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In a recent study of Thomas precession of electron spin in the context of the Dirac equation, S
and Mathur identify the non-Abelian Berry potential (arising from Kramers degeneracy) with the m
We point out that there is a global mathematical subtlety which prevents such an identification.
on to clarify the physical context in which meronsdo arise as Berry potentials.
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In a very interesting recent Letter, Shankar and Mat
[1] (SM) claim that the non-Abelian gauge field [2,3] ari
ing from Thomas precession (TP) is a meron. The d
cussion of [1] is set in the context of the Dirac electr
and the non-Abelian Berry phase [3] that arises when
ergy levels are pairwise degenerate. Merons are sing
globally nontrivial gauge field configurations which ha
half-integer topological charge. As the reader may rec
globally nontrivial, nonsingular configurations which ha
integer topological charge are called instantons. Roug
speaking, a meron [4] is “half an instanton.” These gau
field configurations (instantons and merons) are relevan
the functional integral in QCD. For certain values of t
QCD coupling constant, meron pairs bind together to fo
instantons. This phase transition was studied [5] in
1970s in relation to confinement in QCD. Attempts su
as [1] to elucidate the properties of merons in simple a
familiar physical situations are therefore well motivat
and welcome.

Globally nontrivial gauge fields have also appear
in the context of Berry’s phase. The simplest syst
exhibiting Berry’s phase is a two-state system. As is w
known, the Berry potential [2] for this system describe
magnetic monopole. The correct global description of t
gauge field needs the notion of a fiber bundle or twis
product. As was first pointed out by Avronet al. [6] and
subsequently discussed in [7], other globally nontriv
gauge field configurations such as instantons also em
as non-Abelian Berry phases. SM now claim that mero
appear as Berry potentials in Thomas precession of
Dirac electron.
0031-9007y96y76(5)y717(5)$06.00
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The purpose of this Letter is to point out a gap in th
reasoning presented by SM in identifying the TP gau
field with the meron. In order to make our main poin
clearly, we first give an elementary account of Thom
precession as a gauge field and show that the connec
that emerges has no globally nontrivial features. W
then review Abelian merons in the context of Berry
phase. This simple and familiar situation is a useful a
to understanding non-Abelian merons by analogy. W
go on to place the interesting work of SM in its prop
context by drawing upon earlier work [6,7]. Combinin
insights gained from [1,6,7], we conclude that meron
gauge fieldsdo occur as Berry potentials,but not in
the context of TP. This is the main conclusion of this
paper.

Thomas Precession.—Shankar and Mathur [1] discus
TP in the context of Kramers degeneracy in the Dir
equation. It is somewhat simpler, however, to consid
Thomas precession in the purely classical context
special relativistic kinematics. This gives an abstra
geometric picture of TP which can then be viewed
any representation of the rotation group. Our discuss
in quite general and applied equally to the spin of
electron, a gyroscope, or a star.

Consider the family of inertial observers in spe
cial relativity. Each observer is described by h
four-velocity um, umum ­ 1. [We use a met-
ric of signature s1, 2, 2, 2d and m ­ 0, 1, 2, 3.]
The space H 1 of inertial observers is given by
H 1 ­ humjumum ­ 1, u0 . 0j. Each observer
regards four-vectors orthogonal toum as “space:”
© 1996 The American Physical Society 717



VOLUME 76, NUMBER 5 P H Y S I C A L R E V I E W L E T T E R S 29 JANUARY 1996

-

e

e

e

l

s
o
ia
t
n
b

-

r
i

o
ta
it
e

-

a

ll

es
ch
pply

a

de
is

-
c
tic

n-

re

y

uth
lar
tial

-

g

S ­ hyjy ? u ­ 0j. Given two observers with four
velocities u1 and u2, there is a “pure boost” Lorentz
transformation

L
m
21n ­ dm

n 2 s1 1 u1 ? u2d21 sum
1 1 u

m
2 d su1n 1 u2nd

1 2u
m
2 u1n ,

which takesu1 to u2: L
m
21nun

1 ­ u
m
2 . It follows thatL21

mapsS1 to S2, and moreover takes orthonormal fram
in S1 to orthonormal frames inS2. It is easy to see
that L11 is the identity andL12 ­ L

21
21 . However, if

u1, u2, and u3 are three observers, one finds that th
composite Lorentz transformationL123 ­ L13L32L21 is
not the identity. L123 leaves u1 invariant sL123u1 ­
L13L32L21u1 ­ L13L32u2 ­ L13u3 ­ u1d. Further, the
spacelike vectorwm := emnabu1nu2au3b is orthogonal to
u1, u2, u3 and is therefore unchanged byL123: L123w ­
w. It follows thatL123 must be a rotation in the spacelik
plane orthogonal tou1 and w. To find the angle of
rotation, one need only work out the trace ofL123. A
straightforward calculation shows that the angle of Thom
rotation [8] is the deficit angle [9] of the geodesic triang
on the unit hyperboloidH 1 with verticesu1, u2, u3. Thus
TP is a direct consequence of the curvature ofH 1.

