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We study gravitational radiation reaction in the equations of motion for binary systems of non-
spinning point masses to post-Newtonian order [O((v/c)?)] beyond the quadrupole approximation,
corresponding to post”/2-Newtonian order corrections to Newtonian motion. One method uses
post-Newtonian expressions for energy and angular momentum flux to infinity, and an assumption
of energy and angular momentum balance. The equations of motion so derived are valid for gen-
eral binary orbits, and for a class of coordinate gauges. Another method uses explicit formulas for
near-zone reaction potentials, valid to post-Newtonian order, derived by an asymptotic matching
procedure in a fixed gauge. The two methods give equivalent results.

PACS number(s): 04.25.Nx, 04.30.Db, 97.60.Jd, 97.60.Lf

I. INTRODUCTION AND SUMMARY

During the past 20 years, gravitational-radiation
damping has been recognized as a process with impor-
tant observational consequences. Observations of the bi-
nary pulsar PSR1913+16 have yielded a verification of
the “quadrupole formula” for radiation damping to a pre-
cision of better than 0.4% [1]. Gravitational-wave damp-
ing is a central evolutionary mechanism in massive cata-
clysmic binary systems [2], and a potentially important
capture mechanism in dense stellar systems [3].

Laser interferometric gravitational-wave observatories
such as the U.S. Laser Interferometric Gravitational
Wave Observatory (LIGO) [4] and the European VIRGO
[5] projects are expected to have the capability to de-
tect waves from the final inspiral and coalescence of two
compact objects (neutron stars or black holes), a pro-
cess dominated by gravitational radiation damping. The
detection and study of the characteristic “chirp” wave
form emitted by such systems involves a matched filtering
technique using a theoretical template that is a function
of the parameters of the source [6,7]. In order to extract
useful astrophysical information about inspiraling bina-
ries from observed gravitational-wave signals, one must
use templates that are very accurate, especially in their
treatment of the evolution of the orbital phase, which
evolves nonlinearly in time because of radiation damping
[8-10].

Several approaches have attempted to derive accurate
formulas for the evolution of the orbital phase (or fre-
quency). In the post-Newtonian or post-Minkowskian
framework, gravitational wave forms and fluxes of en-
ergy and angular momentum have been calculated accu-
rately to two full orders [O((v/c)*)] beyond the Newto-
nian for systems of arbitrary mass ratio, and including
the effects of spin [11-20] (for an overview of the post-
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Newtonian program, see [21]). Numerical computations
of test-body perturbations of black holes have been car-
ried to the equivalent of O((v/c)®) [22-24].

In obtaining the evolution of the orbital phase of inspi-
ralling binaries from formulas for energy flux, it is gener-
ally assumed that the orbit is circular, and that energy is
globally conserved, i.e., that the energy radiated to infin-
ity is balanced by an equivalent loss of energy of a circular
orbit. With the energy of a circular orbit written explic-
itly as a function of the orbital frequency, one arrives at
a formula for the evolution of the orbital frequency, and
then of the phase.

In reality, the orbital motion is determined by local
equations that include damping terms that reflect the
radiation of gravitational waves to infinity. The history
of gravitational-wave damping effects in the equations
of motion is long and contentious. Numerous authors
have attempted to obtain, from first principles, approx-
imate solutions of Einstein’s equations that incorporate
into “near-zone” gravitational fields, the back reaction
from radiation to infinity. These methods were char-
acterized by varying levels of rigor, often involving the
presence of divergent integrals or uncontrolled approx-
imations. Some even led to different quantitative re-
sults for the lowest-order, “Newtonian” radiation reac-
tion terms (for a critical review up to 1980, see [25];
for a later survey, see [26]). However, recent refine-
ments of a “post-Minkowskian” method for calculating
gravitational radiation from weak-field slow-motion sys-
tems, combined with asymptotic matching techniques
for connecting far-zone solutions with near-zone solu-
tions [27] have resulted in the ability to address “near-
zone” gravitational-radiation damping more systemati-
cally, without the problems that plagued other methods,
and to orders of approximation beyond the Newtonian
order [28].
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The other method for discussing radiation reaction,
popular in textbooks (see, for example, [29]), is to as-
sume energy balance, and to derive a radiation-reaction
term in the equation of motion sufficient to balance the
energy radiated. Crudely the argument goes as follows:
the energy flux at infinity is given by E ~ (Mi(;))2
where M;; is the quadrupole moment of the source and
(n) denotes the number of time derivatives. Integrat-
ing twice by parts and moving the total time derivatives
to the left-hand side into a redefinition of F, one finds
E ~ M,-]-Mi(;;) ~ mvi(szi(J~5)). Since E ~ mv - a, one
reads off the appropriate radiation-reaction contribution
to the acceleration, related to five time-derivatives of the
quadrupole moment.

In view of the importance to matched templates of
highly accurate determinations of orbital dissipation of
inspiraling binaries, this paper addresses the question of
extending radiation-reaction formulas beyond the New-
tonian order. Our main result is a formula, suitable
for determining the evolution of general binary orbits
(not just circular orbits), that includes the first post-
Newtonian [O((v/c)?)] corrections to the dominant New-
tonian radiation-damping terms. This result is obtained
by two methods. One is a refinement of the “bal-
ance” method, which makes use of both energy and an-
gular momentum balance, and extends the argument to
post-Newtonian order. The method was summarized in
[30]. The other method applies the post-Minkowskian
approach of Blanchet, Damour, and collaborators [27],
to derive directly the requisite terms in the equations of
motion (see [28,31] for background and details). We show
that the two methods give physically equivalent results.

