physical spacetime is a subset of the entire Minkowskian

. : ) i’ ’ plane framed by boundaries made up of lines of constant
The solution to the field equations arising frof) is as and a future singularity. With this picture in mind let us

follows (for details, se¢2]). vy, is flat. The remaining fields further analyze the consequences(iafand (ii).

are most elegantly described in terms of the double null co- Further consideration of(i) results in the following
ordinatesX*=Z=+T, where ¢,T) are the Minkowskian co- lemma.

A. The action and the solution to the field equations

as the physical “black hole” metric. Sincgis a conformal
factor, it is restricted to be positive. However, note that sinc
the field equations and E@l) are well defined fory<O0,
solutions with positivey admit analytic extensions tp<0.

ordinat'es exlgsociialted with the 'ﬂat au>'<ilri]arﬁ/ metric;. Then the Lemmalf a section of null infinity is labeled by * =0 or
spacetime line element associated with the mejyig is X~ =0 then(i) implies thaty=0.
_ - Proof. Let a section of(right future or left pastnull in-
=dX"dX
ds’=dX"dX", ® finity be labeled byX*=0. ApproachX® =0, through a
the matter field is the sum of left and right movers: nonsingular region along ak™ = constant=a" line from

X*=a" (a’ is finite). Let the normal to this line bé,
fFX)=Ff (XT)+f_(X), (4) =a(dX"),. For this line to be a geodesi¢a/dX*=0.
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Choosea=1. Let the affine parameter along this geodesic

be \. (i) implies

dx* B ©
y - .

INX"=a",X"=0)—\(a",a")|= ji ”

From (i), if X™ =0 is to label null infinity,y—0 asX*—0

3465

C. One-sided collapse to a black hole

Having established that classical solutions of physical in-
terest contain only “one-sided” matter, we turn to the analy-
sis of Eq.(10) with f ~=0 (a similar analysis can be done for
f*=0).

We first identify the region of th&* plane corresponding
to the physical spacetime. Let us fix the translation freedom

in such a way as to make the integral diverge. Hencén X by settinga. =0 in (10).? Using arguments similar to

y(a—,0)=0.

We now show thati) or (ii) is violated if both left and
right moving matter is present. For this, we examine E§ks.
and(6) and choose the lower limits of integration in E§)
as follows. Let the least value & beX, on left future null
infinity and that ofX™ be X on right past null infinity. Then
we specifyy as

y(X)=k?X X +y, (XN +y_ (X )+a, X +a_X +b,
(10

wherea.. ,b are constants and
+ Xi v+ ;i S+ veS
v == o [k Lo a
Xo Xo

The auxiliary flat metric determine$™ only up to Poincare
transformations. In this section, X5 (X,) happens to be
finite, we use the translational freedom X7 (X~) to set
Xg=0 (Xg =0).

Our strategy will be to deman¢i) or (ii) and use the
lemma for exhaustive choices of ranges Xf. Thus we
assumehat the physical spacetime satisfi€s (i) and that

the boundaries of these ranges label the infinities of the
spacetime. Singularities will occur inside the ranges when

y<O0.

(A) —o<X* <. Past timelike infinity is labeled by
(X7, X*)=(,—»). As we approach this point, the first

term on the right-hand side of E¢LO) becomes arbitrarily
negative and since it dominates the behavioy,at drivesy
to negative values. The region<0 must “intersect” past

left and past right infinity. Sincg cannot be negative, there

must be a past singularity in the spacetime. Tkiusrules
out this range foix™.

(B) —oo<X <o, 0<X*t <o, Left past null infinity is
labeled byX™=0. From the lemmay(X~,0)=0. From Eq.
(10) this gives, on left past null infinity,

those in the lemma(A) and (B), it can be shown that the
only possible labelings of past null infinity which do not
contradict(i), (i) andf . #0 are past left null infinity at
X*=0 and past right null infinity ak ™~ =oe.

Thus the solution of interest for the rest of the paper is

y(X)= kXX +y, (X1, (13

with
y+(x+>=—f”d%f?d?(f,aﬁnz, (14
0 0

andX*>0. Let the support of ¥ be a<X™ <. Note that
within the physical spacetim&™ =0, otherwisey(x) can
become negative. Note that

y(X)=k?XtX" for X'<a, X =0, (15
and the spacetime is flat. For this region the null IxXe
=0 is part of Z;" . Similarly, Zz is found to beX™ =co.
Consideration oiX ™ > g fixes Z5; to be atX* =oo.

