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In a recent study of Thomas precession of electron spin in the context of the Dirac equation, Shankar
and Mathur identify the non-Abelian Berry potential (arising from Kramers degeneracy) with the meron.
We point out that there is a global mathematical subtlety which prevents such an identification. We go
on to clarify the physical context in which merode arise as Berry potentials.

PACS numbers: 03.65.—w, 03.30.+p

In a very interesting recent Letter, Shankar and Mathur The purpose of this Letter is to point out a gap in the
[1] (SM) claim that the non-Abelian gauge field [2,3] aris- reasoning presented by SM in identifying the TP gauge
ing from Thomas precession (TP) is a meron. The disfield with the meron. In order to make our main point
cussion of [1] is set in the context of the Dirac electronclearly, we first give an elementary account of Thomas
and the non-Abelian Berry phase [3] that arises when enprecession as a gauge field and show that the connection
ergy levels are pairwise degenerate. Merons are singulathat emerges has no globally nontrivial features. We
globally nontrivial gauge field configurations which havethen review Abelian merons in the context of Berry’'s
half-integer topological charge. As the reader may recallphase. This simple and familiar situation is a useful aid
globally nontrivial, nonsingular configurations which haveto understanding non-Abelian merons by analogy. We
integer topological charge are called instantons. Roughlgo on to place the interesting work of SM in its proper
speaking, a meron [4] is “half an instanton.” These gaugeontext by drawing upon earlier work [6,7]. Combining
field configurations (instantons and merons) are relevant tmsights gained from [1,6,7], we conclude that meronic
the functional integral in QCD. For certain values of thegauge fieldsdo occur as Berry potentialshut not in
QCD coupling constant, meron pairs bind together to fornthe context of TP. This is the main conclusion of this
instantons. This phase transition was studied [5] in theaper.
1970s in relation to confinement in QCD. Attempts such Thomas PrecessioR-Shankar and Mathur [1] discuss
as [1] to elucidate the properties of merons in simple and’P in the context of Kramers degeneracy in the Dirac
familiar physical situations are therefore well motivatedequation. It is somewhat simpler, however, to consider
and welcome. Thomas precession in the purely classical context of

Globally nontrivial gauge fields have also appearedspecial relativistic kinematics. This gives an abstract,
in the context of Berry’s phase. The simplest systengeometric picture of TP which can then be viewed in
exhibiting Berry’s phase is a two-state system. As is wellany representation of the rotation group. Our discussion
known, the Berry potential [2] for this system describes an quite general and applied equally to the spin of an
magnetic monopole. The correct global description of thielectron, a gyroscope, or a star.
gauge field needs the notion of a fiber bundle or twisted Consider the family of inertial observers in spe-
product. As was first pointed out by Avraat al. [6] and  cial relativity. Each observer is described by her
subsequently discussed in [7], other globally nontrivialfour-velocity —u*, u*u, = 1. [We wuse a met-
gauge field configurations such as instantons also emergie of signature (+,—,—,—) and w =0,1,2,3]
as non-Abelian Berry phases. SM now claim that meronghe space H * of inertial observers is given by
appear as Berry potentials in Thomas precession of thé{ * = {u*|u*u, = 1, u® > 0}. Each observer
Dirac electron. regards four-vectors orthogonal ta* as “space:”
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S ={vlv-u =0} Given two observers with four-
velocities u; and u,, there is a “pure boost” Lorentz
transformation

Asy, =84 — (1 + uy

"
+ 2uy uy, ,

cu) M)+ uy) (uny + uzy)

which takesu; to ux: A4, ul = ub. It follows that A,
maps S; to S,, and moreover takes orthonormal frame
in S; to orthonormal frames inS,. It is easy to see
that A, is the identity andA;, = A{ll. However, if
uy, up, and uz are three observers, one finds that the
composite Lorentz transformatiof;o; = Aj3AsAr is
not the identity. Aiy; leavesu; invariant (Aipzu; =
A13A32A21u1 = A13A32M2 = A13u3 = Ml). Further, the
spacelike vectow* = e“”“ﬁul,,uzdugﬁ is orthogonal to
uy, us, uz and is therefore unchanged Byi,;3: Ajpzw =
w. It follows thatA ;>3 must be a rotation in the spacelike
plane orthogonal tax; and w. To find the angle of
rotation, one need only work out the trace &fy;. A

