VOLUME 71, NUMBER 2

PHYSICAL REVIEW LETTERS

12 JULY 1993

Fractional Spin from Gravity

Joseph Samuel
Raman Research Institute, Bangalore, India 560 080
(Received 10 November 1992)

Friedman and Sorkin have observed that the total angular momentum of an asymptotically flat,
vacuum, quantum gravitational field in 341 dimensions need not be integral. We pursue this idea
in the context of asymptotically flat 241 gravity, which is an exactly solvable model. We find that,
for nontrivial spatial topologies, the quantized pure gravitational field has states of fractional spin.
These states are dynamically allowed, in the sense that they solve all the constraints of the theory.
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The possibility of half-integer spin states in pure quan-
tum gravity was first suggested by Finkelstein and Misner
[1]. Their work was partly motivated by the “geometriza-
tion of physics” program, whose success depends on the
existence of such states. This idea was followed up by
Friedman and Sorkin [2] (hereafter referred to as FS),
who showed that the topology of space was central to
the discussion. They gave necessary conditions on the
spatial topology for the existence of spinorial states in
pure quantum gravity and listed some three-manifolds
that fulfill these conditions. One might have naively ex-
pected the quantum gravitational field to have integer
spin, since the graviton has spin 2 in linearized theory.
The work of F'S suggests that this naive expectation fails,
due to nonperturbative effects. The basic idea of “spin
1/2 from gravity” is exciting, since it opens up the pos-
sibility of constructing fermions from pure spacetime.

We emphasize that this question concerns pure grav-
.ity, with no matter present, either in the form of fields or
“punctures.” Producing spinorial states from spinorial
matter is hardly remarkable. The novelty of FS is pre-
cisely that there is no matter present. Their construction
is similar in spirit to those of [3], which use (integer spin)
Higgs and gauge fields to produce a fermionic soliton. In
both cases, the theory has a “gauge” symmetry, which
is exploited to permit a 27 rotation to act nontrivially
on the system. The construction of FS is different in
that their spin 1/2 states are due to nontrivial spatial
topology rather than matter.

We briefly review FS before going on to the subject
of the present paper. Let ¥ denote the spatial manifold
and suppose the spacetime manifold M to be of the form
M = ¥ x IR. We suppose that ¥ has a single asymp-
totic region and that all topological complications are
contained within a compact region B, whose boundary
is a topological sphere. We work within the canonical
approach to quantum gravity. As is well known, the ba-
sic canonical variables are subject to constraints. The
constraints generate “gauge” transformations and, in the
quantum theory, are imposed on the allowed states as op-
erator equations. The traditional canonical variables (the
metric on a spatial slice and its conjugate momentum) are
subject to the diffeomorphism constraints and the Hamil-
tonian constraint. The diffeomorphism constraint plays

a kinematical role and expresses the invariance of the
quantum state under reparametrizations of the spatial
slice. The dynamical role in quantum gravity is played
by the Hamiltonian constraint, which generates transfor-
mations that move the spatial slice T in M. Setting aside
the Hamiltonian constraint for the moment, we focus on
the role of the diffeomorphism constraint. Let Diff be
the group of asymptotically trivial diffeomorphisms of 3
and Diffy its identity component. The diffeomorphism
constraints require that all quantum states are invariant
under the action of Diffy, which is thus singled out as the
gauge group of the theory. Let B be properly contained
in a region B’, whose boundary is also spherical. Let N/
= ¥ — B’ be a neighborhood of infinity. Consider now
the following element R of Diff: R reduces to the iden-
tity when restricted to B and A. On the thick spherical
shell U=B' — B, R is a differential rotation of the nested
spheres, through an angle which varies continuously from
zero on the innermost sphere to 27 on the outermost one.
R has the physical meaning of a 27 rotation of the sys-
tem relative to its environment. If R is in Diffp, then all
physical states are invariant under a 27 rotation and so
have integral angular momentum. If, on the other hand,
R is mot in Diffy, this argument cannot rule out spino-
rial states. It is elementary to verify that a 4w rotation
of the system (R o R) is in Diffp [4]. The much harder
question of whether R is in Diffy has been answered in
the mathematical literature [5]. The answer depends on
the topology of . For some spatial topologies, including
IR3, R is in Diffy and these topologies only support in-
teger angular momentum states of quantum gravity. For
other spatial topologies R is not in Diffy and these could
support spinorial states. The main observation of FS is
that there exist “spinorial” three-manifolds and so spin
1/2 from gravity is a possibility.

