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New exact solutions of the Einstein-Maxwell equations are obtained by a Harrison-type
transformation applied to the most general stationary cylindrically symmetric vacuum
spacetime. These solutions include generalizations of the well-known Melvin Magnetic Universe,
and the Weyl-Levi-Civiti magnetic solution in addition to a new class of magnetic stationary

axisymmetric spacetimes.
PACS numbers: 04.20.Jb

I. INTRODUCTION

The importance of magnetic fields in astrophysical si-
tuations is well recognized and one convenient way to intro-
duce a magnetic field in some given spacetimes is by a Harri-
son'-type transformation. Ernst? used this method to obtain
the solution corresponding to a black hole in an external
magnetic field. Though the method leads to nonasymptoti-
cally flat spacetimes and sourceless electromagnetic fields
the Ernst solution has been useful and employed as an ideal-
ized model by various authors® to study the effect of magnet-
ic fields in different physical situations. However, especially
in the Kerr* case, the forms of the fields are very complicated
and it is difficult to understand their structure. Consequent-
ly it would be instructive if one could study the electromag-
netic fields that arise from a Harrison-type transformation in
a case where the form of the functions involved is simpler.

To initiate such an investigation we apply a Harrison-
type transformation to the stationary cylindrically symmet-
ric vacuum metrics because the most general form of these
solutions has been given in an especially simple form by
Vishveshwara and Winicour.® Further, these solutions in-
clude as a special case the flat Minkowski metric so that we
expect to obtain similar but more general spacetimes than )
the Melvin magnetic Universe (MMU). Indeed as we shall
see later the solutions include generalizations of the twisted
MMU (TMMU)' and the twisted Weyl-Levi-Civita magnet-
ic solution (TWLCM). In addition a new class of magnetic
stationary metrics is generated which is axisymmetric and
no longer retain their original cylindrical symmetry.

Recently Hiscock” has pointed out that the magnetized
Kerr black hole is asymptotically non-Melvin unlike the
magnetized Schwarzschild black hole although both the me-
trics in their original nonmagnetized versions are asymptot-
ically flat. This follows by noting that in the magnetic Kerr
case the electric fields persist even in the asymptotic region.
It would be of obvious interest to check whether asymptoti-
cally the magnetic Kerr solution goes into any one of the
above new classes of solutions. These above three reasons
motivate us to obtain this new class of magnetized solutions
starting from the most general stationary cylindrically sym-
metric vacuum spacetime.

In the next section, the Harrison transformation used
by Ernst? to obtain magnetized solutions is given. Next fol-
lowing Vishveshwara and Winicour® the most general sta-
tionary cylindrically symmetric vacuum metric is written

1568 J. Math. Phys. 24 (6), June 1983

w

0022-2488/83/061568-06$02.50

down and its relevant properties summarized for lager use,
The Harrison transformation is then applied and it is shown
that the equation for &’ can be explicitly integrated to obtain
the new magnetic solutions. In Sec. IV these solutions are
classified. These solutions as mentioned earlier yield gener-
alizations of known magnetic solutions as well as a new class
of magnetic solutions. After obtaining these solutions the
electromagnetic fields seen by a locally nonrotating observer
are also calculated.

Il. THE MAGNETIZATION PRESCRIPTION

In this section, we summarize the magnetization proce-
dure of Ernst applicable to any axially symmetric stationary
solution of Einstein’s equations. We do this in some detail to
make the calculation self contained. The prescription in-
volves making a Harrison-type transformation that gener-
ates in general new solutions of Einstein Maxwell equations
from old ones. We confine our summary to cases where the
starting solution is a vacuum metric. Following Ernst, any
axially symmetric stationary solution may be written in the
form
ds’=f"'[ —2P2dfdE* + p?dT?) — f(d¢ —de)z,)

(1
where f < 0. For any metric of the above type, the twist po-
tential @ and the complex gravitational poteritial & are given
by

