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Kovner has observed that Fermat’s principle can be used to describe the motion of light rays in arbi-
trary gravitational fields, not just stationary ones. We give a simple demonstration of this fact.
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I. INTRODUCTION

Fermat’s principle states that a light ray going from
point A to B in space takes the path of least time. More
precisely, the time taken to go from A to B is stationary
with respect to small variations in the path. This princi-
ple provides an economical restatement of the laws of
propagation, reflection, and refraction of light. As stated
above however, Fermat’s principle is firmly rooted in
Newtonian physics, with its absolute notions of space and
time. These notions do not survive the passage to general
relativity (GR). In relativity, the time between two
events depends on the reference frame used. It is not
therefore clear how to formulate Fermat’s principle in
GR. The path followed by light rays is an intrinsic prop-
erty of spacetime, whereas the time taken is an observer-
dependent notion.

Can one describe the motion of light rays in curved
spacetime using Fermat’s principle? The literature in GR
does address this question for static [1-3] and stationary
[4-6] spacetimes. In these spacetimes, there is a timelike
Killing vector field, which can be used to define preferred
notions of “space” and “‘time.” A point in space is an en-
tire integral curve of the Killing vector field. Time is
defined as the Killing parameter [7], or more plainly as
the coordinate time in a stationary reference system.
Given these notions of space and time, Fermat’s principle
applies [1-6] and describes the behavior of light rays, ex-
actly as in Newtonian physics. However, a general space-
time need not be stationary. The question remains: Does
Fermat’s principle describe light rays in an arbitrary
gravitational field?

Kovner [8] has recently answered this question by ap-
propriately formulating Fermat’s principle in GR. He
was motivated by the application of Fermat’s principle to
the theory of gravitational lensing. Kovner’s formulation
follows.

Suppose that light is emitted at an event p in spacetime
and received by an observer O at some event g on his
world line .L. Denote by W the set of null curves starting
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at p and reaching L. In general relativity, light rays fol-
low null geodesics. Fermat’s principle in GR states that
these are characterized by the following property: Their
arrival on L is stationary with respect to first order varia-
tions of the null curve within V.

Several comments are in order at this point.

(1) Note that this formulation makes no reference to
“space” or ‘“‘time” and so applies in a general nonstation-
ary spacetime.

(2) In this formulation, not all variations are permit-
ted: The varied curve must also be null, start from p and
reach L. More concisely, the varied curve must also be-
long to V. Henceforth, we will refer to such variations as
“allowed” variations. Requiring that the varied curve be
null is in complete analogy with the classical formulation
of Fermat’s principle: In computing the time taken for
light to traverse a path in space, one does require that the
rays travel at the local speed of light.

(3) The quantity which is stationary in this formula-
tion is the arrival time of the light ray, as measured by
the observer @. This could be his proper time, or some
parameter increasing along his world line. One can how-
ever take a more geometric stance and say that the ar-
rival of the light ray, which is an event on the observer’s
world line, is stationary.

While we believe that Kovner’s formulation is correct
and interesting, there does seem to be scope for an im-
proved treatment. In proving Fermat’s principle, one en-
counters the technical problem of ensuring that the
varied curves are in V. Kovner solves this by explicitly
constructing “zig zag” paths. He also occasionally re-
gards null curves as the massless limit of timelike curves.
This is a singular limit and may be dangerous. Such an
elegant final result ought to be derivable directly for null
curves using the standard apparatus of relativity. Our al-
ternative presentation possibly brings out more clearly
the essentially geometric nature of the result. In Sec. II
we prove that the arrival of a null geodesic is stationary
with respect to “allowed” variations. In Sec. III we
prove the converse. Section IV is a brief concluding dis-
cussion.

3862 ©1992 The American Physical Society



45 BRIEF REPORTS

II. FERMAT’S PRINCIPLE

We first prove that if ¢ is a null geodesic from p to the
timelike world line .£, a first-order ‘“allowed” variation in
v leads to a second- (or higher-)order variation in the ar-
rival of the curve on L. Consider a one-parameter family
of null curves y, from p to L such that y,=y. Choose a
parameter A along these curves so their points y,(A) are
labeled by (s,A) and y,(0)=p and y,(1) lies on L. On
the two-dimensional region y,(A), 0SA=<1, —e=s=<¢
there are defined vector fields.!

1=03/9A, v=0/0s .

1 is the tangent vector? to the curve ¥, and v is a vector
denoting the first-order variation of the null curve. Since
the vector fields d/ds and 3/0A commute, their Lie
brackets vanish:

[1,v]=Vyv—V,I=0, (2.1)

where VI is v°V, 1%, the covariant directional derivative
of [ along v.

Since the varied curve must also be in W, the vector
field v which generates the variation is subject to con-
straints. The varied curve must start from p,

v(0)=0, (2.2)
and arrive on .L:
v(l)<t, (2.3)

where t is the (future-pointing) unit vector at g tangential
to .L. The varied curve must also be a null curve: i.e.,

1-1=0 (2.4)
for all s. This condition is expressed to first order as

%(l-l)=Vv(l-1)=0=21-V‘,l (2.5)
or using (2.1), as

1-v=0, (2.6)

where the overdot here and below denotes the directional
covariant derivative V; along I.
It is assumed that y =y is a geodesic. For s =0,

i=pi, (2.7)

for some function p(A). (Hereafter s is set to zero.)
Differentiating (2.4) yields

1-i=0 (2.8)

and

1.7=—1-i . (2.9)

IFor those used to more explicit display of indices, we briefly
clarify the notation used below, which follows [7]:
v-1=v°l,,V,v=1%",. The tangent vector to the curve x%A)
with components dx /9 is denoted 3 /9A.