Next we examine the locus of the singularity:

+ Y+ — —
Y00 =0= w2 X = [ et [ X r L5y
16

1

=X =T

X+df+f+d?(f,+(?))2.
0 0
17

The singularity intersect,” at (X" =0, X*=a). It can be
checked that the normal,= g,y to the curve corresponding
to the singularity has a norm in the auxilary metric given by

nan‘,ﬂ:KZUX d%fx dXH(F . (XH))?
0 0

y (X7)+a_X +b=0. (12 X+ _
-X* f dx+(f,+(x+))2) (18
Differentiating this equation with respelt” yieldsf _=0. °
Thus (i) implies that there cannot be right moving matter for .
this choice of range. - KZJX AXX(F L (XH))2. (19)
All other choices of range can be handled by using the 0 ’

arguments ir(A),(B). The conclusion is that either there is a
past singularity in the spacetime so that the correspondinghis is clearly negative foX™>«a. Thus the singularity is
range is ruled out of _ or f . vanish. Thus we have proved spacelike. From Eq(17) the singularity intersects future
the following statement: right null infinity at

In the conformal gauge, if (i) and (ii) hold, then either left
moving or right moving matter must vanisNote that we

havenot proved the converse of this statement. 2This is a different choice from that used in Sec. Il B.
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grees of freedom associated with the right moving matter
fields in a consistent manner, in the description [&f.
Hence, we shall use the results and the notation, and adapt
the procedures, d2]. Rather than repeat the content of that
paper here, we refer the readerq 2. Henceforth we shall
assume familiarity with that work. We shall also use the
results from 8] regarding the canonical transformation to the
Heisenberg picture. Although that work dealt with a space-
time topologyS*X R, the transformation to the Heisenberg
picture as well as other basic ideas such as the relation of
canonical data with the spacetime solution of the Klein Gor-
don equation go through in tHR? case which is of relevance
here.

It would be straightforward, in what follows, to use the
gauge fixing procedure ¢6]. Unfortunately, the gauge fix-
ing conditions(67) in conjunction withthe asymptotic con-
ditions of[2] result in a foliation inappropriate for the entire
Minkowskian plane. More precisely, the foliation consists of
boosted planes all passing through=X~ =0 and does not

. . + — 4 . .
FIG. 1. The black hole spacetime is embedded in its analyticcover the timelike wedges™X™<0. Such a foliatiordoes

continuation to the entire Minkowskian plane. The curly line de- cover the regiorX™>0 and this is why we use it in Sec. IV.

notes the singularity in the black hole spacetime and the shaded !N What follows,x is a coordinate on the constargpatial
region the(left moving matter. slice and the +1 Hamiltonian decomposition is in the con-

text of a foliation of spacetime by such slices. We use nota-
tion such that for a given field(x,t), dg/dx is denoted by

R .
X :FL dX*(F +(XT))2 (200 g’ andag/at is denoted byg.

Equation(20) gives the position of the horizon for the black
hole formed by the collapse of the left moving matter.

That there is a single spacelike curve solving 8¢) can In [2] the CGHS model is mapped to a parametrized free-
be seen from the following argumehConsidery for fixed  field theory on a flat 2D spacetime. The transformation from
X~ as a function oK *. LetX*=XJ >« solve Eq(17). It EQq. (1) (after parametrization at infinitigss made to a de-
can be checked that fox+>xs+ing, y .<0. Thus, for a Scription in terms of embeddlng vanaples and ¢tbanonical
givenX~, y=0 occurs at a single value of". form of the) action in these variables is

This completes the discussion of the physical spacetime. - .
f dt f dx (I, X"

A. Classical theory

As mentioned before, this solution admits an analytic exten- §[X* II. ,f,m,N,N%;p,mg) =
sion to the wholeX™ plane. We now analyze this extension.
The full Minkowskian plane is divided into the following.

(1) X*>0. The physical spacetime lies within this range. +IL_ X"+ f—NH

It has an analytic extension “above” the singularity in which )
y<0 and the metric acquires the signature- instead of —N1H1)+f dt pmg.
—+.