2
Vo = —(iV w), {2
p
where®
=9 .9 (4
= a

To obtain the magnetized version of the metric given by Eq.
(1) one replaces fand w in Eq. (1) and f* and o’ defined by

f=1A1, e

Vo' = |A Vo + %[A VA — AVA ¥, (®
where®

A=1-Blg. 7

The nontrivial part of the procedure is the integration Of;iE‘:'
(6) to obtain »’. For vacuum metrics—to which we confin
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ourselvcs;—Eq. (6) is equivalent to

dw' —o)=Biledy —([*+ ¢’ dol, (8)
4here Y is a new “potential” defined by
V= - FVS e ©)

{tis simpler to obtain o’ from Eqs. (8) and (9) and we shall
cmploy them in our computation. Under this transformation
the complex gravitational potential & goes into &' where

F=A"'E, : (10)
whilst the complex electromagnetic potential changes from
¢ = 0to P’ given by

&'= —BA'E. (1)
It should be noted that in the axially symmetric stationary
case A, = A, = 0. The complex electromagnetic field is re-
lated to the vector potential by

D' =A,+id' (12)
with A4 ', satisfying
VAo + @'VA, =ipf' ~'VA', (13)

The combination @ is of interest since the electromagnetic
field components as measured by a locally nonrotating ob-
server is related to it by

By g = —PEZ, (14a)
B{’"‘+iE?“=P§£—. (14b)

We now proceed to apply this method to the spacetimes of
our interest.

iI. APPLICATION TO STATIONARY CYLINDRICALLY
SYMMETRIC METRICS

Following the treatment of Ref. (5) we see that all sta-
tionary cylindrically symmetric vacuum metrics may be tak-
en in the form

ds’ = e¥dr? + do?) + Ag dt?

+ 2, dtdp + A, dé 2, (15)

with '
Ag =Aar'+*+1§,r'—”, (16)
¥ =cr® -, ' (17)

where a runs over (00), {01), (11} and b *> 0. The 7 and o are
related to the usual coordinates p and z as

r=\2p, o=V2z (18)
while the 4 ’s and B’s in Eq. (16) satisfy the normalization
conditions '

Aoody, — Ao = BooByy — By * =0, (19a)

AooByi + Ay Boo — 240iBo = — 4 (l9b)

The mass and angular momentum per unit value of z are
given by

M=i+ib(‘4uBoo—AooBu)r (20)
Jj= ib (4o By, —A4,184). (21)
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By comparing the metric given by Eq. (15), with the general
form of Eq. (1) we identify

dE= dp+idz, 22)
2

P-2=21,¢%, (23)

f= —duy= '"(Allfl+b+31|"'l_b): (24)

W= -— _/{_OI_ = — -———————Ao.Tb+BOIT_: . (25)
An An“'b'f'BuT_

To proceed with the magnetization we first compute the
twist potential @ using Eq. (2) which in component form
reads

de _ _[low (26a)
dp p oz’
dp _ [1 0w (26b)
oz pap
Using
9o _o, (27a)
adz
O _ 2bDr (270)
ar A0
where
D=A,,By, — 40,B:1, {28)
it follows that
@ =4bDz +¢,, - (29)

where ¢, is a (real) constant of integration. Consequently,
from Egqs. {3), (5) and (7) we have

F = —A,, +i4bDz +cy), {30)

. '{nA 31

S e 31
where

A=(1+B24,)—iB3(4bDz +c)) 32)

We now proceed to the nontrivial part of the prescrip-
tion viz., the determination of @'. As mentioned earlier we do
it via the potential y. Equations {9) defining y are the two
partial differential equations

K _PI 2y

3, fia (S +e% {33a)
N _ _LI9 prypt

; 3, (ff+e7) (33b)

In this case fand @ are given by Eqs. (24) and (29) so that Eqgs.
(33) become

S _ 4bD (4bDz + cyr** ! "
or (4,7 + B,,) ‘

% [ 264,

= AT WA Eal (34b)
% (4,7 + By)