A post-Newtonian (PN) approximation is an expansion
of corrections to Newtonian gravitational theory in terms
of a small parameter € ~ (v/c)? ~ Gm/rc?, where m, v,
and r are the total mass, orbital velocity, and separa-
tion of the binary system. The three key elements are
the equations of motion, the gravitational wave form,
and formulas for energy and angular-momentum flux.
Schematically the equations of motion for spinless bodies
are given as

a = d’x/dt?
~ —(mx/r®)[1+ O(e) + O(e?) + O(¥/?) +--1], (1.1)

where x and r = |x| denote the separation vector and
distance between the bodies, and m = m; + my denotes
the total mass. The symbols O(¢) and O(e?) denote post-
Newtonian (PN) and post-post-Newtonian (2PN) correc-
tions. Gravitational radiation reaction first appears at
O(€%/2) beyond Newtonian gravitation, or at 5/2PN or-
der. We call this “Newtonian” radiation reaction. In this
paper we obtain the terms at 7/2PN order, O(¢”/?), or
“post-Newtonian” radiation reaction.

The quantity relevant for gravitational-wave detectors
is the gravitational wave form, the transverse-traceless
(TT) part of the far-zone field, denoted A*. In terms of
an expansion beyond the quadrupole formula, it has the
schematic form
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S %%{Q“[l + O(eY?) 4+ O(€) + O(e%/?) + - -]}TT ,
(1.2)

where Q% represents the usual quadrupole term (two
time derivatives of the mass quadrupole moment ten-
sor), R is the distance between source and detector, and
TT denotes the transverse-traceless part. Finally, the
fluxes of energy and angular momentum, which can be
calculated from A%, are intimately related to the gravi-
tational radiation reaction terms in the equations of mo-
tion. Schematically, they can be written

dB/dt ~ (dE/d)q[1 + O(e) + -],

~ (1.3a)
dJ/dt = (dJ/dt)g[l + O(e) + --].

(1.3b)

The method for deriving the post-Newtonian radiation
reaction terms in Eq. (1.1) proceeds as follows. We write
down a general form for the Newtonian (¢3/2) and post-
Newtonian (e7/2) radiation-reaction terms in the equa-
tions of motion for two bodies, ignoring tidal and spin
effects [32]. For the relative acceleration a = a; — ag,
this has the provisional form (G =c¢ = 1)

a = —Sn(m/r)(m/r) [~ (4s/2 + A7/2)Pn
+(Bs/2 + Br2)v] (1.4)

where u = mymz/m is the reduced mass, with n = p/m
and n = x/r. The form of Eq. (1.4) is dictated by
the fact that it must be a correction to the Newtonian
acceleration (i.e., be proportional to m/r?), must van-
ish in the test body limit when gravitational radiation
vanishes (i.e., be proportional to 7), must be related to
the emission of gravitational radiation or be nonlinear in
Newton’s constant G (i.e., contain another factor m/r),
and must be dissipative, or odd in velocities (i.e., contain
the factors #n and v linearly). For spinless, structureless
bodies, the acceleration must lie in the orbital plane (i.e.,
depend only on the vectors n and v). The prefactor 8/5
is chosen for convenience. Then to make the leading term
of O(€%/2) beyond Newtonian order, A5, and Bs,; must
be of O(e). The only variables in the problem of this
order are v?, m/r, and 72. Thus A5/, and Bj/; each can
consist at most of a linear combination of these three
terms; to those terms we assign six “Newtonian” param-
eters. By the same reasoning, A7/, and By/; must be of
O(€?), hence must each be a linear combination of the
six terms v?, v?m/r, v¥#%, #2m/r, 7%, and (m/r)%. To
these we assign 12 PN parameters. We ignore terms in
the equations of motion of O(e®) beyond Newtonian or-
der, because they are nondissipative. [There is a clean
split between integer-order nondissipative and odd-half-
integer-order dissipative terms in this procedure, at least
through O(¢”/?). At O(e*) and beyond, the split is no
longer clean, because of the appearance of “tail” contri-
butions [33].] Our goal is to evaluate these 18 parameters.

A. Energy and angular momentum balance

In the “balance” approach, we take 2PN expressions
for orbital energy and angular momentum (per unit re-
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duced mass), E = E/pu = v? — m/r + O(e?) + O(€%),
J = x x v[1 + O(€) + O(€?)], and calculate dE/dt and
dJ /dt using 2PN two-body equations of motion [34-36]
supplemented by the radiation-reaction terms of Eq.
(1.4). Through 2PN order, E and J are constant, and
correspond to asymptotically measured quantities, but
the radiation reaction terms lead to nonvanishing expres-
sions for dE/dt and dJ/dt containing the 18 undeter-
mined parameters. However, at orders of approximation
beyond those at which they are strictly conserved (and
thus well defined), E and J can be ambiguous. Conse-
quently, we have the freedom to add to E and J arbitrary
terms of order €5/2 and €”/2 beyond the Newtonian ex-
pressions without affecting their conservation at 2PN or-
der. There are six such terms of the appropriate general
form at O(e%/2) in E and J and 12 at O(¢7/?), resulting in
six additional Newtonian parameters and 12 additional
PN parameters.

We now equate time derivatives of the resulting gener-
alized energy and angular momentum expressions to the
negatives of the corresponding far-zone flux formulas, cal-
culated to PN order [11,37,38], and compare them term
by term. The result of the comparison is 12 constraints
on the 12 Newtonian parameters and 20 constraints on
the 24 PN parameters. Of the 12 constraints at New-
tonian order, two are not linearly independent, resulting
in ten constraints on the 12 parameters. Solving these
constraints results in the form

Ag2 =3(1+B)v? + %(23 + 6a — 98)m/r — 5612,

(1.5a)

Bs;z = (2+ a)v® + (2 — a)m/r —3(1 + a)?,  (1.5b)
where o and 3 represent the remaining two unconstrained
degrees of freedom. The choice a = —1, 8 = 0 leads
to the Damour-Deruelle two-body radiation-reaction for-
mula [39] used in [36]; the choice @ = 4, 8 = 5 leads to
the form obtained from the “Burke-Thorne” radiation-
reaction potential
ds

1 . .
VBurke—Thorne ~ ——z'r! _MzJ ’

5 75 (1.6)

where M;; is the trace-free moment-of-inertia tensor of
the system [40]. In fact, it is straightforward to show that
the arbitrariness represented by o and (3 is a consequence
of the freedom to make coordinate transformations whose
resultant effect on the two-body separation vector is x —
x + =n(m/r)?[Brx + (28 — 3a)rv]. The two degrees of
freedom correspond to the possible functional forms of
such transformations at O(e%/2). Thus they represent
the residue of a gauge freedom that has not been fixed
by the energy balance method, but that has no physical
consequences.