(2) X~ >0, X"<0. Equation(13) gives y=&«?X"X". (21

This describes &completg flat spacetime witty<<0 (there
is a “signature flip” for the analytically continued metjic

(3) XE<0: y=k2X*X~ describes a complete flat space- HereX~ are the embedding variabléhey correspond to the

" thv=0 light cone coordinates we have been using to describe the
ime with y ~©. solution in earlier sectionsIl. are their conjuagte mo-

_ N . .

(4 X <O’. X">0. Both terms on the nght-hanq S'de. of menta,f is the scalar field aner; its conjugate momentum,
Eqg. (13) survive and both are negative. So there is a sngnan NG h led | d the shift. &hdndH
ture flip in this region withy<0. andN*™are the rescaled lapse and the shift, ahendH,

The structure in the full Minkowskian plane is shown are thg resca_led super-Hamiltonian and_ supermomentum
schematically in Fig. 1. constraints which take th_e form of constraints for a param-
etrized massless scalar field on a 2-dimensional Minkowski

spacetime. It is convenient to deal with the Virasoro combi-

Ill. CANONICAL DESCRIPTION ON THE ENTIRE .
nations

MINKOWSKIAN PLANE

We describe the one-sided collapse situation in classical—
canonical language. This is achieved by switching off de- “This does not necessarily rule out the existence diffarentset
of asymptotic conditions, which together with the same gauge fix-
ing conditions (67), gives a foliation which covers the entire
3l thank J. Samuel for suggesting this argument. Minkowskian plane.
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r._l 4+ . +7 1 + )2 m._ * + ” -
H '_5( *H)==xI1.X +Z(7-rf_f )*~0. (22 ;.——Jiwdx X (x)l'[+(x)+ﬁxdx X (X)II_(x)

(27)
mg is the right mass of the spacetime apdits conjugate
momentum, has the interpretation of the difference betweefommutes with the constraints, it is a constant of a motion
the parametrization time and the proper time at right spatiaknd we can consistently setz=m andp=0.
infinity with the left parametrization time chosen to agree Next, in order to have a description of the one-sided col-

with the left proper time. It is useful to recall frof@] that  lapse situation, we must sét =0. This is done in the ca-
nonical treatment as follows. Through a Hamilton-Jacobi

X _ (X = — type of transformation we pass from the description in Eq.
Y(X)=sz+(X)X_(X)—f dx X_'(X)f dx I1_(x) (26) to the Heisenberg pictur,8]. The new variables are
- ” the Fourier modesthey can be interpreted as determining
x _ (Y = — the matter field and momentum on an initial sjice. (k)
+J_wdx X+’(x)f_mdx . (x) (k>0), their complex conjugates* (k), the embedding
variablesX*(x) (these are unchanggdnd the new embed-

* Mg ding momentdl ... The Fourier modes and the new embed-
" Mg +
+J,wdx X OOIL, (x) + K’ 23 ding momenta are given by
Note that the right mass is related to the left mass by a. (k)= i jw (m ...f/)eikX*(x) 28
+ Zm o f— '
m_ Mg * * _
—=—+f dx X+(X)H+(X)—f dx X“(X)II_(x). .
K K — — _ H-
(24) .= <= (29

That the right mass appears in EG1) rather than the left
massm, is a matter of choice. 1f2] if the authors had
chosen to synchronize the right parametrization clock wit
the right proper time, the last term in E¢R1) would be
Sdtpm_, wherep denotes the difference between the left * Ve i o) TT -
parametrization and the left proper time. So an action {a-(o,az(h}==idtkD, {X00,M.(y)} 5(x,y()?;o)
equivalent to Eq(21) is

Thus, the vanishing of the constraints is equivalent to the
vanishing of the new embedding momenta. The only non-
rivial Poisson brackets for the new variables are

To summarize, the scalar field and momenta are replaced by
their Fourier modes, which can be thought of as coordinatiz-
ing their values on an initial slice given By (x) — X~ (x)

=0. The embedding coordinates are unchanged and the new

S[Xi,Hi,f,wa,Nl;EmL):f dtf dx (I, X"

+II_X™+7;f—NH embedding momenta are essentially the old constraints.
Settingf ~ =0 is equivalent in the canonical language to

—NHy)+ f dtpm, . demandingr;— f' =0 [8]. From Eq.(28), this is achieved by
settinga_ (k) =a* (k) =0 and this can be done consistently,

(25) since the+ and — modes are not dynamically coupled. So
the final variables for the theory aze (k), a*(k), X*(x),