Thomas precession arises because a system which i
in uniform motion changes inertial frames. A closed lo
in the space of inertial frames can result in a nontriv
rotation. Thus a gyroscope whose four-velocity execu
a loop in H 1 will precess, even if it is not acted o
by external torques in its rest frame. This can also
expressed as Fermi transport of the spin vectorsm [ S
along the world line [10]:

dsmydt ­ 2su ^ Ùudmnsn ­ 2um Ùunsn (1)

(sinces ? u ­ 0). Choosing an orthonormal frameei
m [

Su, i ­ 1, 2, 3, at everyu [ H 1, one can rewrite (1)
asdsi 1 Ai

jsj ­ 0, whereAi
j ­ ei ? dej andsi ­ smei

m.
Aij ­ 2Aji is the Thomas “angular velocity.” Under lo
cal changes of framefeisud ! Ri

jsudejsudg, A transforms
inhomogeneously like a gauge field. Thus Thomas p
cession can be viewed as due to a gauge field, wh
lives on the unit hyperboloidH 1 and takes values in
the Lie algebra of the rotation group. The purpose
the preceding rather elementary discussion is to ob
an explicit expression for this gauge field so that
global structure (or lack thereof) can be investigat
Fix a fiducial observerN with four-velocity u

m
N su0

N ­
1, ui

N ­ 0, i ­ 1, 2, 3d and an orthonormal framee
±m
i in

SN se±i ? uN ­ 0, e±i ? e±j ­ 2dijd. Transport this frame
to all of H 1 following the earlier discussion: De
fine Lsud ­ L21su2, u1d ku1­uN ,u2­u and eisud := Lsude±i .
This is a global choice of gauge onH 1. The vec-
tor potential describing Thomas precession is now e
ily written down: Ai

j ­ ei ? dej ­ e±iL21dLe±j ­ s1 1

u0d21 sduiuj 2 dujuid. Note thatui are global coordi-
nates overH 1 and the gauge we pick is globally we
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defined all overH 1. A small calculation shows that the
Chern-Simons three-form

KsAd := TrfA ^ dA 1
2
3 A ^ A ^ Ag (2)

vanishes identically onH 1. To make contact with the
parameter space of [1], we now considerP 1, the space of
future pointing timelike momentaP 1 ­ hpmjm2 := p ?

p . 0, p0 . 0j. [SM use coordinatess $p, md on P 1, but
any set will do. The complete parameter space includ
P 2, the space of past pointing timelike momenta, whi
are needed to describe positrons. Our remarks also a
to P 2 with suitable modifications.]P 1 naturally projects
down to H 1: p1spmd ­ um ­ pmym. It is clear that
the connection describing Thomas precession onP 1 is
just the pullbackp

p
1 A of the connectionA on H 1.

The integral of the Chern-Simons form overany three-
surface M in P 1 is identically zero:

R
M p

p
1 K ­R

p1sMd K ­ 0. Since merons are characterized by
fractional surface integral forKsAd, we conclude that the
gauge field describing Thomas precession isnot a meron.
This appears to be in direct conflict with the claim ma
by SM. The rest of this Letter is devoted to resolving th
apparent contradiction.

Monopoles and Berry’s phase.—Let us begin with a
simple system, in which a globally nontrivial Berry po
tential arises—a spin-1

2 system in an external magneti
field. We regard the three components of the magne
field as parametersxi , i ­ 1, 2, 3, which can be varied,
and write the Hamiltonian asH ­ xisi , where si are
the three Pauli matrices. It is enough to restrict atte
tion to the unit sphereS2 ­ hxi [ 43jxixi ­ 1j in the
parameter space. At each point ofS2, there is a two-
dimensional complex vector spaceC2 vector space of spin
states (whose elements we writej l) on which the Hamil-
tonian acts. SinceH squares to unity, its eigenvalues a
61. The subspace of positive energy stateshjysxdl [
C2jHsxdjysxdl ­ jysxdlj defines a line bundle overS2.
Normalizing the stateskysxdjysxdl ­ 1d produces anS1

bundle overS2 (the Hopf bundle). To compute the Berr
potential which arises when the parametersxi are var-
ied, note thatHsxd ­ hsxds3h21sxd, wherehsxd is defined
by hsxd := f2s1 1 x3dg21y2 f1 1 Hsxds3g at all points ex-
cept the south pole, wherex3 ­ 21. If we pick a nor-
malized positive energy statejy±l at the north pole, which
satisfiess3jy