At PN order, of the 20 constraints, two are again lin-
early dependent on the others, resulting in 18 constraints
on 24 parameters. The remaining six degrees of freedom
can also be shown to correspond to residual gauge free-
dom at PN order. The explicit results are given in Sec.
II, Eq. (2.18).
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B. Near-zone radiation-reaction potentials

The other method for deriving PN radiation-reaction
terms in the binary system equations of motion makes use
of general “near-zone” reaction potentials valid to 7/2PN
order, recently derived using a “post-Minkowskian” ex-
pansion method and a matching procedure that con-
nects fields in the far radiative zone to fields in the local
zone where the sources reside [28,31]. In this formal-
ism, the local metric, appropriate for deriving equations
of motion, can be expressed in terms of linear combina-
tions of time-symmetric, Newtonian-like potentials and
time-asymmetric, reactive potentials that depend on time
derivatives of source multipole moments. To the order
needed, the metric has the form

g00=—1+2(V + Veeact) — 2(V + Vieact)?, (1.7a)
goi= —4(V1 + ‘/rieact) ’ (1.7b)
gij: 61'.1' [1 + 2(V + ‘/react)] ) (17C)

where V = O(e) is a Newtonian-like potential (which
includes PN corrections) generated by mass densities,
V* = O(€%/?) is a potential generated by mass currents,
and Vieact = O(€7/2) and Vi, = O(e*) are “time-odd”
potentials (see explicit definitions in Sec. IITA). The
“time-symmetric,” nondissipative part of the metric is
valid through post-Newtonian order (2PN effects are ig-
nored). At lowest order, Vieact is given by the Burke-
Thorne potential, Eq. (1.6).

We carefully evaluate both the Newtonian-like poten-
tials and the reactive potentials, including their PN cor-
rections, using PN equations of motion where needed to
evaluate the effects of time derivatives, keeping all terms
that will give contributions to the equations of motion
at O(e%/?) and O(e”/?). From the metric, we determine
the connection coefficients, apply the geodesic equation
for each body, and then reduce the problem to a rela-
tive acceleration a = a; — az. Comparing the resulting
radiation reaction terms with Eq. (1.4), we obtain

2
As)z = 18v% + gm/r — 2572 (1.8a)

Bs)y = 6v? — 2m/r — 1572, (1.8b)

87 5379 136 \ ,m
== —48 4_ (207, 27 2777
Ar/2 (14 ")" (28 *t3 ’7)" r

25 1
+-§—(1 + 5n)v?r? + (? + 13377) 7'-27—:—

Ba-wra (R (B aso

7 73
27, (4861 58 \ ,m
Brjz=—14¥ ( 84 3")” r

3
+§(13 — 37n)v?s?
2591 am 25 .
+('T2— +97T[)’I‘ , 2(1—-717)7‘
1 /776 m\2
(o) ()
+3< 7 + 1’) r

The coefficients in A5/, and Bj/; correspond, as ex-
pected, to the “Burke-Thorne” choice of parameters in

(1.8d)
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Eq. (1.5), « = 4 and 8 = 5. It can also be shown that
the 12 coeflicents in A7/; and B/, correspond to a unique
and consistent choice of the six arbitrary parameters of
the energy balance method that were left unspecified.

The remainder of this paper provides the details un-
derlying these conclusions. In Sec. II, we obtain the
radiation-reaction terms using the balance method. Sec-
tion III applies the near-zone formalism to derive two-
body equations of motion with the post-Newtonian reac-
tion terms. Section IV makes concluding remarks.

II. GRAVITATIONAL RADIATION REACTION
VIA ENERGY AND ANGULAR MOMENTUM
BALANCE

A. Post-Newtonian two-body equations of motion

We begin by displaying the basic equations for two-
body systems in the post-Newtonian approximation to
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general relativity. We restrict attention to two-body sys-
tems containing objects that are sufficiently small that
finite-size effects, such as spin-orbit, spin-spin, or tidal
interactions can be ignored [32]. We write the two-body
equation of motion explicitly in the form

a=ay+ a(l) + agZP)N + a(s/z) + a:(;;)N + a(7/2) +0(e%),

(2.1)

where the subscripts denote the nature of the term, post-
Newtonian (PN), post-post-Newtonian (2PN), radiation
reaction (RR), and so on; and the superscripts denote
the order in €. Through 2PN order, the individual terms
are given by [34-36]

m

ay = ﬁ (2.2a)
3 . .
al) = { [ 22+ 1) + (1+ 3n)v% — 57]1‘2} -2(2 - n)rv} , (2.2b)
m(.[3 15 _
a2, = ——2{ [4 (12 + 29n) ( ) + (3 = 4n)v* + Zn(1 - 3n)i*
~ 33— am? = Ln(13 - an) 07 — 2+ 25+ 2) 22
1 .
—Ef'v [77(15 +4n)v? — (4 +41n+ 87]2)? —-3n(3+ 277)7'2] } . (2.2¢)

Through 2PN order, the motion is conservative, that is, can be characterized by conserved total energy and angular
momentum. At 5/2PN order, the first dissipative terms arise resulting from gravitational radiation reaction. At
this order and beyond, conserved energy and angular momentum can no longer be defined. The 3PN terms in a are
formally conservative, while the 7/2PN terms represent the post-Newtonian corrections to radiation reaction that are
the goal of this work. Through 2PN order, the conserved energy and angular momentum are given by [34,35,41]