Note thatm_,p are constants of motion. To make contactandIl.(x). The latter vanish on the constraint surface. The
with the solution in Sec. Il C, we first freeze the left mass toconnection to the variable$™,I1.. ,f, ¢ [2] is through Egs.
zero and simultaneously ppt=0. The reduced action, with- (28) and(29). The X~ II.. variables are related to the geo-
out this pair, metric variables of interegthe dilaton and its canonically
conjugate momentum, the induced metric on the spatial slice
and its conjugate momentynn [2]. Since we are dealing

X* ., f, 7 ,N,N:;p=0m_ =0 _ U : _
st SR P =0 with —oo<X=<x [2], this analysigand the next two sec-

o0 - . tions on quantum theojypertains to the analytically ex-
:f dtﬁmdx (IL X7 +1T-X tended one-sided collapse solution.
In this paper we examine only the dilaton figl2i3). As
+mf—NH—-N!H,) (26)  mentioned in[2], solving the constraintsl~ expressedl ..

in terms ofX* and the scalar field and its momentum. Sub-

reproduces the correct equations of motion. Alternatively, ifstituting this in Eq.(23) and usingm+f'=2X""f , from
one is not familiar with the procedures for parametrization af8], one is led back to the spacetime solution
infinities, it can be checked from E@21) that mg,p are
constants of motion. We can, therefore, consistently freeze 2yt
: ! y(X)=x"X"X
this degree of freedom by settimgs ,p equal toconstantof
motion and then simply use the reduced acii2@). Since (31

Xt — [x* = =
dx* dX*(f L (X))
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For the next section it is useful to examine the laKje

1 (=dk ) -
behavior of Eq(31). For X™ large enough that it is outside f(XH)= —f —[c+(k)e*'kx+Jrc’j(k)e'kX 1.
the support of the matter 2\mJ)o Jk
(39
Mg
y=k?XTX"=XTH+ — (32) - )
K The mean valu€) of the operatoQ in this coherent state is
with given by
H:f C X (L (X))? (33 . -
- (eldlpa= [~ ax QX )t (X7 (39

andmg given by the right-hand side of ER7).

as expected.

B. Quantum theor ~
Y The (square of the fluctuation inQ is given by

The passage to quantum theory is straightforward. From
[2], the operator&X™ are represented by multiplicatiof, .

. + ~ ~ . . _ ﬁz o
=—if 6/ 6X™ anda (k),a“r (k) by representation on a Fock 2_ 2 02— _f 2
- (10,8: 10 by (AQ)?= (el Q) = Q= g | dkKIQ(K)|
space. Note thatka(—k), (k>0) in[2] corresponds here to

a., (k) and that the commutator

h o]
L + 5] akkauor? 0
[a.(k),ai(D]=fo(k,l). (34)

The imposition of the quantum version of the classicalyhereQ(k) is the Fourier transform a®(X*) andQ(k) is
Heisenberg picture constraints leads us to the quantufhe Fourier transform of the function Q;(X*):
Heisenberg picture, wherein states lie in the standard-q(x*)f,,(X"). The Fourier transform of the function
embedding-independent Fock space. Note that the FOCg'.}f(Xﬂ is

space here is spanned by the restriction of the Fock basis 0

[2] to negative momenta because we have frozen the right

moving modes. 1 (= o
In the next section, we show the existence of large quan- g(k)y=—= dX e g(x™). (41
tum gravity effects at larg& ™. This involves a calculation V)=

of fluctuations of operators), of the form
Note that by virtue of its being independentfgtX ™) the#?
Q= J'w dX*Q(X*):(f (X)) (35) term in Eq.(40) is the vacuum fluctuation ch

o . C. Large quantum gravity effects
where Q(X™) is a c-number function, :: refers to normal ) ] ] ] .
ordering, and We examine the fluctuations of the dilaton fieyd,which

plays the role of a conformal factor for the physical metric
1 (=dk and hence encodes all the nontrivial metrical behavior. The
_f —[é+(k)e*‘kx++é1(k)eikx+]. expression foy simplifies at largeX™ and we shall calculate
2mJo Vk the fluctuations ofy in this limit. y(X) is turned into the
(36) operatory(X) by substituting the appropriate embedding de-
pendent Heisenberg field operatdB6) in Eq. (31). Simi-
larly H and mg are turned into operatoﬂé and ﬁ1R. Note
» ) «dk . that y(x) is not a Dirac observable. However, it can be
| )=~ M2 oles (k] dkexp( f 70+(k)ai(k)) |0) turned into one using the evolving constants of motion inter-
0 37) pretation(see[9] and references thergin
Straightforward calculations result in the following ex-

where|0) is the Fock vacuum andl, (k) are the ¢ numbej  pression for the ratio of the fluctuation ynto its mean value,
modes of the classical fielt,(X™), at largeX™:

f(xH)=

Consider the coherent state

(Ay)2_(AH>2+(AmR/KX*>2—<1/><+K><[F|ERJ+—2%@ 42

v (K2X)2(1— AT k2K~ + Mg 13X X )2
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H 2
ere (A__y) 0 -