We shall now write Eq. (8) as
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@ —a=Bie X~ +992] (s
dp dp dp

a = a, dw

O i — ) = B‘[ 9¥ _ r2 2 _]

az(w ) o|P 3, f +¢)az
Employing Egs. (24), (27), (29) and {34), Egs. (35) become
after some simplification

(35b)

(Alszb + Bll)z
a%(m' —w)= —2B}{4bDz +¢,)
2bB
X(l +b— __¢_) (36b)
. (4),7 + By))
Integrating Eq. (36b) gives
o' —w= —2B%2(2bDz +¢,)
2bB
><(1 +b— ———“——) +cn. (37
(A7 + Byy) I

Differentiating Eq. (37) w.r.t 7 and using Eq. (36a) after some
algebra and use of the normalization Eq. (19), we find ci(7)
satisfies the equation ’

% 203 Ciaa
— =2DB§| —7 + —L |, (38)
aT ¢ (All11b+Bll)2
which can be integrated to yield
— a3
¢ = —bDB‘[ﬁ-H—'— ]+c A,,#0,
l ¢ b4, 4,7 + B, z o (39)

where ¢, is another constant of integration. Equation (37)
thus becomes

= 2bB
- —B‘[bD[fz+4zz(l b__..__#}
©=e ° + (A,|12°+B“))

2bB
+ 2z¢ (1 +b- —270
! (4,7 + B,))
D&

+c A4,#0. (40)

‘+ —_—
A,,(A,,T2°+B“)

For completeness we mention that Eqgs. (34) can be integrat-
ed to obtain the potential y. The result is

2b4,, )
(Alszb +BII)
4,#0. (4]

= —Zz(1+b—

2Dc, +e
T 2
AII(AIlrzb + Bll)
In the case 4,, = O the equations are simpler and we only
quote the results
o' =0—2,B41—blz+c, {42)
with
XY= —2{l—bi+c;. (43)
Having obtained /' and &' the magnetization procedure is
complete. The new magnetic solution as mentioned before is
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given by Eq. (1) with fand  replaced by /' and o' respective.
ly and is of the form

2
ds’=|A |2[2e2'*(d,o2 +d7%) — A”—dzz]
1

'l ’
+ ﬁ;{dot —o'arf, (44)
where
AP =(1+B34,,2 + Bi4bDz + c, . (45)

IV. THE NEW MAGNETIZED SOLUTIONS

Before examining the new solutions, we make the fol-
lowing remarks which would clarify our classification of the
solutions. From Egs. (21) and (28) the angular momentum
per unit length of the original metric is seen to be

= — 1bD. (46)
Hence,

j=0oD=0. : ’ (47)
Further from Egs. (28) and (19),

D= — Man' (48)

Since 4,50, it follows that D = 0 iffA“ =0orB,;, =0but
not both. It is easy to show with a little algebra that D = 0iff
® = constant and consequently we have

J= 0D = 0w = constant

<A,, = 0or B, = 0 {but not both). (49)
Further it is easy to see that any overall constant ¢, inw’ can
be transformed away by a coordinate transformation of the
type N

b=d—c, T=1t (50)
Such a transformation does not affect the general form of the
metric and hence there is no loss of generality in setting
¢, = 0in Eqs. (40) and {42) for w'. Also as expected if B, = 0
in Eq. (45) one gets back to the original unmagnetized metric.
With these remarks we classify the solutions as follows:

A. D = 0 solutions’

As pointed out earlier these correspond to solutions
with constant @ which can be transformed away by a suitable
transformation of the form Eq. (50). Hence they correspond
to magnetized versions of static cylindrically symmetric solu-
tions. Moreover since D = 0, g = ¢, and therefore in general
these solutions have a constant twist. These solutions fall
into two classes according to whether B,, =0 or 4,, =0,
each representative of two well known solutions as seen be-
low.