straightforward calculation shows that the angle of Thoma{ (
rotation [8] is the deficit angle [9] of the geodesic triangle '

on the unit hyperboloidH * with verticesu,, u,, u3. Thus
TP is a direct consequence of the curvaturerof'.
Thomas precession arises because a system which is

in uniform motion changes inertial frames. A closed loop
in the space of inertial frames can result in a nontrivial
rotation. Thus a gyroscope whose four-velocity execute

a loop in H'* will precess, even if it is not acted on
by external torques in its rest frame. This can also b
expressed as Fermi transport of the spin vestoie S
along the world line [10]:

ds*/dt = —(u A W*’s, = —utu’s,

(1)

(sinces - u = 0). Choosing an orthonormal framz% S
S., i =1,2,3, at everyu € H ", one can rewrite (1)
asds' + Als/ = 0,whereA} = e’ - de; ands’ = stel,.
AY = —AJ" is the Thomas “angular velocity.” Under lo-
cal changes of frame’(u) — Ri(u)e’ (u)], A transforms

defined all overH{ *. A small calculation shows that the
Chern-Simons three-form

KA) =TIAAdA + 3AANA A A] )

vanishes identically of{ . To make contact with the

gharameter space of [1], we now consid@r, the space of

future pointing timelike moment&®* = {p,|m* == p -

p >0, po > 0}. [SM use coordinatep, m) on P*, but

any set will do. The complete parameter space includes

P~, the space of past pointing timelike momenta, which

are needed to describe positrons. Our remarks also apply

to P~ with suitable modifications.JP " naturally projects

down to H *: m(p,) = u* = p*/m. It is clear that

the connection describing Thomas precession?h is

just the pullback7A of the connectionA on H .

The integral of the Chern-Simons form ovany three-

surface M in P* is identically zero: [, 7K =

~m) K =0. Since merons are characterized by a
actional surface integral fok(A), we conclude that the

gauge field describing Thomas precessiondsa meron.

This appears to be in direct conflict with the claim made

r%f SM. The rest of this Letter is devoted to resolving this

apparent contradiction.

Monopoles and Berry's phase-Let us begin with a
gimple system, in which a globally nontrivial Berry po-
tential arises—a spig- system in an external magnetic
dield. We regard the three components of the magnetic
field as parameters’, i = 1,2,3, which can be varied,
and write the Hamiltonian a#l = x‘o;, where o; are
the three Pauli matrices. It is enough to restrict atten-
tion to the unit spheres? = {x’ € R3|x'x; = 1} in the
parameter space. At each point 81, there is a two-
dimensional complex vector spa€@ vector space of spin
states (whose elements we wrjt§ on which the Hamil-
tonian acts. Sincél squares to unity, its eigenvalues are
+1. The subspace of positive energy statps(x)) €
C?|H(x)|lv(x)) = |v(x))} defines a line bundle oves?.

inhor_nogeneously _Iike a gauge field. Thus Th_omas preNormalizing the staté(v(x)|v(x)) = 1) produces ars!
cession can be viewed as due to a gauge field, whicBundle overs? (the Hopf bundle). To compute the Berry

lives on the unit hyperboloidH © and takes values in

potential which arises when the parametetsare var-

the Lie algebra of the rotation group. The purpose ofied, note that{ (x) = h(x)osh~'(x), whereh(x) is defined

the preceding rather elementary discussion is to obta

iBy 2(x) := [2(1 + x3)]7Y2[1 + H(x)o3] at all points ex-

an explicit expression for this gauge field so that itscept the south pole, where = —1. If we pick a nor-
global structure (or lack thereof) can be investigatedmalized positive energy stat®) at the north pole, which