[H, k] = (el g+ Mef ). (43) y

— 2 . . .
To make contact with the classical solution of Sec. I, Weas O(1/(X")?). Thus, unlike the cylindrical wave cas8],

choose the coherent state to be such fpeX*) is of com- ther(_e are no Iarg_e quantum fluctuatlon_s of the metric near
spatial infinity. This is because the leading order behavior of
pact support. Further,

the metric is dictated byx®X*X~, which is a state-

f(X*)=0 for X*=O0. (44)  independentc-number function, unlike in the cylindrical
wave case.
H corresponds toQ(X")=:H(X")=1 in Eq. (35 and Case I1.X™=H/k?—mg/x3X"+d and X" large:
Mg/ k t0 Q(XT)=:mg(X")/k=X". From Eq.(39) and the Hered is a real parameter. It can be checked thamea-
fact thatfc(x+) is of compact support, it is easy to see thatsures the distance )~ from the singularity which occurs at
H .My, are finite. d=0, see Eq(17). It is easy to see that
Using EQ.(40) it can be seeriin obvious notatioh that Ay 2_(AH)2 o 1 o
y— - K4d2 (X+)2 . ( )

ﬁ o0 oo
(AH)Z:ZJ0 dkk|Hf(k)|2=ﬁf0 dkk®c,(k)|?. (45
This expression maka® assumptions on the size df Us-

Sincef, is of compact support, its Fourier modes decreasdnd Ed.(45) in Eq.(52) and reinstating explicitly the factots
rapidly at infinity and have a sufficiently good infrared be- of G (and keeping=1), we find that up to leading order in
havior that the integral above is both ultraviolet as well asX”

infrared finite. This shows that the fluctuationkhis finite.

2
The fluctuation inmg is (A__y) ﬁ(z f dll?|c,(1)|? (53
y

2 w
(AmR)2=ﬁ—f dkk3|mR(k)|2+éf dkkmg¢(k)|?. _#G [[1)?

87l 4Jo g o ( ) Grle, (D).

(46) 2d +
(54

Again, the fact thatf, is of compact support renders the
second term on the right hand side of E46) UV and IR Note that in c=1 units, [G]=M~L~%, [«]=L"1,
finite. We now argue that the first term corresponding to thdc, (1)]=MY2L, and[#]=ML. Thus#AG is the dimension-

vacuum fluctuation, less Planck number, andd, |«, and Gk|c,(1)|? are all
52 (e dimensionless. From E¢54) there are large fluctuations yn
(AOmR)z::_J dkk’mg(k)|? (47)  when
8 0
x?d?
is finite. Sincemg(X™)=«X™, its Fourier transformmg(k) hG>— _ (55)
is ill defined. We calcula}te, instead, the vacuum fluctuation f d(1/ ) (1 ) 2(Gk|c, (1)]?)
of the regulated operatan® defined by setting 0

m%D)(X+)=KX+e_(X+)2/D2. (48) This does n(_)t require to pe small. .Large fIL_lctuations_can
occur even ifkd>1, provided the integral in Eq55) is
We shall take thé® — oo limit at the end of the calculation to large enough. Two cases when this is possible is when there
obtain the vacuum fluctuation ofix= m( ) are a large enough number of low-frequency scalar field ex-
citations or if there is a high-frequency “blip” in the scalar
field. This is very similar to what happens|iB]. Note that in
a classical solution with massg, the classical scalar cur-

Now mP)(X™) is a function of sufﬂmently rapid decrease
at infinity that (Aom{™)? exists. It is evaluated to be

72,2 vature at a distancd from the singularity as a function of
(AomiP))2= = (499 X' is at a large enougk*,
which is finite and independent &f. Thus theD — o limit R= mf (56)
can be taken and we have xkX"d
, 52,2 and vanishes aX* =,
(AoMg)*=—¢— (50) The horizon is locatedapproximately at X, : =H/«?

