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Black hole area in Brans-Dicke theory

Gungwon Kang*

Raman Research Institute, Bangalore 560 080, India
~Received 12 June 1996!

We show that the dynamics of the scalar fieldf(x)5 ‘ ‘ G21(x)’’ in Brans-Dicke theories of gravity makes
the surface area of the black hole horizonoscillatoryduring its dynamical evolution. It explicitly explains why
the area theorem does not hold in Brans-Dicke theory. However, we show that there exists a certain nonde-
creasing quantity defined on the event horizon which is proportional to the black hole entropy for the case of
stationary solutions in Brans-Dicke theory. Some numerical simulations are demonstrated for Oppenheimer-
Snyder collapse in Brans-Dicke theory.@S0556-2821~96!05022-9#

PACS number~s!: 04.70.Dy, 04.50.1h, 04.70.Bw
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I. INTRODUCTION

Scheel, Shapiro, and Teukolsky@1# have numerically
shown that Oppenheimer-Snyder collapse in Brans-Dic
theories of gravity produces black holes that are identica
those of general relativity in the final stationary stage, b
behave quite differently during dynamical evolution. For e
ample, in general relativity the apparent horizon of a bla
hole is always inside the event horizon and the total surfa
area of the event horizon never decreases inany classical
process provided that null energy condition for matter fiel
~i.e.,Tabk

akb>0 for all null vectorska) and cosmic censor-
ship conjecture are satisfied@2#. In Brans-Dicke~BD! theo-
ries of gravity, however, they found that there are some i
tial epochs in Oppenheimer-Snyder collapse during wh
not only the apparent horizon passes outside the event h
zon, but also the surface area of the event horizon decre
in time. Thus the area increase theorem for black holes
general relativity does not hold in Brans-Dicke theory. A
mentioned briefly in Ref.@1#, these different behaviors ar
possible because the null convergence condition, i
Rabk

akb>0 for all null vectorska, is violated for a dynami-
cal black hole in Brans-Dicke theory. At the present pap
we investigate how the behavior of the auxilliary scalar fie
f(x)5 ‘ ‘ G21(x)’’ in Brans-Dicke theory causes this viola
tion and the oscillatory behavior of the surface area in det

One may think that the violation of the area theorem f
black holes in Brans-Dicke theory causes some problem
the black hole thermodynamics in BD gravity since the bla
hole entropy in Einstein gravity is propotional to the surfa
area of the horizon and so the area theorem automatic
serves as the classical second law in black hole mechan
We show that there exists a certain quantity defined on
event horizon which never decreases during any class
process in BD gravity. Moreover, this quantity coincide
with the entropy in the case of stationary black holes in B
theory. Thus the black hole thermodynamic second law
BD theory is established. Since BD theories of gravity a
dynamically related to other theories of gravity such
higher curvature theories of gravity and dilaton gravity, t
results for black holes in BD theory also give some insigh
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for those in other theories of gravity.
In Sec. II, we explain why black holes in BD theory be-

have differently from those in Einstein gravity by investigat-
ing the behavior of the auxilliary scalar fieldf(x). In Sec.
III, a quantity is constructed on the event horizon from vari
ous points of view and proved that it is always nondecreas
ing for arbitary dynamical processes. Finally, the validity of
assumptions on the scalar fieldf(x) used in the proof is
discussed. General features of the proof and possible app
cation to other theorems are also mentioned briefly.

II. BLACK HOLE AREA IN BRANS-DICKE THEORY

Let us consider the change of the total surface area of th
horizon of any black hole along the null congruence of the
horizon generators orthogonal to the spacelike cross secti
H:

dA~l!

dl
5

d

dl R
H
d2xAh5 R

H
d2xAhu~l!, ~1!

wherel is the affine parameter of null geodesics whose tan
gents areka, i.e., ka¹a5d/dl, andu5d(lnAh)/dl5¹ak

a

is the expansion of the horizon generators. One can eas
see that, ifu(l)>0 everywhere on the horizon and at any
point in l, dA/dl>0 and so the surface area is nondecreas
ing always. Otherwise, it either still increases or decrease
depending on the value of integration ofu over the whole
event horizon@3#.