The discussion above makes no reference to the Hamil-
tonian constraint and is, in this respect, incomplete.
States of quantum gravity must satisfy all the constraints
of the theory. It does seem arbitrary [6] to impose some
constraints while ignoring others. A practical reason for
following this arbitrary procedure is that the Hamilto-
nian constraint, which is also known as the Wheeler-
Dewitt equation, is notoriously hard to solve. While
fractional spin states are allowed kinematically, it is not
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entirely clear whether these states survive the imposition
of the Hamiltonian constraint. Semiclassical arguments
are advanced in F'S to suggest that they do. Given the in-
tractable nature of the Hamiltonian constraint, it seems
hard to do any better than this in 34+1 dimensions.

Since F'S, there has been considerable work (see [7-10],
and references therein) in this area. There is some inter-
est in spin-statistics relations (or rather, the lack of them)
for topological geons. Reference [8] is devoted to the in-
terplay between spin, statistics, and diffeomorphism in-
variance in generally covariant theories. Of particular rel-
evance to us is the remark [8] that fractional spin states
are allowed in 241 quantum gravity. This is the 2+1
analog of the F'S result. The principal difference is that
in 241 dimensions, R o R need not be in Diffy. Conse-
quently, the spin need not be half integral. Just as in F'S,
this result is kinematic, in the sense that Ref. [8] does
not impose the Hamiltonian constraint (see also [10], p.
275). In short, Ref. [8] shows that fractional spin states
can exist in 2+1 quantum gravity, but leaves open the
question of whether they do exist. The present paper is
devoted to filling this gap. We first show, following (8],
that fractional spin states are kinematically allowed in
241 gravity.

The diffeomorphism R is defined exactly as in F'S save
for the obvious difference that the regions B and B’ have
circular boundaries and the region Y = B’ — B is an-
nular. It is easily checked that for the trivial topology
Y = IR? R is in Diffp: simply rotate the disk B by
27 and untwist «4. Do there exist spatial topologies for
which R is not in Diffy? To answer this question, fix a
base point o at infinity. Let 7; (X, o) be the fundamental
group of X relative to the base point o. Any element 7
of Diff maps points of ¥ to points of ¥ and reduces to
the identity at infinity. Curves starting and ending at
o are also mapped to other such curves. Further, this
mapping also preserves homotopy equivalence relations
between curves. Thus, each element 7 of Diff defines a
natural action 7: 71(X,0) — m(Z, o) on the fundamen-
tal group. Clearly, if 7 belongs to Diffy, 7 acts trivially
on m(X,0). (We say that a map “acts trivially” if it
is the identity map.) So if R has a nontrivial action on
m (X, 0), it follows that R is not in Diffs. Let us denote
by c the element of m1(X,0) represented by the curve
that starts from o, loops once around B’ anticlockwise,
and returns to o. Since R is a “27 twist of infinity,” R
acts on 71 (X, o) by conjugation (see Fig. 1) with respect
to c:

R:m(8,0) — em (T, 0)c L. (1)

If ¥ is the connected sum of IR? and a Riemann surface
S, of genus g, m1(X,0) is the free group on 2g letters
(@a,bo),a = 1---g, representing the 2g basic cycles of
Sg. The product ¢ = cicz--- ¢y of their commutators
Co = [aaba] = anbaazlbs! loops around B’. Clearly,
conjugation by c is not the identity homomorphism on
w1 (2, 0) for g # 0. It follows that R is not in Diffy and
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FIG.1. Space containing a topological geon and the effect
of R, a clockwise 27 twist of infinity relative to the geon.
R is the identity diffeomorphism everywhere except in the
shaded annular region, denoted U in the text. The effect
of R is best shown by its action on (equivalence classes of)
homotopically nontrivial curves. A representative curve is
shown above, which starts from the cross C, goes under the
handle, and returns to C. Under the action of R, the curve is
changed only in the shaded grey region U. The original (white
on grey) and final (black on grey) locations of the curve in U
after the action of R are shown. This illustrates Eq. (1) of
the text.

so fractional spin states are kinematically allowed in 241
quantum gravity. We now go on to realize this possibility
in the framework of a dynamical theory. For clarity, we
give details just for the simplest nontrivial case, g = 1
and drop the index a. Restoring o yields the general
case.

In the last few years, it has been realized that pure
quantum gravity in 2+1 dimensions is an exactly solv-
able model. Achucarro and Townsend [11] noticed that
this theory can be derived from a Chern-Simons action.
Witten [12] (following a suggestion of Ashtekar’s [13] in
the context of 3+1 gravity) gave a covariant quantiza-
tion of the theory in the connection representation, for
compact spatial topologies. For the canonical formula-
tion see, for example, [14]. This work extends easily also
to the asymptotically flat case, which is of primary in-
terest here (see below). Do there exist quantum states
in asymptotically flat 2+1 gravity which have fractional
spin? The answer is yes, and this is the main point of
this paper. Below, we construct states of quantum grav-
ity, which solve all the constraints and have fractional
spin.