E = EN + Ep~ + E2pN, (2.3a)
J=Jny +JpN + J2pN, (2.3b)
where
1, m
EN=H E’U —7 ) (2.4a)
_ 3 1 m., 1/m\?2
EpN—p{8(1—3'r))‘U + = (3+7])’U +§17——T' + = (';‘) }, (2.4b)
5
Eszzu{ 16(1—717+137)2)v + (21—231}—277)2)—1;
1 3
+- 77(1—151;)—1) 7 ——n(1—3n) 7 ——(2+151])( )
2z _ 2y (M 2, 1 2y ()2 .2
+8(14 55’7+4")(r) v +8(4+69n+12n)(7_) 7‘}, (2.4c)
Jy =Ln, (2.44d)
Jpen = Ln { 2(1 —3n)+ (3 +7])—} (2.4e)
- 27— _g2 ™2 _ 1 mao 1o, 2y (M2, 3, 2y, 4
J2pN = N{2(7 10n — 9n*) v 21](2+5n) " + 4(14 41n + 4n )(r) + 8(1 ™+ 13n%)v* 3, (2.4f)
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where Ly = px x v. These, together with the equations
of motion, can be derived from a generalized Lagrangian
and Euler-Lagrange equations [34,35]. Alternatively, F
and J can be derived directly from the equations of mo-
tion (2.1) and (2.2) by constructing 3dv?/dt = v - a and
d(x x v)/dt = x x a and showing that, after substitution
for a, the right-hand sides can also be expressed explicitly
as total time derivatives.

Because we will be deriving post-Newtonian correc-
tions to radiation reaction, it will be necessary to use
the post-Newtonian equations consistently in lowest or-
der or “Newtonian” expressions. However, we will only
need to make use of the first post-Newtonian correction,
Eq. (2.2b).

B. Radiation reaction to 5/2PN order

We begin by obtaining the radiation reaction terms in
Eq. (2.1) to 5/2PN or Newtonian order. We propose the
general form of the 5/2PN coefficients in Eq. (1.4):

(2.5a)
(2.5b)

Because the equation of motion now has dissipative
terms, and a Lagrangian can no longer be defined to the
necessary order, the energy and angular momentum are
no longer conserved explicitly. Furthermore, they are am-
biguous, because one can now add arbitrary terms to E
and J at 5/2PN order that do not affect their conserva-
tion through 2PN order. One way to see the irrelevance
of such terms is to consider the special case of a bound
two-body orbit. At lowest order, E ~ (v2/2 — m/r) de-
creases from one orbit to the next because of the effects
of damping on v and r at 5/2PN order. However, in any
of the arbitrary 5/2PN terms added to the energy, only
the Newtonian behavior of v and r is needed to the order
considered. But since that behavior is periodic, there will

2 .2
As/2 = a19" + agm/r + asr®,

B5/2 = b1112 + bzm/r + b37.‘2 .
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in a, we propose adding 5/2PN terms to E and J that
are proportional to n (vanish in the test-body limit when
radiation vanishes), m/r (nonlinear effects), and 7 (odd
order). We also require that J remain a pseudovector.
There are three possible terms each for E and J ; we add
these with an arbitrary coefficient per term. We write E*
and J* to distinguish the ambiguous, 5 /2PN quantities
from the conserved 2PN quantities, and write

E*E EN + E5/2

= By — gn (—) 7 (wz + 6? + Br’-z) . (2.6a)
J*= f;N + 35/2
=Ly + nly—=r (m;z +a—+ 6’!'2) , (2.6b)

where Ly = x x v, and where «, (3, v, 6, €, and k are
arbitrary [42]. The signs and the 8/5 factor are chosen
for convenience [43].

We now calculate dE*/dt and dJ*/dt, where in the
lowest-order, Newtonian expressions, Ey and L N, we
substitute the Newtonian and the provisional 5/2PN
terms in the equation of motion, while in E5/2 and 35/2,
we substitute only the Newtonian equations of motion.
Schematically, the result is

dE* dEs/z

5/2
el A agu/1 ) 7 (2.7a)
dJ* dJs/z
= xx alh? + —d"’t-/— : (2.7b)

In evaluating the derivatives of the added 5/2PN terms,
we use the identity, derived from the Newtonian equa-
tions of motion:

d [v?srP v2s—2pp—1 4 am
E( T4 ): retl (p'u B

be no secular change in that added 5/2PN term from one —(p + q)v?#? — Zsﬁiz) . (2.8)
orbit to the next, to lowest order. r
In keeping with our philosophy for postulating terms The result is
J
dE* 8 m? 2m .2 2.2
= —gn—rs[(bz—’y+5)v - — (az + 2y + 38 + 46)7 7+(b3—a1 — 3y + 3B)v°r
4 24 m?2
+(by +7)v* — (aa +58) =6 (Z) |, (2.92)
. ) 2
d;t = —?)—nLNE2 [(bl —a+ K)vz_@ + (b3 + 3a + 3e + 2&)7‘2? — (3¢ — 26)v%7? — kvt + der 4 (by + @) (%) } .
T r

We now use the assumption of energy and angular mo-
mentum balance to equate the rate of orbital loss in these
quantities to the corresponding far-zone fluxes, evaluated
to the lowest, Newtonian order [44]: namely,

ab* __(db
dt dt

far zone
2 11
= —g %?(4 2 ?1'2) , (2.10a)

(2.9b)
[
¥+ (dJ
dt B dt far zone
- —gnf‘N?;? (2'02 + 2% - 3%2) . (2.10b)

Comparing Eqgs. (2.9) and (2.10) term by term, we see
that there are 12 constraints on the 12 parameters, for
example, § = ¢ = k = 0. However, we note that two
of these constraints are redundant: ¢ = k = 0 makes
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3e — 2k = 0 redundant, and the constraint b; + b, +6 = 4
from the energy and b; + b2 + kK = 4 from the angular
momentum are equivalent. As a consequence, the system
is underdetermined; the solution for the parameters will
have two arbitrary degrees of freedom. A convenient form
of the solution is

a1 =3+38, a2=23/3+2a-38, a3=-58,
(2.11a)
bh=24+a, bp=2—a, bz=-3-3a. (2.11b)

The final constraint is v = —(a + 2). Thus, the 5/2PN,
radiation-reaction terms in the equation of motion, re-
quired to balance energy and angular momentum fluxes
are given by Eqgs. (1.4) and (1.5). We shall discuss the
significance of the freedom represented by the parameters
a and (3 in Sec. IID.