Fix a fiducial observemMN with four-velocity u,’G(uR, =
1, uy =0, i = 1,2,3) and an orthonormal framé“ in
Snv(é - uy = 0,¢; - €, = —5;;). Transport this frame
to all of H{* following the earlier discussion: De-
fine A(u) = A1 (u2, u1) lluy—uy.uo—e @nd e’ (u) := A(u)é.
This is a global choice of gauge of{ *. The vec-

satisfiesos|9) = |8), |v(x)) := h(x)|8) is a normalized
positive energy state all over the sphere (except the south
pole). (Similar considerations also apply to the south polar
patch, which excludes the north pole.) The Berry potential
isA=(v(x)|d|lv(x)) = (5|h~'dh|d) and its field strength

is F = dA. It is easily seen that this field strength de-

tor potential describing Thomas precession is now easscribes a magnetic monopole and tha ) [¢. F = 1.

ily written down: A} = ¢’ - de; = & A71dAE; = (1 +
u®) ' (du'u; — du;u’). Note thatu’ are global coordi-
nates over{ * and the gauge we pick is globally well
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The Abelian meror—Let us now regard\ as living on
IR? — {0} (pull back the connection defined ¢’ by the
natural mapc — x/|x|). To see the gauge field describing
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an Abelian meron, one just slices this parameter spacthe Hamiltonian

along the equatoriat® = 0 plane. The Berry potential '

then becomest = (i/2)d¢ where ¢ is the azimuthal H=x'T;, 3)
angle on the plane. Evidently, the field strength of this

connection is identically zero on the punctured planewhere thex’ now span a five-dimensional parameter space
Nevertheless, the integrad, := 1/27i) [A = % for a IR’ — {0}. This might appear as a mathematically mo-
loop that encircles the origin anticlockwise. This cantivated generalization, as indeed it is, but such a system
be seen either by explicit computation or by noticing bycan be physically realized [6] by a sp%system in an ex-
Stokes’ theorem thak; can be converted to a surface ternal quadrupole electric field and is relevant to nuclear
integral of F over the northern hemisphere in the three-quadrupole resonance (NQR). As before, we need only
dimensional parameter space. Since the integrel@fer  restrict our attention to the unit sphesé in parameter
the entire sphere is unity, we get half this answer. Onepace. The positive energy subspaceHoflefines aC?
could viewk; as just the holonomy of the flat connection bundle overs*. Choosing an orthonormal frame in the
A on R? — {0} (the “Aharonov-Bohm effect”). Or one fiber gives an (2) bundle overs*. Just as before we no-
could take a more lofty point of view (which carries over tice thatH (x) = h(x)I'sh~'(x), whereh(x) is now defined

to the non-Abelian case) and describe this as a secondaby 4(x) := [2(1 + x7)]"/2[1 + H(x)I's] at all points of
characteristic class [11]. Unlike the primary characteristics* except the south pole, whexé = —1. If we pick an
classes (Chern classes) (which are integers, fikeF  orthonormal pair of positive energy stalés,) (« = 1,2)
above), the secondary classes (Chern-Simons invariants) the north pole, which satisfys|3,) = |3,), the states
are fractions. The integer part afi can be altered by |v,(x)) := h(x)|5,) are orthonormal positive energy states
(large) gauge transformations. But the fractional part is a&ll over the sphere [except the south pole, whie) is
gauge-invariant quantity and describes a global property dfl defined]. The Berry potential is now a X 2 anti-

the connection. Hermitian matrix
Actually, this “Abelian meron” has already played
a part in the historical development of Berry’'s phase. Awp = (o) |dlvg(x)) = <13a|h_1dh|13ﬁ>. (4)

Herzberg and Longuet-Higgins [12] (HL) were studying
the quantum mechanics of polyatomic molecules whe
they noticed a curious sign change in the wave functio
around a degeneracy. The result is easy to see far

2 matrices. Asd goes from 0 ti7, the real symmetric
matrix[cog#)o; + sin(@)o ] returns to itself, but its par-
allel transported eigenvectprog6/2), sin(6/2)] reverses
sign. As HL were interested in time-reversal-invariant@ctor- . .
systems, they restricted themselves to real Hamiltonians, 1€ Non-Abelian meroa-To see the gauge field de-