The basic variables we use to describe the gravita-
tional field are [12,13] a triad [15] of 1-forms €' = e} dz®
and an SO(2,1) valued connection 1-form A’ = Afdz®
on M. (i,j = 0,1,2 are internal, frame indices and
a,b = 0,1,2 are World indices.) In the usual man-
ner, one can construct the metric tensor g,» from the
triad e} and the field strength F* from the connection
At. The basic fields (e, A*) must, of course, be sub-
ject to asymptotic conditions. The asymptotic structure
of the gravitational field in 241 dimensions is quite dif-
ferent [16] from the 3+1 case: the metric does not be-
come Minkowskian at infinity, but only “conical.” In
standard polar coordinates t,r,¢ in a neighborhood of
infinity ds? = —(dt — ¢ d¢)? +dr? + a2r2d¢?. These con-
ical metrics, which can be constructed {17] by identify-
ing points in Minkowski space, are parametrized by o
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and ¢ and describe systems with total energy 27(1 — «)
and angular momentum 2wa. Conical metrics are sta-
tionary and axisymmetric, but do not admit any other
global Killing vector fields. Since the asymptotic sym-
metry group is only RxSO(2) (and not the Poincare
group), the only well defined global charges are the to-
tal energy and angular momentum of the system [18,
19]. We fix a fiducial two-parameter family of fields
(oo, (), Aco(a, €)) describing a conical metric at infin-
ity: eco = (dt — (dop,dr,ard¢), A = (ad¢,0,0). The
asymptotic conditions we impose on (e, A) are that they
are equal to (ex0, Aco), for some «, ¢, in a neighborhood
N of infinity [20]. This choice of asymptotic conditions
may seem rather drastic compared to prescribing falloff
rates [21] for the fields as one is used to in 3+1 gravity. In
fact, in 241 dimensions no physics is lost by this choice,
since the space of classical solutions is not reduced by
it. Henceforth, all triads and connections are supposed
to obey these conditions. We use the standard Einstein
action supplemented by a surface term

I:/ e"/\ﬂ+/ et A A;. (2)
M oM

It can be checked that varying this action within the al-
lowed space of field configurations does yield the Einstein
field equations. The action and asymptotic conditions
completely define the classical theory. Recasting the the-
ory in Hamiltonian form, one finds that the canonically
conjugate pair A, and 7j%%e; (7% is the antisymmetric
Levi-Civita tensor density; from now on, a,b = 1, 2 only)
are subject to the following constraints:

G(A) = /EAk(DAe)k —o, 3)

F(&) = /E&F’c =0. (4)

The smearing functions A and £ must vanish at infinity
for G(A) and F(£) to be differentiable functions on the
phase space. (3) is the Gauss’ law constraint, which re-
flects the local SO(2,1) gauge invariance of the action.
The constraints (4) reflect the invariance of the action
under asymptotically trivial spacetime diffeomorphisms.
They imply both the Hamiltonian constraint and the two
diffeomorphism constraints (which generate spatial dif-
feomorphisms) of standard canonical gravity.

We now apply Dirac quantization in the connection
representation. Quantum states are represented by wave
functionals 1[A] on the space of connections on ¥. We
impose the classical constraints (3),(4) as operator equa-
tions on the allowed quantum states. (4) implies that
1[A] has support only on flat connections. (3) then re-
quires that 1[A] be a gauge invariant functional on the
space of flat connections. 1[A] is therefore a function on
Q, the moduli space of flat connections [22]. Elements
of Q are denoted g. The space of physical states [23]
(those that satisfy all the constraints) is the linear space
H = {1y : Q — C} of all complex functions 1(g) on Q.

Let us now describe the space @Q more precisely. A con-
nection is completely characterized (modulo gauge) by
its holonomy H. (A) = P exp[[, A] € SO(2,1) around all
loops 7 based at o. For flat connections, much less infor-
mation is needed. The holonomy only depends on the ho-
motopy class of the loop: it is enough to know Hy,(A) for
all elements [v] of 71 (%, o). Since m1(X, o) is generated by
a and b, this information is completely contained in the
two SO(2,1) elements H,(A) and Hp(A). These elements
are unchanged by gauge transformations (since all gauge
transformations die out at infinity) and thus exactly cap-
ture the gauge invariant information in the flat connec-
tion A. The asymptotic conditions on the fields im-
ply that H,(A)Hy(A)H; Y(A)H;7Y(A) = Hape-1p-1(A) =
H.(A) = H.(Ax) € SO(2). We thus identify ¢ with a
pair (H,, Hp) of SO(2,1) elements subject only to the
condition that their commutator must lie in the SO(2)
subgroup of SO(2,1).