C. Radiation reaction to 7/2PN order

We henceforth adopt the 5/2PN constraints estab-
lished above and the forms of As,; and Bs/; given in
Eq. (1.5). For the 7/2PN terms, we write

m R .o M .
Aqjp = c1v? + cov? — + 3032 + eyt — + et
r r

2
+C (?) . (2.12a)
Brjz = dyv* + dpv® T + dgv?i? + dg? T + dgit
r
2
+do () (2.12b)

We now take PN expressions for £ and J, Egs. (2.4a),
(2.4b), (2.4d), and (2.4e), and add the 5/2PN terms with
coefficients already determined, Eqgs. (2.6), as well as ar-
bitrary 7/2PN terms. This last step introduces 12 addi-
tional parameters. The result is

J
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E* = En + Epn + Esjz + Eq)s
~ ~ 8 2, .
= EN + FEpn + 57 (?) (2 + @)v® — B
8

2
-—g'r) (E) 7 [51'04 + 820272 + 53v2ﬁ + 847t
r r

2
+8572 2 + 65 () ]
r r
J* EjN+jPN+js/2 +j7/2
- - 8 - .
In+ Jon+ ool 2 (aﬂ)
5 T r
_8
5

.o m 2
+esr— + €6 (—) .
T T

We calculate dE*/dt and dJ* /dt, substituting PN equa-
tions of motion in all lowest-order expressions. Schemat-
ically, the result is

(2.13a)

& M, . m .
nLy—7 [€1U4 + £90272% 4 e30% — + g4t
r r

(2.13b)

dE*
= v @Y + ) 4 v ol

x (g(l — 3+ (3 +n)?)

m.  (5/2) dEs;; ~ dEr,
+n TN -app + — T (2.14a)
dJ*
B e a7+ )+ o
1
x (—(1 —3n)v?+ (3+ ,,)T)
2 r
dJ dJ
cal8/2) 1 _ 5/2 7/2
+(x x v)v-agh®(1—-3n) + g7 prat
(2.14b)

In evaluating the derivatives of the added 5/2PN terms
to 7/2PN order, we must use the identity, derived from
the PN equations of motion:

d [ v2esP v25—25p—1 m . m . m . m .
( ) _ (pv4 _pvz_r_ — (p+ q)v?? — 2371'2 - 7(pv2 + 2573 A + 71)27-2(1) +2s)(4 - 277)) ,

dt\ re ratl
(2.15)
where A = (1 4 3n)v? — 2(2 + n)m/r — 3972, The result is
L% 2 11 .
dE = _8 Ea_ 4020 2T Riv® + R2v4T— + Rav*r? + Ryv?r* + ’125'027"2ﬂ
dt 5°r r 3 r r T
2 2 2 m 3 .6
+Rev (—) + R7*— + Rgr (7) +Ro (7) + Rio7° |, (2.16a)
. ; 2
d; = —§nLNﬂ2{ |:2v2ﬁ + 2 (E) — 31‘22] + S0 + Sz'u‘lﬂ + S3v%P? + Syt
t 5 T T T T T
2 2 3
+850272 2 4 Sgu? (ﬂ) + s,w*? + Sgr? (?) + 8o (?) + 8107"6} , (2.16b)
r r

where R; and S; consist of combinations of the parameters ¢; and d; from A, /2 and Bz, a and B combined with
functions of 7 from PN corrections of 5/2PN terms, and the parameters §; and &; from E7/2 and J7/3. Notice that by
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choosing the 5/2PN terms in the form determined in the previous subsection, with arbitrary parameters a and g3, we
automatically reproduce 5/2PN energy and angular momentum losses matching the corresponding far-zone fluxes.
We equate these expressions to PN formulas for the far-zone fluxes [11,37,38]:

785 — 8527 , 40(17—17) ,m

1487 — 1392
—____"]_UZ,,'J

_(2& _
dt far zone B

8 m?’m s 11,

2(367 —1

84 21 T 42

21 r 28

dJ 8 ~ mm m
2 - __ e 2 2 ot qr2

1 — - 2
L3724 197y om 519 = 720) ., 745 — 21 (Ln_) ] .

42 T 28

This results in 20 constraints on the 20 coefficients R;
and S;, involving the 24 unknown parameters c;, d;, &;,
and e;. However, two of these 20 constraint equations
are linear combinations of others, hence the solution is
underdetermined by six degrees of freedom. The most
convenient parameters to choose to express this freedom
are 8y, 62, 03, 84, 05, and €5 [45]. In terms of these
six parameters, together with the free parameters a and
B from the 5/2PN solution, we solve for the c; and d;
coefficients, with the result

1 3

(2.18a)
1 3
ca = ——E(297 —3107) — 3a(1 — 4n) — -2—,3(7 + 13n)
—261 — 362 + 365 + 3¢5, (218b)
5 5
(2.18c)
1 1
cy = —55(687 — 368n) — 6an + 5ﬁ(54 +17n)
—262 — 564 — 665, (2.18d)
Cs = —764 , (2.188)

1
ce = —ﬁ(1533 + 498n) — a(14 + 97) + 36(7 + 4n)

—285 — 365, (2.18f)
dy = —3(1— 3q) — -‘;ia(1 —3n) — 61, (2.18g)
dy = _8_14(139 +7687) — %a(S +17n) + 8, — 05,
(2.18h)
dsz = é%(369 — 6247) + g(sa +28)(1 — 3n) + 361 — 3es,
(2.18i)
dy = é(zgs — 3357) + %a(ss —117) — 368(1 — 37)
+268; + 403 + 3¢5, (2.18j)
ds = %(19 —72n) — 58(1 — 31) + bes, (2.18k)
de = —511(634 — 66n) + (7 + 3n) + b5 (2.181)

Equations (2.12) and (2.18), together with (2.5) and

687 —620np ., 4(1—4n) (m)2
+ 7+ o1 = ) (2.17a)
307 — 548 -
M4 _ 58 + 95nv2~n-L T4 277111)27_‘2
84 21 T 14
) = (2.17b)

[
(2.11), substituted into Eq. (1.4), yield the required two-
body radiation-reaction terms, necessary to balance en-
ergy and angular momentum fluxes to 7/2PN order.

