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Black hole area in Brans-Dicke theory
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We show that the dynamics of the scalar figl(k) =" G~(x)” in Brans-Dicke theories of gravity makes
the surface area of the black hole horizzstillatory during its dynamical evolution. It explicitly explains why
the area theorem does not hold in Brans-Dicke theory. However, we show that there exists a certain nonde-
creasing quantity defined on the event horizon which is proportional to the black hole entropy for the case of
stationary solutions in Brans-Dicke theory. Some numerical simulations are demonstrated for Oppenheimer-
Snyder collapse in Brans-Dicke theof$s0556-282196)05022-9

PACS numbsg(s): 04.70.Dy, 04.50th, 04.70.Bw

I. INTRODUCTION for those in other theories of gravity.
In Sec. Il, we explain why black holes in BD theory be-

Scheel, Shapiro, and Teukolsky] have numerically have differently from those in Einstein gravity by investigat-
shown that Oppenheimer-Snyder collapse in Brans-Dickéng the behavior of the auxilliary scalar fiell(x). In Sec.
theories of gravity produces black holes that are identical tdll, @ quantity is constructed on the event horizon from vari-
those of general relativity in the final stationary stage, butous points of view and proved that it is always nondecreas-
behave quite differently during dynamical evolution. For ex-ing for arbitary dynamical processes. Finally, the validity of
ample, in general relativity the apparent horizon of a blackassumptions on the scalar fietd(x) used in the proof is
hole is always inside the event horizon and the total surfacdiscussed. General features of the proof and possible appli-
area of the event horizon never decreasesuig classical —cation to other theorems are also mentioned briefly.
process provided that null energy condition for matter fields
(i.e., Tabkakb>0 for all null vectorsk?®) and cosmic censor- Il. BLACK HOLE AREA IN BRANS-DICKE THEORY
ship conjecture are satisfi¢d]. In Brans-Dicke(BD) theo- )
ries of gravity, however, they found that there are some ini- ITet us consider the change of the total surface area of the
tial epochs in Oppenheimer-Snyder collapse during Whicmor!zon of any black hole along the null congruence of th.e
not only the apparent horizon passes outside the event hoforizon generators orthogonal to the spacelike cross section
zon, but also the surface area of the event horizon decreasés
in time. Thus the area increase theorem for black holes in d d
gene_ral relatiyity dpes not hold in 3rans-Dicke thleory. As ﬂ: _ % dzx\/ﬁ: é dZX\/ﬁlg()\), (1)
mentioned briefly in Ref[1], these different behaviors are da Ny M
possible because the null convergence condition, i.e.,
R.uk2kP=0 for all null vectorsk?, is violated for a dynami- Where is the affine parameter of null geodesics whose tan-
cal black hole in Brans-Dicke theory. At the present papergents arek?, i.e., k?V,=d/d\, and 6=d(In\h)/d\ =V k?
we investigate how the behavior of the auxilliary scalar fieldis the expansion of the horizon generators. One can easily
#(x)="" G 1(x)” in Brans-Dicke theory causes this viola- see that, ifg(\)=0 everywhere on the horizon and at any
tion and the oscillatory behavior of the surface area in detailpoint in\, dA/d\=0 and so the surface area is nondecreas-

One may think that the violation of the area theorem foring always. Otherwise, it either still increases or decreases
black holes in Brans-Dicke theory causes some problem tdepending on the value of integration éfover the whole
the black hole thermodynamics in BD gravity since the blackevent horizor{3].
hole entropy in Einstein gravity is propotional to the surface Now let us consider the evolution of expansion along a
area of the horizon and so the area theorem automaticallyypersurface orthogonal null congruence of geodesics in
serves as the classical second law in black hole mechanicgeneral. It is determined by Raychaudhuri equation
We show that there exists a certain quantity defined on the
event horizon which never decreases during any classical %__ 292_ 2_ R KaKD @
process in BD gravity. Moreover, this quantity coincides dn 2 7 ab '
with the entropy in the case of stationary black holes in BD
theory. Thus the black hole thermodynamic second law irwhere o“ is the square of the shear. In the case that
BD theory is established. Since BD theories of gravity areR,p,k?kP=0 for any null vectork?® dé/d\ is negative-
dynamically related to other theories of gravity such asdefinite and
higher curvature theories of gravity and dilaton gravity, the