Now let us consider the evolution of expansion along a
hypersurface orthogonal null congruence of geodesics
general. It is determined by Raychaudhuri equation

du

dl
52

1

2
u22s22Rabk

akb, ~2!

where s2 is the square of the shear. In the case tha
Rabk

akb>0 for any null vectorka, du/dl is negative-
definite and

du

dl
<2

1

2
u2 ~3!

or
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du21

dl
>
1

2
. ~4!

Suppose one hasu,0 at some point on a null geodesic.
Then the above inequality equation shows thatu21 should
meet zero within some finite affine parameter. That is to sa
u reaches2` at some finite affine parameter, giving a con
jugate point as can be seen in Fig. 1.

When applied to black holes in a strongly asymptoticall
predictable spacetime~thus, no naked singularity exists out-
side the black hole region!, this behavior of expansion leads
that u cannot be negative, i.e.,u>0 everywhere on the ho-
rizon and at any point inl @2#; a similar derivation will be
explained more detaily in Sec. III. It, therefore, show
dA/dl>0 proving the area theorem:the total surface area
never decreases in any classical process.

For black holes in Einstein gravity, the null convergenc
condition is equivalent to the null energy condition sinc
field equations are

Rab2
1

2
Rgab58pGTab . ~5!

For black holes in BD gravity, however,Rabk
akb becomes

indefiniteas follows:

LBD5
1

16pG SRf2
v

f
¹af¹af D1Lmatter. ~6!

Field equations are

SRab2
1

2
RgabDf58pGTab1

v

fS ¹af¹bf

2
1

2
gab¹cf¹cf D1¹a¹bf2gab¹c¹

cf.

~7!

And so

FIG. 1. Behavior of the expansionu in general relativity.
y,
-

y

s

e
e

Rabk
akb58pGf21Tabk

akb1vf22~ka¹af!2

1f21kakb¹a¹bf. ~8!

One sees that, even if null energy condition and positivity of
f and v are satisfied,Rabk

akb is indefinite since the last
term, f21kakb¹a¹bf5f21ka¹a(k

b¹bf)5f21d2f/dl2

5f21f9, could be strongly negative. Now Eq.~2! becomes

u852F12 u21s218pGf21Tabk
akb1v~f8/f!2G

2f21f9. ~9!

Therefore, if the auxilliary scalar fieldf(x) behaves as in
Fig. 2 during the dynamical evolution of black holes, the
expansionu(l) possibly behaves as in Fig. 3 along the ho-
rizon generators. In other words, beforeu hits the negative

FIG. 2. Oscillatory behavior of the scalar fieldf(x) in Brans-
Dicke theory.

FIG. 3. Possible behavior of the expansionu in Brans-Dicke
theory corresponding to that off in Fig. 2.
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infinity after l1 in Fig. 3, the negativeness off9 starts to
increaseu up over zero. Consequently, the total surface a
of the horizon is increasing untill5l1, decreasing between
l1 and l2, increasing again afterl5l2, and finally ap-
proaches constant.

For Oppenheimer-Snyder collapse in BD theory where
initially uniform particle distribution within a sphere is al
lowed to collapse to a final state, the numerical results
tained in Ref.@1# demonstrate this behavior described abo
That is, Fig. 10 in Ref.@1# shows the indefiniteness o
Rabk

akb for different values ofv, and Fig. 9 in Ref.@1#
shows that the surface area is strongly oscillating for sm
v and becomes monotonically increasing for largev. A
monotonic behavior for largev appears because, eve
though BD theory does not completely reduce to Einst
gravity in general asv→`, it does for physical cases a
pointed out in Ref.@1#. Figure 9 in Ref.@1# also shows that
apparent horizons pass over the event horizons during
ochs of u<0. It is simply because the expansion of nu
geodesics is negative on the event horizon for those peri
Then trapped surfaces can exist outside the event horizo
contrary to black hole solutions in general relativity. Th
outer boundary of this trapped region where expansion v
ishes will be the apparent horizon. Interestingly, ‘‘outgoing
null geodesics from a trapped surface outside the event
rizon do not hit the singularity. Instead they again expa
afterwhile perhaps due to the last term in Eq.~9! and escape
to the null infinity finally.