D. Significance of arbitrary parameters in equations
of motion

The formulas for energy and angular momentum flux
in the far-zone are gauge invariant, i.e., they are inde-
pendent of changes in the coordinate system that leave
the spacetime asymptotically flat. Consequently, our
method has a residual gauge freedom. That coordinate
freedom will be reflected in a freedom to change the rel-
ative orbital variable x. It is important to note that
x is not itself a coordinate, it is the difference between
the centers of mass of the two bodies x1(t) and x2(t)
evaluated at a moment of coordinate time ¢. Neverthe-
less, changes in spacetime coordinates {z*} will induce
changes in x. Here we demonstrate that the residual
freedom in the radiation-reaction terms corresponds pre-
cisely to coordinate-change-induced variations in x. For
coordinate changes that can affect the equations of mo-
tion at 5/2PN and 7/2PN order, the resulting variations
in x can have a limited range of forms. We assume the
general form x — x + dx, where éx can depend only on
the two vectors x and v:

0x = (fs)2 + fr/2)7x + (g5/2 + gr/2)TV - (2.19)
In order that §x/x be O(€%/2) and O(e"/2), f5,2 and gs/»
must be O(e?) and f7/, and g/, must be O(e®), and will
depend on combinations of m/r, vZ, and #2. Note that
the v-dependent term in dx takes into account changes
in the coordinate ¢, via x(t + 0t) = x(t) + vét.

We illustrate the solution for the coordinate change at
5/2PN order, and merely sketch the results at 7/2PN
order. Subjecting the Newtonian equations of motion to
the variable change x’' = x + §x, we find

d?x! + mx’ _ d’x
ez ' 3 dt?

mx
r3

d?5x m
+ [W + ;‘g(ax —3nn - 5)()] ,  (2.20)
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where n = x/r. Defining the quantity in square brackets
to be Q, and substituting Eq. (2.19) for éx, truncated to
5/2PN order, we obtain
Q = x[7 fs/2 + 27 fs /2 + 7 f5 2
—(m/r®)(27gs/2 + 2rgs/2 + 37 f5/2)]
+v([27f5/2 + 27 f5 )2 + 7952 + 27352 + Td5/2]
(2.21)

where overdots denote time derivatives. We want Q to
cancel the arbitrary a- and (B-dependent terms in the
radiation-reaction contributions to d2x/dt2?, i.e., from
Egs. (1.4) and (1.5),

8 2
Q= ——nf‘?{r'n [,B (3v2 -3 5%2) + 2aE:l
5'r T T

o2}

Equating the coefficients of x and v in Egs.

(2.22)

(2.21)
J

=32 (4

r
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and (2.22), and using the Newtonian equations of mo-
tion, it is straightforward to integrate the two differ-
ential equations, to obtain fs;» = 1£Bn(m/r)? and
gs/2 = 2 (28 — 3a)n(m/r)®. Thus the arbitrariness in
the 5/2PN radiation-reaction terms is equivalent to the
variable change

x = g (7_:-)2 (7% + (28 — 3a)rv].

— (2.23)

To determine fr7/2 and g7/2, we now subject the PN
equations of motion (2.2a) and (2.2b) to the variable
change x' = x + 6x, adopt Eq. (2.19) for éx to 7/2PN
order, but using the 5/2PN solution of Eq. (2.23), ap-
ply the PN equations of motion to accelerations resulting
from time derivatives in terms at 5/2PN order, and de-
mand that the resulting @ cancel the arbitrary 7/2PN
terms in the radiation-reaction contributions to d?x/dt?
(the 5/2PN terms now cancel automatically). It is again
straightforward to integrate the resulting two differential
equations to obtain

2

2 1 1 3 3 1 1.
[62 + 554 — &5 — 5ﬁ(1 - 377)] v? — E [62 + 04 — 565 —e5— —an+ 5,8(4 + 1117)] ? + 354r2> ,

(2.24a)

8 2 2 8 1. ~ )
gr/2 = gM (——) ([51 + 552 + 1—554 + 5(3‘1 26)(1 317)] v

63 1

1 3 1(2
—E [661 + 552 - 3(53 + 564 - 5(55 + €5 — ?a'r] - Eﬂ(‘l - 557))] ? + = [5(54 + €5 — )8(1 d 31]):[ 1'2) .

Note that the six arbitrary parameters é81,...,d5 and €5
appear linearly independently in the six terms in Eq.
(2.24).

At 5/2PN order, the gauge-change-induced éx in-
duces a change in the orbital separation ér/r =
gn(m/r)%‘(,@ — a), and in the orbital angular frequency
5¢ = —gn(m/r)zi'q.ﬁ(Zﬂ — 3a). In a binary coalescence of
equal-mass compact objects, for example, this will change
the coordinate separation by only two parts in 107 at a
separation r = 20m, and three parts in 10* at the in-
nermost stable orbit around r = 6m [41], for values of «
and B of order unity. These are negligible compared to
the corresponding PN and 2PN corrections to the orbital
radius of relative order m/r and (m/r)?%, respectively.
From the change in angular frequency, the accumulated
correction in the orbital phase during the coalescence to a
radius ry is given by 6@ = 187 (28—3a)(m/rs)%/2, which
will amount to only 2 x 10~3 radians for an equal mass
system at 7y = 6m [46]. Only effects that contribute
phase shifts of order a radian over the observed inspiral
signal are expected to be important in estimating param-
eters of inspiraling compact binaries by matched filtering,
so these effects are negligible. Consequently, in using the
equations of motion to evolve inspiraling systems, one
can choose «, B3, §;, and e5 freely; the error made by
using coordinate variables instead of invariant quantities

3
(2.24b)

]

is negligible for systems of interest. It is straightforward
to show that, for a quasicircular inspiral, the physically
measurable quantity w, where w is the orbital angular
frequency, is unaffected by these arbitrary parameters.