(20). Therefore, ifd<0, the region under consideration lies
Finally, a straightforward calculation shows E¢3) also to  within X ; if d>0 andX™ is large enough, the region lies
be finite. We evaluate Ed42) for two cases:
Case |. Near right spatial infinity:
HereX*—o». So SUnits are discussed if2].



3470 MADHAVAN VARADARAJAN 57

outsideX, . Thus, for states satisfying E(G5), large quan- Equation(57) is augmented with surface terms to render it
tum fluctuations in the metric occur both within and outsidefunctionally differentiable. The result is

the mean location of the horizon. But from E@O) this
location itself fluctuates by H/ 2. Thus, if the Planck num-
ber is much less than 1, the above calculation does not sho
the existence of large quantum fluctuatiangsidethe fluc-

\ﬁy,wy,a,pg,f,wf,ENl]:J dtf dx (Wyy-l-pgb'-i—ﬂ'ff
0

tuating horizon® —NH-NH,)
m
IV. CANONICAL DESCRIPTION ON THE X*>0 SECTOR +f dt (_aR_R>_ 63
OF THE MINKOWSKIAN PLANE K

Section Il is applicable to the analytic extension of theHere ag is related to the asymptotic behavior of the lapse at
one-sided collapse situation to the full Minkowskian plane.right spatial infinity[2]. It can be checked that with m; of
In this section we attempt to deahly with the physical compact support, all the asymptotic conditions are preserved
spacetime and not with its analytic extension. We modify theunder evolution. Note that Eq60) automatically ensures
analysis of[2], pertinent to the entire Minkowskian plane thatm =0.
—o<X* < in order to treat the case whet">0. This To make contact with the one-sided collapse solution the
involves a modification of the asymptotics at left spatial in-right moving modes must be set to zero. We do this as fol-
finity. Now, X is restricted to be positive and=0 labels left  lows. Note that up to total time derivatives
spatial infinity. As mentioned in Sec. lll, the simplest route
to quantum theory is through gauge fixifj the description © * X = .
in terms of the original geometric variables rather than by Zf Wff:f dx fo W—(X)d;> m-(x)
transforming to embedding variables.

@ X —
A. Classical theory fo dx( fo w+(x)dﬁ (%), (64

As in the previous section we assume familiarity wigh.
The canonical form of the action in the original geometric

0 0

where

variables is e — 65)
S[y,wy,cr,pg,f,m,l\_l,Nl]=f dtj dx (my+p,o Thus, we can replacé, = by ., with the new Poisson
- brackets being
S NT I N1
J e R NP . L % RPN R
T+ y T+ =X/, v L, =0.
with s dx !
(66)
4. -1 2 2 1 2 2 H H
=—mop,ty'—o To'y —2«‘c°+ E(wf+f’ ) Sincen, and7_ do not couple dynamically, we can con-
(58) sistently freezer _=0. This corresponds to settirfg =0.
Now, with a view towards quantization we introduce the
and gauge fixing condition$6]
Hy=my' —op,+mf’. (59 my=0, o=1. (67)

Here , is the momentum conjugate to the dilatanjs the Using Eq.(67) in the constraints, the general solution for

spatial metriginduced from the auxiliary spacetime mejjic  @ndp,, in terms ofr ., consistent with the asymptotic con-
andp, is its conjugate momentum ditions at left and right spatial infinity is
” .

The asymptotic conditions at right spatial infinifyrhich

corresponds tax=«) are unchanged froff2]. The left spa- oo [ =[x ﬁTi(X:)
tial infinity is labeled byx="0. We require, ag—0, y=wx— | dx | dx—g (68)
y=??+0(x%) o=1+0(x% (60) , —
_ fxd—77+(x) 69)
my=0(x) Pp,=0(x?) (61) Pr= ) a
N= a x+0(x% N'=0(x3), (62) Requiring the preservation of E7) under evolution along

with consistency with the asymptotic conditions fixes
whereq, is a real parameter.
N=ax, N!=0, (70)

8 thank Sukanta Bose for comments regarding this point. wherea is a real parameter. Frofi2] and Eq.(68),
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% 2 and
m X
—R=f dxxw+( ). (77
K 0 4 20+
Mr RPVR +1)2 - +7T+(r )
- _ . — = dX" X" (7 (XT))*= [ dr' —F—. (8D
Substituting this in Eq(63) and using Eq(64), we get K 0 —o 4