III. A NONDECREASING QUANTITY

In the thermodynamic analogy of classical black hole m
chanics in Einstein gravity, the total surface area of the ev
horizon plays a somewhat special role. It is proportional
the black hole entropy, which has been later justified by c
sidering quantum effect on matter fields around the bla
rea
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hole. Hawking’s area increase theorem then establishes th
classical second law of black hole mechanics in Einstein
gravity. In the previous section, however, we have seen that
the area theorem does not hold for black holes in Brans-
Dicke theory. Does this mean that the second law does no
hold for black holes in BD theory? This question turns out to
be irrelevent since in general ‘‘area-entropy’’ relation no
longer holds in other theories of gravity@4#. Indeed this
modification of ‘‘area-entropy’’ relation happens for black
holes in BD theory.

The entropy for stationary black holes in Einstein gravity
is given by

SE5A/4G5
1

4G R
H
d2xAh. ~10!

Since Newton’s constantG becomes dynamical in BD
theory, a natural candidate for the entropy of stationary black
holes in BD theory will be

SBD5
1

4G R
H
d2xAhf~x!. ~11!

Note that we definedf(x) to be dimensionless. This quantity
is indeed the black hole entropy for stationary solutions in
BD theory evaluated by many other methods such as Noethe
charge method, field redefinition, and Euclidean method@5#.

The formula above can also be obtained by considering a
‘‘physical process’’ derivation of the first law in black hole
thermodynamics introduced by Wald@6# and extended to a
certain class of higher curvature theories in Ref.@7#. Con-
sider a black hole stationary initially, being perturbed by
small amount of matter falling, and finally settling down to a
stationary state again. Small amount of matter falling into a
stationary black hole, DM5*OTabj

adSb and DJ
52*OTabw

adSb in the asymptotically flat region, produces
some change at the event horizon as follows:
DM2VDJ5E
O
Tabx

adSb52E
H
Tabx

adSb5kE
H
Tabk

akblAhdld2x, ~12!

wherexa5ja1Vwa is the Killing generator of the horizon in leading order of the perturbation andH5H^R the black hole
horizon; see details in Ref.@7#. From field equations in Eq.~7! one obtains, in leading order,

E
H
d2xdlAhlTabk

akb5
1

8pGEHd2xEl i

l f
dlAhlS fRabk

akb2
v

f
f822f9D

.
1

8pGEHd2xEl i

l f
dlAhl~2fu82f9!

.
1

8pGEHd2xF~Ahf!Ul il f2Ahl~fu1f8!Ul il f G . ~13!
Sinceu5f850 on both initial and final stationary stage
one finds

DM2VDJ.
k

8pGEHd2x~Ahf!ul i
l f5

k

2p
DSBD , ~14!
s, giving the formula in Eq.~11! for black hole entropy in BD
theory.

Now let us assume that the quantity in Eq.~11! is the
black hole entropy even at any moment of dynamical evolu-
tion of the horizon and see how it behaves. To be more
general in the proof, let us consider the quantity
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S5
1

4G R
H
d2xAher, ~15!

whereer is a scalar function locally defined on the horizo
As before, the change ofS(l) along the null congruenc
generating the event horizon is

dS

dl
5

1

4G R
H
d2xAherũ ~16!

with

ũ5u1]lr. ~17!

Now let us apply the method developed in Ref.@7# which
basically follows Hawking’s proof of the area theorem, w
ũ in place ofu. Again the question is whether or not the
can exist a point along the null geodesics at whichũ be-
comes negative. The Raychaudhuri equation shows

]lũ52
1

2
u22s22v22~Rab2¹a¹br!kakb. ~18!

If the last term is positive-definite, then one has

]lũ<2
1

2
u2, ~19!

or

]lũ21>
1

2
~u/ ũ !2. ~20!

