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We study gravitational radiation reaction in the equations of motion for binary systems to post-
Newtonian order [O(v/c)?] beyond the quadrupole approximation. The method uses post-Newtonian
expressions for energy and angular momentum flux to infinity, and an assumption of energy and
angular momentum balance. The equations of motion are valid for general binary orbits. We discuss
the coordinate-system dependence of the radiation-reaction formula.
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During the past twenty years, gravitational-radiation
damping has been recognized as a process with impor-
tant observational consequences. Eighteen years of ob-
servation of the binary pulsar 1913416 have yielded a
verification of the “quadrupole formula” for radiation
damping to a precision of better than half a percent
(1]. Laser interferometric gravitational-wave observato-
ries are expected to have the capability to detect waves
from the final inspiral and coalescence of two compact ob-
jects (neutron stars or black holes), a process dominated
by gravitational-radiation damping. Indeed, because of
the broadband nature of such detectors, it will be pos-
sible to study the gravitational wave form as a function
of time, and thereby to determine important parameters
of the source, such as the masses, spins, and radii of the
two bodies [2, 3].

Because an inspiralling binary system will emit a
gravitational-wave signal with the characteristics of a
“chirp” (amplitude and frequency increasing with time),
the data analysis process involves cross correlating the
data with a set of theoretical signal templates for co-
alescing binaries with a range of system parameters. To
this end, it is important that the templates be as ac-
curate as possible. Approximate orbital evolutions and
gravitational wave forms have been calculated using high-
order post-Newtonian expansions [4-6], and, ultimately,
full-scale numerical relativity computer codes will play
a role [7]. Recently, Cutler et al. [3] have emphasized
the importance of knowing the secular damping of the
orbit very accurately, in order that the theoretical tem-
plate not lose phase with the observed signal during the
period when the orbital frequency sweeps through the
detector’s bandwidth, typically between 10 and 1000 Hz.

This Letter addresses the question of the accuracy of
gravitational-radiation damping, and presents, for the
first time, a formula suitable for determining the evolu-
tion of general inspiralling binary orbits, that includes
the first post-Newtonian [O(v/c)?] corrections to the
dominant Newtonian, or quadrupole radiation-damping

terms.

In the usual post-Newtonian expansion of the equa-
tions of motion in terms of a small parameter € ~
(v/c)? ~ Gm/rc?, where m, v, and r are the total mass,
orbital velocity, and separation of the binary system,
gravitational radiation reaction first appears at O(e%/2)
beyond Newtonian gravitation. We call this “Newtonian
radiation reaction.” Here we obtain the terms at O(¢7/2),
or post-Newtonian radiation reaction. In this paper, we
outline the method and present the results; details will
be published elsewhere [8].

Numerous authors have obtained, from first principles,
approximate solutions of Einstein’s equations that incor-
porate the backreaction from radiation to infinity into
“near-zone” gravitational fields, leading to the Newto-
nian radiation-reaction terms in the equations of motion
[9]. To date, however, such calculations have not been
extended any higher, apart from specific effects, such as
those due to gravitational-wave tails [10].

On the other hand, post-Newtonian corrections to the
far-zone gravitational wave form for binary systems have
been calculated through O(e3/2) beyond the quadrupole
formula [5,11-13], resulting, for example, in formulas for
the flux of energy, angular momentum, and linear mo-
mentum valid to post-Newtonian order, i.e., O(e) beyond
the quadrupole formula. The reason for this dichotomy
is that calculation of far-zone gravitational waves to a
given accuracy in a post-Newtonian expansion requires
one fewer iteration of the “relaxed Einstein equations”
[schematically Ohy, = T, + (Oahgy)?] than does cal-
culation of near-zone radiation reaction [14], and hence
is “easier.” Our method exploits these post-Newtonian
energy and angular momentum flux formulas to “derive”
a radiation-reaction formula that guarantees a compen-
sating loss in the source. The surprise is that we obtain
a formula that is applicable for arbitrary two-body or-
bits (within the weak-field slow-motion constraints of the
post-Newtonian method), and that is unique in a sense to
be described below (for an elementary Newtonian version
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of this argument, see [15]).