Consequently, they were restricted to a “slice” of theSCriPing the non—Allaellanhmeron, On%eI:JUSt Isllces :[ﬁis
Poincaré sphere and discovered a poor cousin of Berry,garameter s3p§ce along the equator ,0 plane. e
nit spheres- in this equatorial plane defined byx; = 1

phase [2]. From the present perspective, what HL saf/ . - . A .
was an Abelian meron. Historically, this sign mentioned®@" be |dent!f|ed W't.h SW): g(x) = f? tix 0. Itis
above was an important stepping stone that led Berry t§!SC_convenient to introduce = g dg, the Maurer-
the discovery [2] of the phase. artan forr_n on the SU(Z) group.|v,(x)) provide a
Instantons from Berry's phase-We now draw upon global choice of positive energy states all ovs?.
the work of [6,7] to see how instantons appear as Berr)gThe meron bundle |s.tr|V|aI, unlike the instanton bun-
potentials. The Pauli matrices can be viewed eithegle') A l'ttl? computation ShOOWS th.at the vecto.r poten-
as generators of the rotation group obeying commutalidl Aapg = 2 (F,1H(x)dH (x) [vg) def'”?d by (4) is just
tion relations or as generators of the Clifford algebrahalf the Maurer-Cartan formw, A = 5w, on $3. It
obeying anticommutationrelations. If one takes the is now easy to work out the Chern-Simons invariant
first viewpoint, generalizing to higher spin generatorska(A) := 1/N [¢ K(A), where N is a normalization
yields monopoles of higher strength. Following [7], constant (like27ri above), which is so chosen thet(w)
we choose the second viewpoint for generalizationis unity. Using the fact thafw + o A @ = 0, we find
One considers higher-dimensional Euclidean Cliffordthatx, = % This result can also be seen by noticing that
algebras. Consider the five-dimensional Clifford al-by Stokes’ theorenx, can be converted to an integral of
gebra generated byl;, i = 1,...,5, {I';,I';} = 26;;.  Tr[F A F]over the northern hemisphere $f. Since the
These generators can be realized 4 4 matrices: (suitably normalized) integral of TF A F] over the en-
I'N=01®0, =000, I's5=0,®03, I'y = tire sphere is unity, we get half this answer. This shows
0,01, I's =TI,y = —0o3 ® I, where | is the that the gauge field o8* has a nonvanishing secondary
2 X 2 unit matrix. We consider the system described bycharacteristic class. As mentioned earlier, the integer part

% is in fact traceless and so is really an SU(2) connec-
tion. Its field strength is given by = dA + A A A, in

the notation of matrix-valued differential forms. As ex-
plained at length in [6,7], thi& describes an instanton and
1/N [q TI[F A F] = 1, where N is a normalization

719



VOLUME 76, NUMBER 5 PHYSICAL REVIEW LETTERS 29 ANUARY 1996

of k, can be altered by (large) gauge transformations, buspoil the identification of the Thomas precession gauge
the fractional part is a gauge invariant quantity and defield with the meron. The meronic nature of a gauge field
scribes a global property of the connection. The merors a global notion and needs a global parameter space.
gauge field configuration is obtained by pulling back theThis resolves the apparent conflict between the elementary
gauge fielc{% w) from $3 to R* — {0}. By using Stokes’ calculation presented earlier and the claim of [1].
theorem to transform the Chern-Simons integral to a four- We have assumed throughout this discussion that the
dimensional integral, we conclude that the meron haglectron is acted upon by a force which produces no
instanton numbes, all of which is concentrated at the torque (in the electron rest frame) on the spin of the
(excised) origin ofiR*. electron. One can realize this force theoretically by means
Merons and Thomas precessie.HSM claimed that the of a scalar pOtential in the Dirac Hamiltonian. Electric
meron arises as a Berry potential in Thomas precession #€lds do not produce torque-free acceleration. If an
the spin of the Dirac electron. This claim was based orglectric field is applied to the electron to accelerate it, the
the fact that the Dirac Hamiltonia = p - @ + Bm is  Spin of the moving electron sees an apparent magnetic
of the form (3), since the Dirac matricésand B realize  field and therefore precesses. In order to get the right
the Euclidean Clifford algebra. Viewing the rest mass Physical answer, one has to add this “dynamical phase” to
and Spatial momentﬁ as parameters’ SM would seem to the “geometrical phase” that we have been concerned with
have a physical realization of the system (3) discussel this paper. We mention this because the electron in an
above. This is indeed true locally. In any allowed external electric field was the historical context in which
region of this parameter space, one can compute Thomd$)omas precession was originally discovered. Readers
precession effects of the Dirac electron by invoking thewho wish to compare the present discussions with the
wisdom gained from the system described by (3). Whaflassical one will need to remember this.
then prevents the identification of the Thomas precession 1he Cherm-Simons three-for2)K(4) of the meron
gauge field with the meron? The answer lies in the globalS closed, but not exact.«;(A) measures the nontrivial
nature of the parameter space. The allowed values of t ?omology O,f th's, closed for+m. 0" (or qulvalently
electron fourmomentunin special relativity are restricted —{0p. 1t 1S evident thatP™ is a_co_ntract|ble space
to lie within the light cone. It is impossible to accelerate a@Nd SO has trivial cohomology. This is the topological
subluminal particle like the electron to the speed of light,22SiS of our objection to SM.  In spite of this objection,
since such a process would take an infinite amount o e consider the work of [1] very interesting and for the