- xar, (X)) In the X* coordinatesd Eq. (33) took the form of a conven-
S[qu(x)]:—fdt f d (f dx) 7(X)

tional Hamiltonian for the free-field theory on the entié

o 2 plane, butmg/« was more complicated. In the,t) coordi-

. 2(x) nates,mg/« takes the form of a conventional Hamiltonian
_J dXX7T+ X ) (72)  for the free-field theory on the entire () plane(this is just
0 4 the X*>0 part of the entireXx* planeg, but H is compli-

) cated.
In the above equation put

B. Quantum theory

kri=In(kx), m,=e"m, (73 N
The mode operatora+(k),§1(k) are represented in a
to get standard way on the Fock space with vacy®n They have
. (D the standard commutation relations
S[R(x)]:—fdt f dr(f i dr_> 7 (r) o
e \Jow 2 [ (k),al()]=ha(k,D). (82)
Jx q 77_2+(r) 24 Following the pattern of Secs. Ill B and Il C we attempt
. v (74) to calculate the fluctuations of in the largeX* region, in

the coherent state:
Note that the last term={mg/«) simplifies. The equations
of motion are be)

g (10 =exp( - f:%ci(k)ﬁdk) exp( f:%kak)‘é’i(k))l@

;4(r,t):{;+(r,t),mR/K}: or (75)

(83

The appropriate mode expansion which solves this is
corresponding to the classical field

dkyk[ —ia, (k)e " +ia* (k)e ],
(76)

— 1 (=
o (rt)= —j — 1 (= — . _ .
’ Jalo W+c(r+>=ﬁfo dkyk[—ic (ke ™ +ick (k)ekr]
(84)
wherer*:=r+t. From Egs.(66) and (76), the only non- o -
trivial Poisson brackets between the mode coefficients are Which is of compact support in”. A
Formally, Eq.(42) again expresses the fluctuationsyin

{a,(k),a% (D}=(=1)a(k,). (7)) However, now the crucial operator k. It is obtained from

o ~ the corresponding classical expressi@®) in an obvious
From [2] one can understand the slicing of the spacetimeyay. Similar calculations to those in Sec. Ill B give
corresponding to the gauge fixing conditiof&) we have

used. In particular, on a solution, one can see thal) (is h?

o h o
related toX™ by (AH)?= afo dkIC[H(k)[?+ Zfo dkKH Z(k)[?,

KXI :eK(I‘it) (78) (85)

. . . . whereH (k) is the Fourier transform of

and that the physical metric in these coordinates is mani-

festly asymptotically flat at spatial infinities. H(r*):=e" k™t (86)
The largeX™ behavior ofy is again given by Eq(32).

Now y, H, andmg/«, which are evaluated in new coordi- andH (k) is the Fourier transform of the function

nates, take the form

m Hﬂ*)-:H(r*)—;ﬂ(m (87
y=r2e? e Ht 7, (79 o 4

The Fourier transform of the functiog(r *) is

(80)

. +1)2 - P AN Y
H:f dx+(77+(;( ) :f dr+e,Kr+ (7T+(4I’ ) 1 .
0 — g(k)z\/—;f drtek g(rt). (89

—0o0
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Sincee “"" is not a function of rapid decrease in thé quantity of interest. We do not know if such a representation
variable, the first integral in Eq85) is ill defined. It can be of quantum scalar field theory exists so that beitand mg

regulated by introducing the regulater  )?/°?. The rel-  ¢an be promoted to operators. N
evant regulated integral diverges in the linit—«= as For the quantum theory based on the ente plane
e22%/D2. Thus the vacuum fluctuations Bf diverge. There- there were no such difficulties. In a sense, the quantum theo-

fore, in this representation we cannot proceed further wit{/€S On the entire plane and the >0 region are unitarily
inequivalent. The former uses a positive-negative frequency