results for black holes in BD theory also give some insights %< _ 1 02 3
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FIG. 1. Behavior of the expansiofin general relativity.
FIG. 2. Oscillatory behavior of the scalar fietf{x) in Brans-
Dicke theory.

! (4)
==,
2 Rapk®kP=87G ¢~ 1T, k2KP+ w e~ 2(K3V ,b)2

Suppose one hagd<0 at some point on a null geodesic. + ¢ k3KPV V. (8

Then the above inequality equation shows that should

meet zero within some finite affine parameter. That is to sayPne sees that, even if null energy condition and positivity of

9 reaches— = at some finite affine parameter, giving a con- ¢ and » are satisfiedR,,k?k" is indefinite since the last

jugate point as can be seen in Fig. 1. term, ¢ kY, Vph= K2V, (K°V,¢p) = ¢~ *d?p/d\?
When applied to black holes in a strongly asymptotically= ¢~ *¢", could be strongly negative. Now E(@) becomes

predictable spacetimghus, no naked singularity exists out-

side the black hole reg_ionthis behavior of expansion leads 0 = — E02+02+87TG¢*1Tabkakb+w(¢’/¢)2

that 6 cannot be negative, i.e§=0 everywhere on the ho- 2

rizon and at any point i [2]; a similar derivation will be — iy )

explained more detaily in Sec. Ill. It, therefore, shows '

dA/d\=0 proving the area theorerthe total surface aréa therefore, if the auxilliary scalar field(x) behaves as in

never decreases in any classical process. Fig. 2 during the dynamical evolution of black holes, the
For black holes in Einstein gravity, the null convergenceexpansione()\) possibly behaves as in Fig. 3 along the ho-

c_ondition i_s equivalent to the null energy condition Sincerizon generators. In other words, befofenits the negative
field equations are

1
Rab_ERgabZSWGTab- 5 0

For black holes in BD gravity, howeveR, k?k" becomes :
indefiniteas follows: §<o 80 §<o
w

1
‘CBDZM( Rop— ¢Va¢V ¢

+ Linatter- (6)

Field equations are

w

¢

1
( Rab_zR gab) ¢=8mGTy+

VadVod 0 %

1
_Egabvc¢vc¢

+ Vavbd’_ gabvcvc¢-

(7)
FIG. 3. Possible behavior of the expansiénin Brans-Dicke
And so theory corresponding to that @f in Fig. 2.
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infinity after A, in Fig. 3, the negativeness @f” starts to  hole. Hawking’s area increase theorem then establishes the
increased up over zero. Consequently, the total surface are&lassical second law of black hole mechanics in Einstein
of the horizon is increasing until =\ ;, decreasing between gravity. In the previous section, however, we have seen that
N\, and \,, increasing again aftek=X\,, and finally ap- the area theorem does not hold for black holes in Brans-
proaches constant. Dicke theory. Does this mean that the second law does not
For Oppenheimer-Snyder collapse in BD theory where arhold for black holes in BD theory? This question turns out to
initially uniform particle distribution within a sphere is al- be irrelevent since in general “area-entropy” relation no
lowed to collapse to a final state, the numerical results oblonger holds in other theories of gravif#]. Indeed this
tained in Ref[1] demonstrate this behavior described abovemodification of “area-entropy” relation happens for black
That is, Fig. 10 in Ref[1] shows the indefiniteness of holes in BD theory.
Rapk®k? for different values ofw, and Fig. 9 in Ref[1] The entropy for stationary black holes in Einstein gravity
shows that the surface area is strongly oscillating for smalis given by
o and becomes monotonically increasing for large A 1
monotonic behavior for largas appears because, even SE=A/4G=E3€ d?xvh. (10
though BD theory does not completely reduce to Einstein 7t