Now supposeũ,0 at some point on the horizon. Then in
neighborhood of that point one can deform a spacelike s
of the horizon slightly outward to obtain a compact space
surfaceS which entersJ2(I1) and hasũ,0 everywhere on
S, ũ being defined along the outgoing null geodesic cong
ence orthogonal toS. If cosmic censorship is assumed, th
there is necessarily some null geodesic orthogonal toS that
remains on the boundary of the future ofS all the way out to
I1 @2#. In other words, this geodesic has no conjugate p
betweenS andI1 and is future complete. However, this
impossible for the following reason. Asymptotic flatness i
plies thatr→0 like l21 at infinity for the case of Eq.~11!
and so doesu, wherel is the affine parameter along a
outgoing null geodesic. Thereforeu/ ũ→11O(l21), so the
inequality~20! implies that, as one follows the geodesic o
wards fromS, ũ reaches2` within some finite affine pa
rameter. Sinceũ5u1]lr, this means that eitheru or ]lr
goes to2`. In the former case we have a contradiction,
in the area theorem, since it implies there is a conjugate p
on the geodesic. In the latter case it leads to a naked si
larity outside the horizon, contradicting to cosmic cens
ship, as shall be shown for BD theory below.

Therefore, one finally proves the entropy increase th
rem for black holes in BD theory by checking whether or n
the positivity of (Rab2¹a¹br)k

akb is satisfied. Since
er5f(x), one has
n.

th
re

a
lice
ike

ru-
n

int
is
-

n

t-

as
oint
gu-
or-

eo-
ot

~Rab2¹a¹br!kakb5Rabk
akb2kakbf21¹a¹bf

1~ka¹af/f!2

58pGf21Tabk
akb1~11v!

3~ka¹af/f!2, ~21!

which is manifestly non-negative provided that null energy
condition for matter fields and positivity off and v are
satisfied. Since]le

r5ka¹af5er]lr5f]lr and f is as-
sumed to be positive (Þ0), the divergence of]lr implies a
curvature singularity from the equation~8! unless it is can-
celled by other terms on the right-hand side of the equation
Note finally that the proof described above does not require
the existence of regular event horizon as in Hawking’s area
theorem. A numerical simulation for Oppenheimer-Snyder
collapse in BD theory withv50 in Fig. 4 demonstrates that
the quantity defined in Eq.~11! is always increasing even if
the surface area of the event horizon is oscillatory. From the
behavior of the surface area of the horizon one sees thatu is
positive initially, zero neart560, becomes negative, and in-
creases to zero finally. In order foru to increase from some
negative value near the final stationary stage, the only pos
sible way is thatf9 is negative for that period and dominant
in the equation~9!. In fact f9 turns to be negative near
t575 in Fig. 5. For other values ofv one can refer to Figure
12 in Ref. @1#. The black hole area in conformally related
Einstein frame is indeed the same as black hole entropy i
BD theory as shall be shown in Eq.~26! below.

IV. DISCUSSION

In summary we have shown that the decrease of blac
hole area during the dynamical epoch of Oppenheimer

FIG. 4. Behavior of the surface area of the horizon~solid line!
and black hole entropy~dotted line! in numerical simulation for
Oppenheimer-Snyder collapse in Brans-Dicke theory withv50.
Figure courtesy of Mark A. Scheel and Richard O’Shaughnessy
The figure was produced using the numerical code described in Re
@12#.
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Snyder collapse in BD theory is due to the oscillatory beha
ior of the auxilliary scalar fieldf(x)5 ‘ ‘ G21(x)’’ in strong
gravitational field region. We also have proved that the qu
tity defined in Eq.~11!, which is indeed the entropy of sta
tionary black holes in BD theory, never decreases under
bitrary dynamical evolutions. Thus it establishes a seco
law of black hole thermodynamics in BD theory.

Results for dynamical black holes in BD theory also giv
some hints on the behavior of black holes in other theories
gravity. For example, let us consider curvature scalar squa
theories of gravity

I 05E d4xA2gF 1

16pG
~R1aR2!1Lm~c,g!G . ~22!