Specifically, the method proceeds as follows: We write
down a general form for the Newtonian (¢%/2) and post-
Newtonian (¢7/2) radiation-reaction terms in the equa-
tions of motion for two bodies, ignoring tidal and spin
effects. For the relative acceleration a = a; —ay, this has
the form (G =c=1)

a= —gn(m/r)(m/r)
x [—(As/2 + A72)fn+ (Bsja + Brj2)v], (1)

where m = mj+my is the total mass; p = mymsy/m is the
reduced mass, with n = p/m; x, r, and v are the relative
separation vector, distance, and velocity between the two
bodies, with n = x/r. The form of Eq. (1) is dictated by
the fact that it must be a correction to the Newtonian
acceleration (m/r?), vanish in the test body limit (n),
be related to the emission of gravitational radiation (an-
other m/r), and be dissipative, or odd in velocities (¥n,
v). The prefactor 8/5 is chosen for convenience. Then
to make the leading term of O(e%/2) beyond Newtonian
order, As/3 and Bs/o must be of O(e) The only variables
in the problem of this order are v?, m/r, and 72. Thus
As/2 and Bs o each can consist of a linear combination of
these three terms; to those terms we assign six arbitrary
parameters. By the same reasoning, A7/, and By7/; must
be of O(e?); hence each must be a linear combination of
the six terms v*, v2m/r, v2#2, #2m/r, 74, and (m/r)2.
To these we assign twelve arbitrary parameters. We ig-
nore terms in the equations of motion of O(e®) beyond
Newtonian order, because they are nondissipative [there
is a clean split between integer order and odd-half-integer
order in this procedure, at least through O(e7/2)].

We take post-post-Newtonian expressions for orbital
energy and angular momentum (per unit reduced mass),
E = E/lu=1 —m/r+0(e)+0(e)J—x><v[1+
O(e) + 0(62)] [6, 16], and calculate dE/dt and dJ /dt us-
ing post-post-Newtonian two-body equations of motion
[4] supplemented by the dissipative terms of Eq. (1).
Through post-post-Newtonian order, £ and J are con-
stant, and correspond to asymptotically measured quan-
tities, but the radiation-reaction terms lead to nonvanish-
ing expressions for dF /dt and dJ /dt. However, we have
the freedom to add to E and J arbitrary terms of order

€5/2 and €7/2 beyond the Newtonian expressions with-
out affecting their conservation at post-post-Newtonian
order. An example would be a term &n(m/r)%v?# in E
[17). There are six such terms at O(¢%/2) in E and J and
twelve at O(¢7/2). Adding arbitrary amounts of each such
term to E and J has the effect of changing the form of
the residual terms in dE/dt and dJ /dt by terms involving
six a/ddltlona.l free parameters at O(e%/2) and twelve at

O(e"/?).

We now equate the residual dE/dt and dJ /dt expres-
sions to the negatives of the corresponding far-zone flux
formulas, and compare them term by term. (Although
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this assumption of energy and angular momentum bal-
ance is eminently reasonable, it has not been justified
rigorously to date.) For example, the Newtonian energy
and angular momentum flux formulas have the forms

L 8 11,
Buursons = Sn(on/r?) /) [a0Pmf = i)

(22)

—n(m/r?)J[2v®m/r — 372m/r + 2(m/r)?] .

Jfar zone —

(2b)
Since the terms in square brackets could also have in-
cluded v?, v? , setting dE/dt =
dJ /dt = —jfa,zone yields a total of twelve constraints
on the coefficients at Newtonian (€%/2) order. At post-
Newtonian order, the corresponding expressions involve

1)6, 472 etc., a total of ten terms each in Efarone

72, and 74 —Ftar zone and

and J far zone, resulting in twenty constraints on the post-
Newtonian (e7/2) coefficients [18].

Of the twelve constraints at Newtonian order, two are
not linearly independent, resulting in ten constraints on
the twelve parameters. Solving these constraints results
in the form

Agjp =3(1+ B)v* + 3(23+6a 98)m/r — 5872,

(32)