Are there states in ‘H which have fractional spin? In
order to answer this, we need to know the behavior of
the elements of H under R, a 27 rotation of the sys-
tem relative to its environment. Let R be the action of
R on H: ﬁw(q) = ¥P(R«q), where R.q is the pullback
of the flat connection 1-form by the diffeomorphism R.
The effect of R on a flat connection A is easily com-
puted from the action (1) of R on 71 (%, 0):H, (R A) =
Hp, (A). Thus R.q = ¢/, where ¢’ represents the pair
(H.H,H ', H.H,H '). Thus R, acts on Q by conjuga-
tion with respect to H.. This action is clearly not the
identity on Q. It follows then that R acts nontrivially on
‘H. This is the central technical result of this letter.

Having established that the action of R on H is non-
trivial, it is easy to construct states belonging to H which
have fractional spin. The “Bloch” wave function

Yolq) = Y e 2™MIRM(g) (5)
satisfies e
Rapo(q) = ™2™ 1q(q). (6)

1278

Comparing this with the phase e picked up by a spin
s state on 27 rotation, we conclude that s has fractional
part 6.

While the action of R, on the space @Q is nontrivial,
there do exist individual flat connections, which are fixed
points of this action. An example is the zero connection
A = 0. It follows from (5) that 1y vanishes at these
fixed points for nonzero 6. Had all points of Q) been fixed
points of R,, the Bloch state (5) would have vanished
identically. The main work of this paper consisted in
showing that not all points of Q are fixed points of R..
We emphasize that this result is not implied by general
kinematical analyses such as [8].

From (5) we see that H, the space of solutions to the
constraints, splits up into sectors labeled by 6: H = |J,
‘Hg. A superselection rule applies [6] to these sectors.
All physical observables are invariant under 27 rotations,
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and do not connect different 6 sectors. It suffices to re-
strict our attention to one sector Hy at a time. 6 can thus
be viewed as a quantization ambiguity: different choices
of f (more correctly, €2™) lead to different quantum the-
ories. Since R™ # 1 for any nonzero m, it follows [8] that
6 can have any real value.

Because of our interest in spin, we have focused entirely
on R, a 27 rotation of the system relative to infinity.
There are also other elements of Diff which are not in
Diffy. Diff/Diffy is called the mapping class group (see
[8, 24] for a discussion of this group in a related context)
of 3. This group is generated by Dehn twists about the
cycles of the Riemann surface. A little reflection shows
that R commutes with the other Dehn twists (see [8]).
It follows that the action of these other Dehn twists on
the physical states lies entirely within a fixed 6 sector
Hg. One can construct phase representations of these
other Dehn twists within Hg. The presence of these other
elements of the mapping class group does not affect the
construction (5) of fractional spin states.

In conclusion, we have dynamically realized the idea
of FS in 2+1 quantum gravity. We find that there ex-
ist states (5) which satisfy all the constraints and have
fractional spin. It is nice to know that the idea of frac-
tional spin from pure gravity does work in this simple
context. There is much to be understood about topo-
logical geons. The work described above may provide
a simple toy model for discussing some of the questions
raised in [6].

It is of relevance to compare the work of this paper
with [25], which considers 2+1 gravity on a plane with
punctures representing the location of particles. Refer-
ence [25] uses holonomies to descrbe the gravitational
field and relates these to physically important questions
like the geometric interpretation of the theory and par-
ticle scattering [26]. The work of (24, 25] does illuminate
our analysis by providing geometric and physical intu-
ition for the holonomies. There are, however, several
important differences in motivation and conclusions be-
tween the present work and (25]. Since our interest is
in producing fractional spin from vacuum 2+1 quantum
gravity, we explicitly exclude punctures on the grounds
that they constitute matter. Carlip [25] suggests that the
mapping class group (which in his case allows for braid-
ing of punctures) acts trivially [Eq. (5.3) of Ref. [25])
on the state space. The present paper explores alterna-
tive quantizations in which the mapping class group acts
trivially on the ray space, but nontrivially on the state
space. These alternatives do lead to physically distinct
predictions, such as the possibility of the total angular
momentum of an isolated system being fractional.
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