This higher curvature theory is dynamically equivalent to t
following theory with no higher curvature term but with on
auxilliary field F(x) @8#:

I 15E d4xA2gF 1

16pG
~112aF!R2

a

16pG
F2

1Lm~c,g!G . ~23!

By redefining the scalar field 112aF5fq with q251
12v/3 and conformally scaling the metricgab5f12qḡab ,
one finds thatI 1 has the form of BD theory with a potentia
term and unconventional couplings between the scalar fi
f and matter fields as follows:

I 25E d4xA2ḡF 1

16pG S fR̄2
v

f
¹̄af¹̄af D2V~f!

1f2~12q!Lm~c,f12qḡ!G , ~24!

FIG. 5. Positivity and oscillatory behavior of the scalar fie
f(x) corresponding to Fig. 4. Figure courtesy of Mark A. Sche
and Richard O’Shaughnessy. The figure was produced using
numerical code described in Ref.@12#.
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where V(f)5f2(12f2q)2/16pGa. Further conformally
transforming ḡab5f21g̃ab and redefining the field
w5b21lnf with b5A16pG/(312v), one reaches the
form of ordinary Einstein gravity@9,8#

I 35E d4xA2g̃F 1

16pG
R̃2

1

2
¹̃aw¹̃aw2e22bwV~w!

1e22bqwLm~c,e2bqwg̃!G . ~25!

Now let us ask how the black hole area in curvature squared
theories behaves. First of all, notice that the null convergence
condition is not satisfied in this theory as well. Thus one
expects that the black hole area will be oscillatory during
dynamical epochs as in the case of BD theory. The relation-
ship betweenI 0 and I 2 shows it more explicitly. Assume an
initial Cauchy surface such as that of Oppenheimer-Snyder
collapse in I 0 where spacetime is almost flat, e.g.,R.0.
SinceF5R in I 1, f.1 andV(f).0 on the corresponding
Cauchy surface inI 2. From the results for BD theory above,
one then expects that the behavior off is oscillatory during
dynamical epoch of the collapse. The ‘‘extended’’ null con-
vergence condition in Eq.~21! to prove the increment of
A h̄f is still satisfied inI 2 even in the presence of the poten-
tial V(f) and the unconventional couplings betweenf(x)
and matter fields as long asf andv are positive. Thus the
quantityAh̄f5Ahfq on the event horizon never decreases.
Then the ‘‘area’’ elementAh5(Ah̄f)/fq will be in general
oscillatory for black holes inI 0 unless the ratial increasement
of Ah̄f is bigger than that offq for the increasing period.
However, the positivity off(x) is guaranteed only for
a.0. It follows because the form ofV(f) confines the field
f in the positive region only ifa.0 since the potential
barrier increases exponentially asw→2` in I 3 ~i.e., f→0
in I 2). Whena,0, the potential falls down exponentially,
f easily becomes negative, and then the conformal factors
become singular atf50. It also has been shown that the
theoryI 0 has the well-posed initial value formulation only if
a.0 @10#.

As by-products of the relationships above one finds

S̃BH5
Ã

4G
5

1

4G R
H3
d2xAh̃5

1

4G R
H2
d2xAh̄f

5
1

4G R
H1
d2xAh~112aF!

5
1

4G R
H0
d2xAh~112aR!. ~26!

Therefore, one sees that Hawking’s area theorem is trans-
fered to the increasement of black hole entropy in BD theory
as well as in higher curvature theories through conformal
transformations and an introduction of a scalar field@11#.
The anaysis above can also be extended to more general
class of higher curvature theories such as actions polynomial
in R @7#.