gravity in general as»—o, it does for physical cases as gince Newton's constanG becomes dynamical in BD

pointed out in Ref[1]. Figure 9 in Ref[1] also shows that  theory, a natural candidate for the entropy of stationary black
apparent horizons pass over the event horizons during epples in BD theory will be

ochs of #<0. It is simply because the expansion of null 1

geodesics is negative on the event horizon for those periods. _ = é 2

Then trapped surfaces can exist outside the event horizon in Sep 4G Hd X\/ﬁ¢(x)' (D
contrary to black hole solutions in general relativity. The _ ) ) ) )
outer boundary of this trapped region where expansion varfNote that we defineg(x) to be dimensionless. This quantity
null geodesics from a trapped surface outside the event h&D theory evaluated by many other methods such as Noether
rizon do not hit the singularity. Instead they again expand*harge method, field redefinition, and Euclidean metf%id
afterwhile perhaps due to the last term in £®).and escape The formula above can also be obtained by considering a

to the null infinity finally. “physical process” derivation of the first law in black hole
thermodynamics introduced by WaJé] and extended to a
lll. A NONDECREASING QUANTITY certain class of higher curvature theories in H&f. Con-

sider a black hole stationary initially, being perturbed by
In the thermodynamic analogy of classical black hole me-small amount of matter falling, and finally settling down to a
chanics in Einstein gravity, the total surface area of the evendtationary state again. Small amount of matter falling into a
horizon plays a somewhat special role. It is proportional tostationary black hole, AM=[oT.,£3d3" and AJ
the black hole entropy, which has been later justified by con= — [, T,,¢*d" in the asymptotically flat region, produces
sidering quantum effect on matter fields around the blaclsome change at the event horizon as follows:

AM—QAJ= f Tapx2d3P=— f Tapx2d3P=« f T\ Vhdhd2x, (12
o H H

wherex?®= £+ Q ¢? is the Killing generator of the horizon in leading order of the perturbationthird<® R the black hole
horizon; see details in Ref7]. From field equations in Eq7) one obtains, in leading order,

1 A
j A2\ VAT kK= =~ f d?x J "dn Jh)
H 87G H Aj

w
¢Rabkakb_ _¢/2_ ¢//)

¢
1 2 M " gn
_mJdedeﬁx(—w )
1
szHdzx (vhe) = Vhn(po+ ") 1. (13

Since 6= ¢' =0 on both initial and final stationary stages, giving the formula in Eq(11) for black hole entropy in BD
one finds theory.
Now let us assume that the quantity in E4l) is the
black hole entropy even at any moment of dynamical evolu-
K K . . .
AM—QAJz—J d2x(Vhe)| M= —ASsy, (14 tion of the horizon and see how it behaves. To be more
87GJn (\/—¢)|M 27 PP (14 general in the proof, let us consider the quantity
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L .
_ 2 4k
S= 15 35Hd xhe, (15) _

wheree? is a scalar function locally defined on the horizon. I
As before, the change d§(\) along the null congruence sk
generating the event horizon is

ds 1 _
—_ 2 .
TS ﬁtd xyvhe’o (16) % R ]
with
0= 6+ d,p. (17) L i

Now let us apply the method developed in Rief] which

basically follows Hawking's proof of the area theorem, with [
¢ in place of 6. Again the question is whether or not there ok
can exist a point along the null geodesics at whicle- s VU

. . . 40 60 80 100
comes negative. The Raychaudhuri equation shows t

~ 1 FIG. 4. Behavior of the surface area of the horiZenlid line)
__ g2 2 2 _ arb
I\O= 2 0°— 0= 0 = (Rap=VaVpp) KK (18 4ng plack hole entropydotted ling in numerical simulation for
Oppenheimer-Snyder collapse in Brans-Dicke theory with 0.