±l ­ jy±l, jysxdl := hsxd jy±l is a normalized
positive energy state all over the sphere (except the so
pole). (Similar considerations also apply to the south po
patch, which excludes the north pole.) The Berry poten
is A ­ kysxd jdjysxdl ­ ky±jh21dhjy±l and its field strength
is F ­ dA. It is easily seen that this field strength de
scribes a magnetic monopole and that1ys2pd

R
S2 F ­ 1.

The Abelian meron.—Let us now regardA as living on
43 2 h0j (pull back the connection defined onS2 by the
natural map$x ! $xyjxj). To see the gauge field describin
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an Abelian meron, one just slices this parameter sp
along the equatorialx3 ­ 0 plane. The Berry potentia
then becomesA ­ siy2ddf where f is the azimuthal
angle on the plane. Evidently, the field strength of t
connection is identically zero on the punctured pla
Nevertheless, the integralk1 := 1ys2pid

R
A ­ 1

2 for a
loop that encircles the origin anticlockwise. This c
be seen either by explicit computation or by noticing
Stokes’ theorem thatk1 can be converted to a surfac
integral of F over the northern hemisphere in the thre
dimensional parameter space. Since the integral ofF over
the entire sphere is unity, we get half this answer. O
could viewk1 as just the holonomy of the flat connectio
A on 42 2 h0j (the “Aharonov-Bohm effect”). Or one
could take a more lofty point of view (which carries ov
to the non-Abelian case) and describe this as a secon
characteristic class [11]. Unlike the primary characteris
classes (Chern classes) (which are integers, like

R
S2 F

above), the secondary classes (Chern-Simons invaria
are fractions. The integer part ofk1 can be altered by
(large) gauge transformations. But the fractional part i
gauge-invariant quantity and describes a global propert
the connection.

Actually, this “Abelian meron” has already playe
a part in the historical development of Berry’s phas
Herzberg and Longuet-Higgins [12] (HL) were studyin
the quantum mechanics of polyatomic molecules wh
they noticed a curious sign change in the wave funct
around a degeneracy. The result is easy to see for2 3

2 matrices. Asu goes from 0 to2p , the real symmetric
matrix fcossuds3 1 sinsuds1g returns to itself, but its par-
allel transported eigenvectorfcossuy2d, sinsuy2dg reverses
sign. As HL were interested in time-reversal-invaria
systems, they restricted themselves to real Hamiltonia
Consequently, they were restricted to a “slice” of t
Poincaré sphere and discovered a poor cousin of Ber
phase [2]. From the present perspective, what HL s
was an Abelian meron. Historically, this sign mention
above was an important stepping stone that led Berry
the discovery [2] of the phase.

Instantons from Berry’s phase.—We now draw upon
the work of [6,7] to see how instantons appear as Be
potentials. The Pauli matrices can be viewed eit
as generators of the rotation group obeying commu
tion relations or as generators of the Clifford algeb
obeying anticommutationrelations. If one takes the
first viewpoint, generalizing to higher spin generato
yields monopoles of higher strength. Following [7
we choose the second viewpoint for generalizati
One considers higher-dimensional Euclidean Cliffo
algebras. Consider the five-dimensional Clifford a
gebra generated byGi , i ­ 1, . . . , 5, hGi , Gjj ­ 2dij.
These generators can be realized as4 3 4 matrices:
G1 ­ s1 ≠ s1, G2 ­ s1 ≠ s2, G3 ­ s1 ≠ s3, G4 ­
s2 ≠ I , G5 ­ G1G2G3G4 ­ 2s3 ≠ I , where I is the
2 3 2 unit matrix. We consider the system described
ce
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the Hamiltonian

H ­ xiGi , (3)

where thexi now span a five-dimensional parameter spa
45 2 h0j. This might appear as a mathematically m
tivated generalization, as indeed it is, but such a sys
can be physically realized [6] by a spin-3

2 system in an ex-
ternal quadrupole electric field and is relevant to nucl
quadrupole resonance (NQR). As before, we need o
restrict our attention to the unit sphereS4 in parameter
space. The positive energy subspace ofH defines aC2

bundle overS4. Choosing an orthonormal frame in th
fiber gives an Us2d bundle overS4. Just as before we no
tice thatHsxd ­ hsxdG5h21sxd, wherehsxd is now defined
by hsxd := f2s1 1 x5dg21y2 f1 1 HsxdG5g at all points of
S4 except the south pole, wherex5 ­ 21. If we pick an
orthonormal pair of positive energy statesjy±al sa ­ 1, 2d
at the north pole, which satisfyG5jy