Bs/p = (2+ a)v? + (2 —a)ym/r — 3(1 + a)r? (3b)

where « and B represent the remaining 2 unconstrained
degrees of freedom. The choice & = —1, 8 = 0 leads
to the Damour-Deruelle two-body radiation-reaction for-
mula used in [4]; the choice a = 4, § = 5 leads to
the form obtained from the “Burke-Thorne” radiation
reaction potential ®rr = %d°Qi;/dt®z'z?, where Q;;
is the trace-free moment-of-inertia tensor of the sys-
tem [19]. In fact, it is straightforward to show that
the arbitrariness represented by o and (3 is a conse-
quence of the freedom to make coordinate transforma-
tions whose resultant effect on the two-body separation
vector is x — x + £n(m/r)?[Brx + (28 — 3a)rv], or
ér/r = &n(m/r)?#(B8 —a). The 2 degrees of freedom cor-
respond to the possible functional forms of such trans-
formations at O(e%/2). In a binary coalescence of equal-
mass compact objects, for example, this will change the
coordinate separation by only 2 parts in 107 at a sep-
aration r = 20m, and 3 parts in 10? at the innermost
stable orbit at » = 6m, for values of o and [ of or-
der unity. Similarly, the coordinate transformation yields
8¢/ = —2n(m/r)**(26—3a), from which it is simple to
show that the accumulated correction in the orbital phase
during the coalescence will amount to only 5 x 1073 rad.
Consequently, one can choose o and [ freely; the error
made by using coordinate variables instead of invariant
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quantities is negligible for systems of interest.

At post-Newtonian order, of the twenty constraints, two are again linearly dependent on the others, resulting in
eighteen constraints on 24 parameters. Solving these constraints results in

Aqjo = a1v* + agv®m/r + azv?i? + aq’*m/r + ast* + ag (m/r)?, (4a)
By/p = biv* 4 bov®m /7 + bav?r? + bar2m /7 + bt + be(m/r)?, (4b)
where the twelve coefficients are given by
1 3
1 : 3
az = —4—2-(297 —310m) — 3a(1 — 4n) — -2—[3(7 + 13n) — 261 — 362 + 385 + 366, (5b)
5 5
ag = =(19 = 72n) + 5 B(1 — 3n) — 58, + 564 + 566, (5¢)
1
ag = —21—8(687 — 368n) — 6am + 5 B(54 + 17n) — 262 — 564 — 665, (5d)
as = —754 y (56)
1
ag = —5-(1533 + 4987) — o(14 + 97) + 36(7 + 4n) — 265 — 365, (5f)
3
b1 =-3(1-3n) — §a(1 —3n) — 61, (6a)
1 1
by = —£2(189 + 768n) — (5 + 171) + 6, — &5, (6b)
1 3
bs = (369 — 624n) + = (3a + 26)(1 — 3n) + 36, — 36, (6c)
1 1
by = 5(295 — 3351) + 5(38 — 11n) — 36(1 — 3n) + 26, + 463 + 386, (6d)
5
bs = o5 (19 = 727) — 55(1 = 37) + 566 , (6e)
1
bs = —-2—1(634 —667) + a7 + 3n) + 83 (6f)
The 6 unconstrained degrees of freedom are repre- |
sented by 61, ... ,06; notice also that the parameters o [4] yield
and [ appear as a result of post-Newtonian corrections 3
to the Newtonian terms. It can again be shown that the r = _.6_477<ﬁ> [1 — (_115_.1_ + Zq) m] , (7)
(a, B,6;) freedom is a consequence of coordinate trans- 5 r 336 4/ r
formations, with éx ~ §1y(m/r)2 [O(e)7x + O(e)v], with  and for the orbital angular frequency,
the 6 degrees of freedom here corresponding to the six . 2/3
possible O(¢) terms in §x. The § parameters could be -‘% = 95§n(mw)5/3 [1 - (g—;—z + 121-77) (mw) / ] , (8)
w

chosen, for instance, so as to eliminate six of the twelve
terms in A7/ and By/;. These formulas can be easily
implemented for evolving coalescing binary orbits. For
nearly circular, inspiralling orbits, the orbit equations of

in agreement with [13] and [3] to the corresponding order.
This general approach can also be extended to derive
radiation-reaction expressions caused by gravitational-
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wave tail effects 5, 10], which occur at O(e*), spin effects
[20], and possibly higher-order effects, once the appropri-
ate flux formulas have been derived. We also remark that,
by focusing on the relative equations of motion, we are
ignoring the effects of a net radiation of linear momen-
tum by the system [5]. This radiation will correspond to
radiation-reaction terms in the individual accelerations
a; and ap that will lead to a net center-of-mass acceler-
ation, acm. = (Mmia; + meas)/m. However, we believe
that this will not result in further constraints on the coef-
ficients of the relative acceleration beyond those derived
above. This question is currently under study.
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