If the last term is positive-definite, then one has Figure courtesy of Mark A. Scheel and Richard O’Shaughnessy.
The figure was produced using the numerical code described in Ref.
_ 1 [12].
<=3 62, (19
(Rap— VaVpp) kK =Rypk®k*— kK¢ 1V Vb
or +(k2V ¢/ ¢)?
~ 1 ~ =87G ¢ 1T, k3P + (1+ w)
0 1==(6/6)% (20
2 X(K2V ol $)%, (21)

Now suppose?<<0 at some point on the horizon. Then in a which is manifestly non-negative provided that null energy
neighborhood of that point one can deform a spacelike sliceondition for matter fields and positivity o and w are

of the horizon slightly outward to obtain a compact spacelikesatisfied. Since),e’=k?V,¢=€"d,p=¢d\p and ¢ is as-
surfaceS, which enters)™(Z*) and has9<0 everywhere on sumed to be positive#0), the divergence of, p implies a

3, 0 being defined along the outgoing null geodesic congru€urvature singularity from the equatid8) unless it is can-
ence orthogonal t& . If cosmic censorship is assumed, then celled by other terms on the right-hand side of the equation.
there is necessarily some null geodesic orthogona that ~ Note finally that the proof described above does not require
remains on the boundary of the futuredfall the way out to  the existence of regular event horizon as in Hawking's area
T* [2]. In other words, this geodesic has no conjugate pointh€orem. A numerical simulation for Oppenheimer-Snyder
betweenS, andZ* and is future complete. However, this is collapse in BD theory witho=0 in Fig. 4 demonstrates that

impossible for the following reason. Asymptotic flatness im-the quantity defined in Eq11) is always increasing even if
plies thatp—0 like A~ * at infinity for the case of Eq(11) the surface area of the event horizon is oscillatory. From the

behavior of the surface area of the horizon one seesitimat
positive initially, zero neat= 60, becomes negative, and in-
inequality (20) implies that, as one follows the geodesic out- Créases to zero finally. In.order fa?rto increase from some
wards from3,, @ reaches—o within some finite affine pa- n_egatlve v_alue near the flnal stationary s_tage, the on_Iy Pos-
= ) ) sible way is thaip” is negative for that period and dominant
rameter. Since&/= 6+ d,p, this means that eithe# or d\p iy the equation(9). In fact ¢" turns to be negative near
goes to—. In the former case we have a contradiction, as— 75 iy Fig. 5. For other values @§ one can refer to Figure
in the area theorem, since it implies there is a conjugate poin{s iy Ref. [1]. The black hole area in conformally related

on the geodesic. In the latter case it leads to a naked SinGiinstein frame is indeed the same as black hole entropy in
larity outside the horizon, contradicting to cosmic censor-gp theory as shall be shown in E€26) below.

ship, as shall be shown for BD theory below.

Therefore, one finally proves the entropy increase theo-
rem for black holes in BD theory by checking whether or not
the positivity of R,,—V.Vpp)k?k? is satisfied. Since In summary we have shown that the decrease of black
e’= ¢(x), one has hole area during the dynamical epoch of Oppenheimer-

and so doesd, where\ is the affine parameter along an
outgoing null geodesic. Therefo# §—1+0O(\ 1), so the

IV. DISCUSSION
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14 T where V(¢) = ¢*(1— ¢ %?/16mGa. Further conformally
I 1 transforming g,,=¢ 'g., and redefining the field

¢=B"1n¢ with B=16wG/(3+2w), one reaches the

form of ordinary Einstein gravity9,8]
| =fd4x\/—'g" L R 15,65 —e 28%V(p)