±
al ­ jy±al, the states

jyasxdl := hsxdjy±a l are orthonormal positive energy stat
all over the sphere [except the south pole, wherehsxd is
ill defined]. The Berry potential is now a2 3 2 anti-
Hermitian matrix

Aab ­ kyasxd jdjybsxdl ­ ky±a jh21dhjy±bl . (4)

A is in fact traceless and so is really an SU(2) conn
tion. Its field strength is given byF ­ dA 1 A ^ A, in
the notation of matrix-valued differential forms. As e
plained at length in [6,7], thisA describes an instanton an
1yN

R
S4 TrfF ^ Fg ­ 1, whereN is a normalization

factor.
The non-Abelian meron.—To see the gauge field de

scribing the non-Abelian meron, one just slices thisS4

parameter space along the equatorialx5 ­ 0 plane. The
unit sphereS3 in this equatorial plane defined byxixi ­ 1
can be identified with SUs2d: gsxd ­ x4 1 i $x ? $s. It is
also convenient to introducev ­ g21dg, the Maurer-
Cartan form on the SU(2) group.jyasxdl provide a
global choice of positive energy states all overS3.
(The meron bundle is trivial, unlike the instanton bu
dle.) A little computation shows that the vector pote
tial Aab ­

1
2 ky±ajHsxddHsxd jy

±
bl defined by (4) is just

half the Maurer-Cartan formv, A ­
1
2 v, on S3. It

is now easy to work out the Chern-Simons invaria
k2sAd := 1yN

R
S3 KsAd, where N is a normalization

constant (like2pi above), which is so chosen thatk2svd
is unity. Using the fact thatdv 1 v ^ v ­ 0, we find
thatk2 ­

1
2 . This result can also be seen by noticing th

by Stokes’ theoremk2 can be converted to an integral o
TrfF ^ Fg over the northern hemisphere ofS4. Since the
(suitably normalized) integral of TrfF ^ Fg over the en-
tire sphere is unity, we get half this answer. This sho
that the gauge field onS3 has a nonvanishing seconda
characteristic class. As mentioned earlier, the integer
719



VOLUME 76, NUMBER 5 P H Y S I C A L R E V I E W L E T T E R S 29 JANUARY 1996

bu
e

ro
he

ur
a

e

n
o

to
se
d
m
he
ha
io

ba
th

a
ht

o
o

e

e

u

is

on

or
.

e
h

ge
ld
ce.

tary

the
no
he
ns

ic
an
he
etic
ght
” to
ith
an
h
ers

the

l

al
,
e
s

ge,
y’s

is
n
ge
ies.
is-
sion
lp
and

ers.

i-
and
id-
ed
the

eld
e
i-
c-
ne
ni-
nd

in-
of k2 can be altered by (large) gauge transformations,
the fractional part is a gauge invariant quantity and d
scribes a global property of the connection. The me
gauge field configuration is obtained by pulling back t
gauge fields 1

2 vd from S3 to 44 2 h0j. By using Stokes’
theorem to transform the Chern-Simons integral to a fo
dimensional integral, we conclude that the meron h
instanton number12 , all of which is concentrated at th
(excised) origin of44.

Merons and Thomas precession.—SM claimed that the
meron arises as a Berry potential in Thomas precessio
the spin of the Dirac electron. This claim was based
the fact that the Dirac HamiltonianH ­ $p ? $a 1 bm is
of the form (3), since the Dirac matrices$a andb realize
the Euclidean Clifford algebra. Viewing the rest massm
and spatial momenta$p as parameters, SM would seem
have a physical realization of the system (3) discus
above. This is indeed true locally. In any allowe
region of this parameter space, one can compute Tho
precession effects of the Dirac electron by invoking t
wisdom gained from the system described by (3). W
then prevents the identification of the Thomas precess
gauge field with the meron? The answer lies in the glo
nature of the parameter space. The allowed values of
electron four-momentumin special relativity are restricted
to lie within the light cone. It is impossible to accelerate
subluminal particle like the electron to the speed of lig
since such a process would take an infinite amount
proper acceleration. As a result, the global structure
the SM parameter spaces $p, md of the Dirac electron does
not support a meronic gauge field. This point is explain
in more detail below.