III. NEAR-ZONE GRAVITATIONAL RADIATION
REACTION FOR BINARY SYSTEMS: EXPLICIT
TWO-BODY EQUATIONS OF MOTION

A. External near-zone metric for systems
of compact objects

Using a post-Minkowskian expansion formalism and a
procedure for matching radiation-zone and near-zone so-
lutions, together with a careful separation of retarded
gravitational potentials into time-symmetric and time-
odd pieces, Blanchet [28] has derived expressions for
the external near-zone metric of a radiating system that
includes radiation-reaction potentials, accurate through
7/2PN order (indeed, it includes reaction contributions
of “tails,” at 4PN order, but we will not treat these here).
Further details can be found in [31]. The metric is given
by Egs. (3.51) — (3.53) of [28], as an expansion in powers
of € ~ v2 ~ m/r (in the formalism of [28], € ~ 1/c?),
given by



6890

doo = -1+ 2€(V + 65/2‘/1‘eact) - 262 (V + 65/Zlfl'ea.ct)2

+O(53) , (3.13)
goi = _463/2(Vi + 65/2‘/1'eac1:) + O( 5/2) (31b)
gi; = 61] [1 + 2€(V + 65/2‘/;eact)] + O(Ez) . (31(:)

We expand this metric in powers of €, keeping terms
of Newtonian and PN order, as well as terms of 5/2PN
and 7/2PN order. We do not bother with 2PN terms,
because their contributions to the equations of motion
are already well known [cf. Eq. (2.2c)] and are nondissi-
pative. However, we keep terms of explicitly Newtonian
and PN order because they may contain implicit, time-
odd correction terms that generate 5/2PN and 7/2PN
effects. These will become apparent below. We keep €
explicit for the time being, and display only the needed
terms in the metric. These correspond to O(e?), O(e3/2),
and O(e) terms in goo, goj, and g;; respectively, for PN
effects, and to O(e%/2), O(e?), and O(e”/?) terms in the
respective metric components, for 7/2PN effects. The
result is

goo = —1+ 2¢V — 2€2V2 + 267/21/;eact - 469/2‘/1'eactvv

(3.2a)
goi = —4€¥/2Vi _4etVE (3.2b)
gij = 05 (1 + 26V + 26"/ ?V,enct) - (3.2¢)

We have used the fact that Vieact/V = O(€%/2) + O(€7/?)
a'nd ‘/rea.ct/Vz = ( 5/2)

The potentials V and V* are scalar and vector poten-
tials of the mass and current densities, defined to be time
symmetric, that is 1/2 retarded plus 1/2 advanced poten-
tials. They are given explicitly by

Vint) = 3 [ et k=)
ot xo . (3.32)

Vi(x,t) = = l'f—iw[‘" t— x —x'|)
+ot(x,t + |x — x'])], (3.3b)

where o = T + T% ¢¢ = T%, and T is the matter
stress-energy tensor (for proof see Sec. IV of [31]; for
further details and background see [27]).

The reactive potentials Vieaet and Vi, are given by
Eqgs. (3.53) of [28]:

1, 1
‘/react = _gm m"Ml(]s) + 6(189$ 13] kMt(:’z
1 i gas(7
—767'23’ wJMi(j)) s (3.4a)
i 1 ijkape) 4 i 15
V;eact = ’2_13" MJk - ngijkm T Skl ) (3.4b)
where M;;... and S;;... are symmetric, trace-free moments

of the source distribution (to be defined explicitly below),
which are functions of retarded time relative to the center
of mass. The superscript (n) denotes n derivatives with
respect to retarded time; e¥* is the antisymmetric Levi-
Civita symbol, and
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&k = gigigh — grz(m’(S’k + 278 4 2k5) . (3.5)
Note that the O(e) term in Eq. (3.4a) is an explicit PN
correction to Vieact which will contribute to the equations
of motion at 7/2PN order; we will see that the moment
M;; in the leading term has implicit PN corrections of

its own.
We now specialize to systems of compact objects. For

our purpose, it is suitable to approximate the mat-
ter stress-energy tensor by a distribution representing
“point” masses:

= > mavhus(de/dr)(~9) /28 [x —xa(r)],
A

(3.6)

where v = dz; /dt (v° = 1), 7 is proper time measured
along the world line of body A, of mass m 4, and g is the
determinant of the metric. The presence of 7 and of the
metric will result in post-Newtonian corrections in T#¥.
The corrections of integer order in € will lead to standard
nondissipative PN effects; we are only interested in cor-
rections that are potentially of odd half order. We find

o~ ZA:mAés(x —x4) [1 + € (gvi - V(XA))

~€7/2‘/react(xA) + - ] , (3_73)

ZmAvf;zSB(x — XA)[I + - ] y
A

ol x (3.7b)
where the notation ~ here denotes that we keep only
terms of potential interest. In addition, to the required
order, we must expand the retardation of the potentials
V and V* [Egs. (3.3)], with the result

2
vV~ / Ixx ,t) dB3x’ %6% /U(X',t)‘x—xlld3xl
+0(52) (3.8a)

Vi
lx— 'l

(3.8b)
Substituting Eqgs. (3.7) for o and %, and keeping, apart
from the Newtonian potential, only the terms that con-
tribute to radiation reaction terms in the equations of
motion, we obtain

1 mAaA~(x—xA)
V ata - =4
E |x—xA| T3¢ |x —xal
—€7/? 3.9
€ Z |x_x l react(xA)’ ( a‘)
mAvA
~ 3.9b
ViR Al (3.9b)

where a4 = d?x4/dt?. Note that we keep the term in-
volving a4 in V because it ultimately will contribute
5/2PN terms, and we keep the velocity-dependent term
in V* because a subsequent time-derivative V* appearing
in the equation of motion will also generate an accelera-
tion a4, with its 5/2PN contribution. However, because
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these effects appear in PN corrections, they will generate
7/2PN terms in the equations of motion.