g]neoapn;g/g f g:?ﬁea?:gcitiggiécannot be given meaning aSsplit based on the time choide= (X" + X™)/2 and the latter
' on a time choice=(1/«)In T. This is very reminiscent of
what happens in the Unruh effect in 1], with the ex-
V. DISCUSSION ception that there, both sets of modes are present. The role of
acceleration in the Unruh effect is taken khy
One way of describing the spacetime geometries which The following comments regarding Hawking radiation are
arise in the CGHS model is as follows. Consider thespeculative. It seems significant that the Hawking tempera-
Minkowskian plane with a flat auxiliary metri@), on which  ture to leading order in the mass from semiclassical calcula-
a scalar field propagates in accordance with the flat spaagons [5] is independent of mass and is precisely the Unruh
wave equation. The spacetime metric is conformal to theemperature for observers accelerating withThis line of
auxiliary flat metric. The conformal factgris determined by  thought has been pursued [ih2] in the semiclassical con-
the matter distribution through E¢5) and is required to be text.
positive. The field equations continue to make senseyfor It seems that both right and left moving matters are re-
=<0. If one removes the restriction of positivity pfthen the  quired to calculate the Hawking effect. Therefore, let us
following picture emerges. The Minkowskian plane is di- switch the right moving modes on and go back to the quan-
vided into spacetimes, each of which has0 ory<0. The tization of [2]. The quantum theory is a standard unitary
former have the signature + and the latter+ —. As far as  quantum field theory on a Fock space. But, as emphasized
we know, typically,y=0 labels singularities or boundaries at before, it corresponds to an analytic extension of the usual
infinity for these spacetimes and some of these singularitie€GHS model. We beleive that it is the analytic extension
may be past singularities. which plays a key role in obtaining a unitary theory. A pos-
This is the classical picture which corresponds to thesibility is that the correlations in the quantum field which
quantum theory if2]. Among all these classical solutions appear to have been lost by passage into the singularity re-
there are solutions which describe black holes formed fromappear in the analytic extension beyond the singularity in the
matter collapse. It may be that the entire solution space andew “universe” which lies in the other side of the singular-
the associated quantum the§6,1Q is required in order to ity.
understand issues that arise from black hole formation. In Note that instead of freezing the degrees of freedom cor-
particular it may be that an understanding of Hawking radia+responding to the right moving modes, as is done in this
tion from a nonperturbative quantum theoretic viewpoint re-work, one can continue to use the result$23f but evaluate
quires a treatment as [16]. quantities pertaining to one-sided collapse by restricting the
However, in this paper we have adopted the viewpointight moving part of the quantum states to thight moving
that only solutions which describe the physically interestingFock vacuum. Then vacuum fluctuations of the right moving
situation of black hole formation through matter collapse aremodes would contribute to various quantities but we believe
to be taken as the basis for passage to quantum theory. Weat the large quantum gravity effects away from the singu-
have shown that these solutions have only left or right moviarity (see Sec. Il Cwill persist. Maybe one can also exam-
ing matter. We concentrated on the solution with left movingine Hawking effect issues since the right moving modes are
matter which described a collapsing black hole spacetime imot switched off.
the X*>0 part of the plane. This solution admitted an ana- Finally, from the point of view of 4D quantum general
lytic extension to the full Minkowskian plane and we showedrelativity, we feel that the CGHS model could be improved
the existence of large quantum gravity effects away from theo a more realistic model of black holes if somehow an in-
singularity in a quantum theory based on this set of analytiternal reflecting boundary in the spacetime existt8,7].
cally extended solutions. Large quantum fluctuations of théfhe lack of such a boundary and the fact that the matter is
metric occur even when the classical curvature is smallconformally coupled so that it does not “see” the singulari-
However, since the position of the horizon also fluctuatesties, are, we believe, the key unphysical features present in
our calculation does not prove the existence of large fluctuathe model but absent in th@ffectively 2D spherical col-
tions outside thefluctuating horizon. Next, we dealt with lapse of a scalar field in 4D general relativity. The latter is of
the classical and quantum theory based on onlyXhe>0 course a physically realistic situation, but unfortunately tech-
region. Note that even within this region there is an analyticnically very complicated. It would be interesting to try to
extension of the solution above the singularity. In the quanapply the techniques d2] to the model with a boundary
tum theory a quantity of interest] (80), could not be rep- described irf13,7] and to try to compute the metric quantum
resented as an operator on the Fock space of the theory. THigctuations and to compare the results with thosd7h
is unfortunate because the classical theory captures physsince the boundary ifi7] is itself dynamically determined, it
cally relevant collapse situationémodulo the extension is not clear to us to what extent the model is solvable. It
through the singularity Note thatmg/« takes the form of would be good to have a technically solvable model which
usual Hamiltonian for the free-field theory and is also awas closer to 4D collapse situations.
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