In the proof given in Sec. III, we assumed the positivity of
the scalar fieldf(x) and the coupling constantv in BD

ld
el
the
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theory. The positivity ofv is natural since, otherwise, it
gives unphysical negative energy matter in the theory. Ho
ever, the positivity off(x) at any moment is highly non-
trivial in BD theory and should be guaranteed in order for th
quantity in Eq.~11! to be interpreted as ‘‘entropy,’’ which is
positive by definition in statistical mechanics. From fiel
equations in Eq.~7! we see that any constantf can be a
solution. Thus each set of solutions for a givenf5const
~which could be negative as well! in BD theory with large
v gives Einstein-like gravity. For Einstein gravity this con
stant is determined by considering Newtonian limit. It give
a positive constantf51 in the unit ofG21 and so the black
hole entropy~10! in Einstein gravity is always positive. In
BD theory, however,f(x) is highly dynamical and so the
quantity in Eq.~11! could be negative at some stage, whic
is problematic to be an entropy of dynamical black holes
BD theory. We are in fact interested in a physical system
which the matter is initially distributed in an almost fla
space. In other words,f(x) is initially positive near the unit.
Now the question is whether or not there is a Cauchy surfa
in the future evolution where the fieldf(x) passes zero and
becomes negative. As can be seen in field equations~7!, it
implies a curvature singularity unless the total energ
momentum tensor on the right-hand side cancels this sin
lar behavior. Therefore,f→0 corresponds to a naked singu
larity on the event horizon or outside the horizon, violatin
the assumption of cosmic censorship in BD theory which w
used in the proof. To see whether the dynamics of the fie
f can prevent this singular behavior, let us examine the
lationship between BD theoryI 2 and Einstein gravityI 3. In
the theoryI 3, f50 corresponds tow→2`. In general, the
dynamics of the fieldw is determined by the potentials com
ing from couplings with matter Lagrangian as well a
V(f). If the net effect of potentials gives rising up a
w→2`, the fieldw cannot reach to2`. One example is the
higher curvature squared theory witha.0 through confor-
mal rescalings as explained above. For BD theory witho
potential terms, that is,V50 andq51 in I 2, the rising up of
potential barrier asw→2` is not guaranteed in general. Fo
example, suppose a typical matter field,Lm(c,ḡ)
;2 1

2¹̄ac¹̄ac2V(c). Then,

e22bwLm~c,e2bwg̃!;2F12 ~¹̃ac¹̃ac!e2bw1e22bwV~c!G .
~27!
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Since ¹̃ac¹̃ac could be negative in general, the potential
could fall exponentially, leading tow→2` and sof→0.
As far as we know, however, we have not found any physical
system in the literature which shows vanishing off(x). Nu-
merical simulation for the case of Oppenheimer-Snyder col-
lapse in Fig. 5 also shows that the scalar fieldf(x) is always
positive during its evolution.

Finally, let us extract some general feature of the proof
shown in Sec. III. One of the most important behaviors of
expansionu used in proving many global properties of
spacetime such as singularity theorem and area theorem i
thatu reaches2` within some finite affine parameter ifu is
negative at some point and convergence condition~i.e.,
Rabv

avb>0 for all nonspacelike vectorsva) is satisfied as
explained in Sec. II briefly. In general relativity the conver-
gence condition is satisfied if some suitable energy condition
for matter fields is assumed. In other theories of gravity,
however, this is not true any more as seen, for instance, in
Sec. II. Thus it is not clear whether or not some global theo-
rems in general relativity or modified forms of them where
the convergent behavior ofu is used for proof still hold in
other theories of gravity. In this paper we have shown that a
modified ‘‘expansion’’ ũ plays the same role asu under
same energy conditions for matter fields. For example, one
may define a modified ‘‘trapped’’ surface as a compact, two-
dimensional, smooth spacelike surface where all ‘‘ingoing’’
and ‘‘outgoing’’ null geodesics orthogonal to it have nega-
tive ũ, instead of having negativeu. In fact, for BD theory,
this ũ is nothing but the expansion in the conformally related
Einstein frame with an overall multiflication factor. How-
ever, the general feature of the proof in this paper may still
be applicable to other class of gravity theories which are not
conformally related to Einstein gravity. In addition, it also
gives some hints on investigating how robust many global
properties of spacetime in general relativity are under the
change of dynamics of gravitational fields. In other words,
by using the convergent behavior ofũ, we may extend the
validity of many global results in general relativity to other
theories of gravity as done for the area theorem in this paper
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