2We require the parametrization to be such that / is nonvanish-
ing.
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We wish to show that v(1) (which generates the first-
order change in the arrival of ¥ on .£) vanishes. It is
simpler to deal instead with the scalar quantity

YA):=I-v

(evaluated at s =0, of course). ¥(0)=0, since v vanishes
(2.2) at p. And

YA)=I-v+I-v=p(A)y

because y, is a geodesic (2.7) and v is an ““allowed” varia-
tion (2.6). It follows from the differential equation for
¥(A) and the initial condition that

P(1)=1(1)-v(1)=0.

Since v(1) is timelike (2.3) and [ is a nonzero null vector,
v(1) must vanish:

v(1)=0. (2.10)

This proves that the arrival of null geodesics on .L is sta-
tionary with respect to “‘allowed” variations.

III. CONVERSE

We now prove the converse result: any null curve from
p to L whose arrival at L is stationary with respect to ar-
bitrary “allowed” variations is a geodesic. Let us parallel
transport t in (2.3) along ¥ and so define a vector field
t(A) all along y satisfying

t=0.
Consider the following choice for v:
v=a(Mi+BM)t . 3.1)

In order that v generate an “allowed” variation, it must
satisfy (2.2), (2.3). These conditions are met by choosing
a,f such that

a(0)=a(1)=p(0)=0 . (3.2)
Condition (2.6) is satisfied by choosing 3 as
__ (ra)d-l) o, pra)) o,
A) fo (1-¢) dh fo (1-t) dr’,

which is well defined because I -t is strictly positive.

We are given that for all v satisfying (2.2), (2.3), (2.6),
v(1) or equivalently, B(1) vanishes. It follows that, for all
a satisfying (3.2),

ta(A)i-i
1)=| ———dA=0.
AL) f o (I-t)
This implies i-i =0, ie., I is a null vector. But i is or-
thogonal to /(2.8). Therefore / must be proportional to I,
which proves that y is a geodesic.

IV. CONCLUSION

We have given an elementary proof of Fermat’s princi-
ple in general relativity. While Fermat’s principle for sta-
tionary metrics has been known for a long time, the gen-
eral version has only recently been formulated by
Kovner. It is perhaps not widely known, even in the rela-
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tivity community, that such a formulation exists.

While our primary interest is in the description of light
rays in a gravitational field, there is also [8] a version of
Fermat’s principle for massive particles. In that case (as
the reader can infer from a careful reading of [8], only
those variations are “allowed” that do not change the to-
tal arc length of ¥. In the limit that y is null, i.e., has
zero length, this coincides with Fermat’s principle for
light. The proof given above for the massless case also
goes through in the massive case with appropriate
modification. Since the arc lengths of all the timelike
curves y, are assumed to be the same, one can choose A
to be the fraction of arc length traversed along the curve
and achieve I-1=1, from which follows (2.8) and finally
(2.10). Conversely, the same arguments given above show
that [ is a null vector orthogonal (2.8) to the timelike vec-
tor I and therefore vanishes. This proves that y is an
(affinely parametrized) geodesic.

The geodesic equation for massive particles is usually
derived from the stationarity of the arc length, keeping
the end points fixed. It is appealing that in the massive
case one can either extremize the arc length, keeping the
end points fixed, or extremize one end point (the arrival),
keeping the arc length fixed. For the massless case only
the second option is available because the first variational
principle breaks down. A general variation of a null
curve will have timelike and spacelike segments. And the
integral of the square root of I-I along the path is not
differentiable with respect to such variations.

Fermat’s principle for light appears closely related to
causality. The boundary of the causal future’ of p is
ruled by null geodesics. If the arrival of these null geo-
desics on a timelike world line .L were not stationary, one
could so choose the variation as to make the varied null

3More precisely, the difference between the causal and chrono-
logical futures [7] of p.
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curve arrive earlier than the null geodesic. Since the null
geodesic belonged to the boundary of the causal future of
p, the varied null curve arrives outside the causal future
of p. This is a clear violation of causality. While causali-
ty and Fermat’s principle are related, they are also dis-
tinct. For, Fermat’s principle says nothing about the sign
of the second- (and higher-)order variations in the arrival
time. The principle of causality (applied to null geodesics
ruling the boundary of a causal future) implies not only
that the first-order variation in arrival of null curves must
vanish, but also that the higher-order variations must
keep the varied curve within the causal future of p. Fur-
ther, not all null geodesics emanating from p rule the
boundary of its causal future. Null geodesics which have
focused enter into the interior of the causal future. The
principle of causality imposes no restriction on the varia-
tion of arrival of these geodesics. But Fermat’s principle
still applies and requires the first variation to vanish.

As is well known, null geodesics are sensitive only to
the conformal structure of the spacetime. However, the
null geodesic equation is not manifestly invariant under
conformal transformations. An appealing feature of
Fermat’s principle for light in relativity is that it too de-
pends only on the conformal structure of the spacetime.
The requirements that 7, be null and .£ be timelike and
the arrival be stationary are all invariant under confor-
mal transformations. From this it is manifestly clear that
null geodesics are conformally invariant. It is perhaps
slightly unsatisfactory that our proof of Fermat’s princi-
ple (like the null geodesic equation) does use more than
the conformal structure of spacetime. But it remains true
that Fermat’s principle gives us a conformally invariant
principle to describe the motion of light rays in curved
spacetime.

Note added. After this paper was submitted for publi-
cation, we learned of Ref. [9], which also deals with the
same subject.
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