proper acceleration. As a result, the global structure ofnost part valid. lItis only the claimed relation to Thomas
the SM parameter spa¢@. m) of the Dirac electron does P/eCession [1] that we dispute here. To our knowledge,

not support a meronic gauge field. This point is eprainedS'vI are the first to d.'SCUSS merons in the context of Ber_ry_s
. . phase. From earlier work and the present paper, it is
in more detail below.

In our earlier, elementary discussion of Thomas preces;Elear that merongan be realized as Berry potentials in
sion we regarded the Berry connection i as deriving he laboratory in NQR. This may be of interest to gauge

. theorists as well as the NQR and Berry phase communities.
+
fSr(I:/Im ;ﬁgrﬁzg?zeg'g: a(l)sns}gcia?gsva\j/IiltEaglz;éhl;"(())l\j\f%%rr’n?riu It is a pleasure to thank R. Nityananda for several dis-
P . - 2 —— Russions on gauge theoretic aspects of Thomas precession
pu the pointma(p,) = (1/po) (p,m) = (X,V1 — X - X)

oW . . over the years, V. Pati and K. Paranjape for their help
on the sphere (the northern hemisphere 6f). Since with secondary characteristic classes, and R. Shankar and
both 7; and 7, satisfy w(Ap) = @ (p) (for A real and

. ; i N . H. Mathur for an e-mail correspondence on these matters.
positive), the composite map, o 7~ from 5{ to§ | also thank C.S. Shukre for discussions.
is well defined. The mapping is given explicitly by Note added—Shankar and Mathur (private communi-
cation) ascribe the discrepancy between our results and
s s S - theirs to a difference in the physical effect being consid-
X =a/1+u-u). ®)  ered. In their view, the spin of a gyroscope is indeed
described by the TP gauge field described above, but the
(Similarly, 3~ the negative energy unit mass shell isspin of the electron is described by a different gauge field
mapped to the southern hemisphér& .) As the reader (spin-orbit coupling). We do not share this view. We
can easily verify, this is just the stereographic projectiorhold that spin-orbit coupling and TP are identical physi-
of the unit hyperboloidH = H ™ U H ~ to the unit cal effects. In other words, the spin of the Dirac elec-
sphereS3. This map is 1-1, but no onto. The equatortron and gyroscopes are identically affected by TP. If one
of §3 (x - ¥ = 1) is not included in the range of (5). were to transport an electron and a gyroscope (with ini-
Consequently, the inverse map from the unit spisréo  tially parallel spins, applying no rest-frame torque) around
H does not exist. The equator &t in the SM parameter the same closed loop i *, their spins would remain
space is not represented in the allowed parameter spacemdrallel. To see this, it is enough to consider an in-
momenta. This gap in the parameter space is enough fmitesimal loop in{ *. (Finite loops can be built up
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. . [4] The word “meron” is a learned borrowing from the Greek,
son with the present paper. For low velocities, the TP

. . . meaning “part” or “fraction.” Other words that share the
gauge field [see just above Eq. (2) of this paper] becomes (416 oot are potyier and meomorphic.
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