2r i +e 2P L (e PI9g)|. (25

| | Now let us ask how the black hole area in curvature squared
11 L i theories behaves. First of all, notice that the null convergence
- condition is not satisfied in this theory as well. Thus one
expects that the black hole area will be oscillatory during
dynamical epochs as in the case of BD theory. The relation-
ship betweerly andl, shows it more explicitly. Assume an
1 initial Cauchy surface such as that of Oppenheimer-Snyder
e S e EEEEE S SRS S S SR R collapse inly where spacetime is almost flat, e.+=0.
“© o & 100 Since®=R in |, =1 andV(¢)=0 on the corresponding
Cauchy surface ih,. From the results for BD theory above,
FIG. 5. Positivity and oscillatory behavior of the scalar field One then expects that the behaviordofs oscillatory during
#(x) corresponding to Fig. 4. Figure courtesy of Mark A. Scheeldynamical epoch of the collapse. The “extended” null con-
and Richard O’Shaughnessy. The figure was produced using théergence condition in Eq(21) to prove the increment of
numerical code described in R¢1.2]. \/h'd) is still satisfied inl, even in the presence of the poten-
tial V(¢) and the unconventional couplings betweg(x)
Snyder collapse in BD theory is due to the oscillatory behavand matter fields as long as and w are positive. Thus the

ior of the auxilliary scalar fieldp(x) =" G™*(x)" in strong quantity Vhé=Vhé9 on the event horizon never decreases.

gravitational field region. We also have proved that the quan_—l_hen the “area” element/h— ( \/Eﬁ)hﬁq will be in general

::gyngf;'rg?;c:(nhiﬁégl% é’\g‘ Itchhegsr;;nﬂz\e/grtzgciggggg S:] ;é?_a'gscillatory for black holes iy unless the ratial increasement

bitrary dynamical evolutions. Thus it establishes a secon® Vhe is bigger than that o for the increasing period.
law of black hole thermodynamics in BD theory. However, the positivity of$(x) is guaranteed only for
Results for dynamical black holes in BD theory also give®= 0. It follows because the form af(¢) confines the field
some hints on the behavior of black holes in other theories of in the positive region only ifa>0 since the potential
gravity. For example, let us consider curvature scalar squareprrier increases exponentially @s-— in I (i.e., #—0

theories of gravity in I,). When a<0, the potential falls down exponentially,
¢ easily becomes negative, and then the conformal factors
4 1 ) become singular a$=0. It also has been shown that the
IO:j d x\/—_g R(RJF aR+Ln(9,9) | (22 theoryl, has the well-posed initial value formulation only if
a>0 [10].

This higher curvature theory is dynamically equivalent to the As by-products of the relationships above one finds
following theory with no higher curvature term but with one

auxilliary field ®(x) [8]: ~ A 1 § ) 1 é 5
Se1=3G ~ 4G I, 0 xvh= 2G $,,° xvhe
|1=J d4x\/—g[i(1+2a®)R—an2 L
167G 16mG =—— ¢ dxJh(1+2a®)

4G Jy,

+Ln(4,9) |- (23 1
=—— @ dxJ/h(1+2aR). (26)
4G Jy,

By redefining the scalar field #2a®=¢% with g?=1
+2w/3 and conformally scaling the metrig,,= ¢* 9g.p,
one finds that, has the form of BD theory with a potential
term and unconventional couplings between the scalar fiel
¢ and matter fields as follows:

Therefore, one sees that Hawking's area theorem is trans-
fered to the increasement of black hole entropy in BD theory
s well as in higher curvature theories through conformal
transformations and an introduction of a scalar figld].
1 e The anaysis above can also be extended to more general
|,= f d*V—g[—=| pR— —V,V2¢ | — V(o) f:lass of higher curvature theories such as actions polynomial
167G ¢ in R [7].
In the proof given in Sec. I, we assumed the positivity of
+ 21D (4, ¢1q§}, (24)  the scalar fieldg(x) and the coupling constanb in BD
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theory. The positivity ofw is natural since, otherwise, it Since V,¢/V2y could be negative in general, the potential
gives unphysical negative energy matter in the theory. Howeould fall exponentially, leading tg¢— —« and so¢—0.
ever, the positivity of¢p(x) at any moment is highly non- As far as we know, however, we have not found any physical
trivial in BD theory and should be guaranteed in order for thesystem in the literature which shows vanishingggfx). Nu-
guantity in Eqg.(11) to be interpreted as “entropy,” which is merical simulation for the case of Oppenheimer-Snyder col-
positive by definition in statistical mechanics. From field lapse in Fig. 5 also shows that the scalar figlx) is always
equations in Eq(7) we see that any constagt can be a  positive during its evolution.