B. Equations of motion

We use the geodesic equation, written in terms of co-
ordinate time,

|
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d*z*/dt* + T, v*v” — T v v"v' =0, (3.10)
where I'y;,, are Christoffel symbols computed from the

metric. Taking into account that v® = 1, v* ~ O(e'/?),
and that d/dt = O(e'/?)V (the standard slow-motion
assumptions), we obtain

a* = d?’z? [dt? = V;V + ¢[(v: — 4V)V,V + 4V — 8V, V07 — 3Vt — 4V, Vv

€2V Vieact + €/?[(v?
_4V‘i‘/riactvj + 4V.’I V;‘i

€

where here an overdot denotes 9/0t, square brackets
around indices denote antisymmetrization (parentheses
around indices denote symmetrization), and spatial in-
dices are raised and lowered using the Cartesian metric.
We now specialize the equation of motion to a binary
system. We place the center of mass at the origin of
coordinates, and calculate the relative acceleration a =
a; — az. We relate the individual body locations x4 to

the relative vector x by
x1 = (m2/m)x(1 4+ O(€)), x2=—(mi/m)x(1+ O(e))
(3.12)

[the post-Newtonian corrections to these expressions are
known (see, e.g., [36]) but will not be needed]. We define
J

i mz*
Q' ———
r3

1 ] m ;o 5
+= [8(1 — 3n)vel — (4—13) 2 a:’] M

1 i j j i 31k 17 (6)
+E—(1—3n)[9v z’ + 87zt — 8v - x6Y ] " M7 — ——

16 om
45 m

To the required order the symmetric trace-free (STF)
moments M;;... and S;;... are identical to the STF mo-
ments that determine the far-zone gravitational wave
form (see [31] for justification). For two-body systems,
to the required order, they can be taken, for example,
from Egs. (3.6a), (3.6b), and (3.7a) of [12]:

My =I; — %sijzkk , (3.16a)
Mige = —ps(om/m) |=s'*

—%rz(éijzk + §9%gt 4 kg )] . (3.16b)

Sij = —5u(m/m)(@ L + 2 L) (3.16¢)

—4AV)ViVieact — 4V V Viacs + 4V

acth - 3V‘reactv - 4Vj V'react'v UJ] 9

[sijkijls,(;) + Zeijkzmvjs,(ci)l — eljkmjv’S,(j) + sijka:jvlSS)]} .

react

(3.11)

[
édm = m; — mgy, and note the useful formulas

(m} +m3)/m?> =1-2n, (6m/m)®=1—4n,

(m3 +m3)/m® =1-39. (3.13)

At 5/2PN order, the resulting equation of motion is

at ~ —maz'/r3 — ges/zszi(;') . (3.14)
Substituting the 5/2PN part of a* wherever it appears
in the post-Newtonian correction terms in Egs. (3.9),
expressing everything in terms of relative variables using
Eq. (3.12), and dropping the standard, nondissipative
2PN terms, we obtain, to 7/2PN order

2 . 1 i 55 7 2 m 5
— ges/zm’Mi(jS) + 67/2{ﬁ(1 —3n)(17z'z? — 11725 J):kaj(k) & {(1 —3n)v? — (4 — 17)7] mle.(k)

(3.15)

[

where
i j 29 2 1 i j
L =pz*zx? +ep E(l — 3n)v* — ?(5 — 8n)m/r|z'x

+§11(1 — 3n)[117r2v0? — 12rr’z(iui)]) : (3.17)
We now calculate the time derivatives of these moments,
using post-Newtonian equations of motion [(2.2a) and

(2.2b)] in the Mi(j5) moment that appears at 5/2PN order,
but using Newtonian equations of motion in terms that
are already of 7/2PN order. Note that in the moment
Sij, L can be treated as constant to the order needed.
Substituting into Eq. (3.15) and collecting terms, we
obtain, finally, Eq. (1.4), with As/s, Bs/2, A7/2, and
Bz, given by Eq. (1.8). These time-derivatives and
substitutions were implemented using MAPLE.
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IV. CONCLUDING REMARKS

The calculation of near-zone gravitational radiation
reaction was carried out in a specific gauge defined in
[28], and thus it is no surprise that the coefficients in
the radiation-reaction terms are fixed. It is a nontrivial
check of our energy balance method to see whether this
solution corresponds to a particular gauge choice within
the balance method, i.e., to a particular choice of the pa-
rameters a, 3, §;, and €5. It is nontrivial, because there
are 18 constraints on these 8 parameters, so there is no
guarantee a priori that a consistent solution will result.
Comparing the near-zone-derived expressions, Eq. (1.8),
term by term with the coeflicients listed in Egs. (2.11)
and (2.18), we indeed find the unique, consistent solution

a=4, B=5, (4.1a)
99
51 = —1—4' + 277’] y (52 = 5(1 - 4’!]) ) (41b)
274 67 5
53 = T ﬁ’f], 64 = 5(1 —77) s (41C)
1 51 71
= —=(292 = 4 7. )
05 7( +57n), es 58 T 12" (4.1d)
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This strongly supports energy and angular momentum
balance, both as a valid principle in gravitational radia-
tion emission, and as a useful tool for deriving equations
of motion with radiation reaction. In [31], energy and
angular momentum balance are justified rigorously for
general systems within the post-Minkowskian framework.

We are in the process of extending the methods of this
paper to include the effects of spin-orbit coupling [47]. In
principle it also should be possible to extend the radiation
reaction formulas to second-post-Newtonian order, corre-
sponding to 9/2PN order in the equations of motion, us-
ing recently derived 2PN formulas for gravitational-wave
generation from binary systems [18-20].
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