In our earlier, elementary discussion of Thomas prec
sion we regarded the Berry connection onP 1 as deriving
from the connection onH 1 by pullback. However, the
SM parametrization associates with each four-moment
pm the pointp2spmd ­ s1yp0d s $p, md ­ s $x,

p
1 2 $x ? $xd

on the sphereS31 (the northern hemisphere ofS3). Since
both p1 and p2 satisfy pslpd ­ pspd (for l real and
positive), the composite mapp2 ± p

21
1 from H 1 to S31

is well defined. The mapping is given explicitly by

$x ­ $uy
q

s1 1 $u ? $ud . (5)

(Similarly, H 32, the negative energy unit mass shell
mapped to the southern hemisphereS 32.) As the reader
can easily verify, this is just the stereographic projecti
of the unit hyperboloidH ­ H 1 < H 2 to the unit
sphereS3. This map is 1-1, but no onto. The equat
of S3 s $x ? $x ­ 1d is not included in the range of (5)
Consequently, the inverse map from the unit sphereS3 to
H does not exist. The equator ofS3 in the SM parameter
space is not represented in the allowed parameter spac
momenta. This gap in the parameter space is enoug
720
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spoil the identification of the Thomas precession gau
field with the meron. The meronic nature of a gauge fie
is a global notion and needs a global parameter spa
This resolves the apparent conflict between the elemen
calculation presented earlier and the claim of [1].

We have assumed throughout this discussion that
electron is acted upon by a force which produces
torque (in the electron rest frame) on the spin of t
electron. One can realize this force theoretically by mea
of a scalar potential in the Dirac Hamiltonian. Electr
fields do not produce torque-free acceleration. If
electric field is applied to the electron to accelerate it, t
spin of the moving electron sees an apparent magn
field and therefore precesses. In order to get the ri
physical answer, one has to add this “dynamical phase
the “geometrical phase” that we have been concerned w
in this paper. We mention this because the electron in
external electric field was the historical context in whic
Thomas precession was originally discovered. Read
who wish to compare the present discussions with
classical one will need to remember this.

The Chern-Simons three-forms2dKsAd of the meron
is closed, but not exact.k2sAd measures the nontrivia
cohomology of this closed form onS3 (or equivalently
44 2 h0j). It is evident thatP 1 is a contractible space
and so has trivial cohomology. This is the topologic
basis of our objection to SM. In spite of this objection
we consider the work of [1] very interesting and for th
most part valid. It is only the claimed relation to Thoma
precession [1] that we dispute here. To our knowled
SM are the first to discuss merons in the context of Berr
phase. From earlier work and the present paper, it
clear that meronscan be realized as Berry potentials i
the laboratory in NQR. This may be of interest to gau
theorists as well as the NQR and Berry phase communit

It is a pleasure to thank R. Nityananda for several d
cussions on gauge theoretic aspects of Thomas preces
over the years, V. Pati and K. Paranjape for their he
with secondary characteristic classes, and R. Shankar
H. Mathur for an e-mail correspondence on these matt
I also thank C. S. Shukre for discussions.

Note added.—Shankar and Mathur (private commun
cation) ascribe the discrepancy between our results
theirs to a difference in the physical effect being cons
ered. In their view, the spin of a gyroscope is inde
described by the TP gauge field described above, but
spin of the electron is described by a different gauge fi
(spin-orbit coupling). We do not share this view. W
hold that spin-orbit coupling and TP are identical phys
cal effects. In other words, the spin of the Dirac ele
tron and gyroscopes are identically affected by TP. If o
were to transport an electron and a gyroscope (with i
tially parallel spins, applying no rest-frame torque) arou
the same closed loop inH 1, their spins would remain
parallel. To see this, it is enough to consider an
finitesimal loop inH 1. (Finite loops can be built up
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from infinitesimal ones.) By a Lorentz transformatio
one can arrange for the infinitesimal loop to be cente
at uN on H 1. This simplifies the algebra, since we ne
only deal with low velocities. For low velocities Mathu
has given [Eq. 9, the second of Ref. [1]] an express
for the SM gauge field in a gauge suitable for compa
son with the present paper. For low velocities, the
gauge field [see just above Eq. (2) of this paper] becom
ATP ­ iy2eijkuidujtk , wherestkdl

m := 2 iekl
m are3 3 3

matrices realizing the angular momentum commutat
relations. This agrees exactly with Mathur’s express
[Eq. 9, the second of Ref. [1]]. Thus the SM gauge fie
and the TP gauge field describe the same local physics
the motion of the gyroscope is identical to the motion
electron spin. We maintain that the discrepancy betw
our results and SM lies in the global problems describ
in this paper.
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