solution. Thus each set of solutions for a gives= const Finally, let us extract some general feature of the proof
 gives Einstein-like gravity. For Einstein gravity this con- €xpansion6 used in proving many global properties of
stant is determined by considering Newtonian limit. It givesSPacétime such as singularity theorem and area theorem is
a positive constan=1 in the unit ofG ! and so the black thaté reaches-c within some finite affine parameter éfis
hole entropy(10) in Einstein gravity is always positive. In negaglvbe at some point anq convergeanc_e cor_1d|_tﬁoe.,

BD theory, howeverg(x) is highly dynamical and so the Rapv®vP=0 for all nonspacelike vectors®) is satisfied as

uantity in Eq.(11) could be negative at some stage WhiChexplained in Sec. Il briefly. In general relativity the conver-
iqs prob)llemati?:.to be an entrop;gof dynamical blac?< Holes irgence condition is satisfied if some suitable energy condition

. ) . ; Mor matter fields is assumed. In other theories of gravity
BD theory. We are in fact interested in a physical system iy, yever, this is not true any more as seen, for instance, in

which the matter is initially distributed in an almost flat Sec. II. Thus it is not clear whether or not some global theo-
space. In other wordg)(x) is initially positive near the unit.  romg jn general relativity or modified forms of them where
Now the question is whether or not there is a Cauchy surfacg, o convergent behavior @ is used for proof still hold in

in the future evolution where the field(x) passes zero and qiher theories of gravity. In this paper we have shown that a
becomes negative. As can be seen in field equatiénst modified “expansion”’é plays the same role a8 under

implies a curvature singularity unless the total ENerYY-same energy conditions for matter fields. For example, one

momentum tensor on the right-hand side cancels this. sinth—1ay define a modified “trapped” surface as a compact, two-
lar behavior. Thereforep— 0 corresponds to a haked singu- dimensional, smooth spacelike surface where all “ingoing”

larity on the_event horlz_on or outsu_JIe_the horizon, V'O_Iat'ngand “outgoing” null geodesics orthogonal to it have nega-
the assumption of cosmic censorship in BD theory which we, "~

used in the proof. To see whether the dynamics of the l‘ielgi'v,el9 ! |nstegd of having negat|.ve. .In fact, for BD theory,
¢ can prevent this singular behavior, let us examine the rethis ¢ is nothing but the expansion in the conformally related
lationship between BD theory, and Einstein gravitys. In Einstein frame with an overall multiflication factor. How-
the theoryl s, =0 corresponds t@— —. In general, the Vel the general feature of the proof in this paper may still
dynamics of the fields is determined by the potentials com- be applicable to other cle}ss of gravity theories \_/v_hlch_are not
ing from couplings with matter Lagrangian as well as conformally related to Einstein gravity. In addition, it also
V(). If the net effect of potentials gives rising up as gives some hints on investigating how robust many global
o— —, the fielde cannot reach te- <. One example is the properties of spacetime in general relativity are under the
higher curvature squared theory with>0 through confor- change of dynamics of gravitational fields. In other words,
mal rescalings as explained above. For BD theory withouPY USing the convergent behavior 6f we may extend the
potential terms, that i8/=0 andg=1 in I, the rising up of validity of many global results in general relativity to other
potential barrier ag— — is not guaranteed in general. For theories of gravity as done for the area theorem in this paper.
examp_le,_asuppose a typical matter field;,(#,9) ACKNOWLEDGMENTS
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