1. Generalized Twisted Melvin Magnetic Universe
(GTMMU) - -

This class corresponds to the particular choice of con-
stants

B, =0, d,,=1 Ay=0, c=}, (51)

which implies
Bp,=0 and By= —1. (52)
1570
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For the original unmagnetized metric

m=}{1—-5), (53)
s that m>0 iff 5<1. The metric is given by Eq. (45) where
An= %2, =), (54)
o= —2B3c(l+b), (55)
ar=(1+22) 15, (56
E=7r""% >0 | (57)

Ifb = 1 and ¢, = O we get the well known Melvin Magnetic
Universe (MMU) whereas if b = 1 and ¢, #0 we get the
Twisted Melvin Magnetic Universe {TMMU) discussed by
Harrison.' In the case of a “twisted” solution the angular
velocity @' varies montonically with z becoming O on the
7= 0plane. The case b #1, ¢, #0 corresponds to a General-
ized Melvin Magnetic Universe (GMMU).

It should be noticed that other solutions, e.g.,
B, =By =04, =), Byy= —1,c=] but 4y, #0,
Ago# 0 can be transformed into a suitable one of the above
solutions by a coordinate transformation of type Eq. (50).
Similarly, solutions with 4, #}, B,, — 1, can be trans-
formed by a scaling of coordinates t and 8.

2. Twisted Weyl-Levi-Civita magnetic solution (TWLCM)

It is known that the special case

A, =0, Bu=£’ B;, =0, (58)
corresponds to the Weyl-Levi-Civita solution whose source
is an infinite rod of linear density

m=41+5b), (59)
or the infinite mass cylindrical limit of the augmented
Schwarzschild solution.'® Our solution for the above choice

of parameters has a constant twist ¢, leading to the above
nomenclature. In this case

e : ‘
A= = e =cr® ), (60)
o' = —2Bic,(1+ b}z, (61)
2p2 2 .
|A |2=(1+ ;2 ) + B, (62)
where
E=7'* €50 . (63)

If ¢, = O.we get the Weyl-Levi-Civita magnetic solution
(WLCM). The particular case b = 1 corresponds to the cy-
lindrical limit of the Schwarzschild solution and in this case

An=4h M =c , (60a)

o' = —4Bicz, ' (61a)

A= [1+4(B3/2)]* +B§ct, (62a)
with

E=r. (63a)

In this case if ¢, = O then the new solution is reducible
to the original solution by a scaling of coordinates so that the
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Harrison transformation is an identity transformation. The
peculiarity of this case will be more apparent when we look
at the electromagnetic fields.

As before if By, 70 the solution may be transformed to
one of the above by a coordinate transformation. We thus
find that under the magnetization procedure the static solu-
tions retain their original cylindrical symmetry only if there
is no twist, i.e, ¢, =0.

B. D#0, ¢, = 0 solution ]

In this case the original background is stationary. o is
not a constant and therefore cannot be globally transformed
away. These solutions correspond to nonvanishing j and
consequently the magnetized version of these solutions form
a new class of solutions. The relevant function for this metric
are given by

/111=A||Tl+b+Bl|Tl_b» (64)

— 2bB
- —bDB‘[‘rl .422(1 b———“—],
= tDBom AT (A..#"+B..)

AP =(1 + B34, + 166°D B 7. (66)

We thus see that for this class of solutions even though
¢, = 0 the metrics are axially symmetric and have lost their
original cylindrical symmetry under the magnetization
transformation. Moreover, these solutions have reflection
symmetry with respect to z = 0 plane {the 2 dependence)
and are qualitatively very different from the previously dis-
cussed metrics with constant twist.

C. D#0, ¢, 0 solution

These correspond to the most general of our solutions
and represent “twisted” versions of the previous solutions.
The most general form is given by Eq. (45) with o’ given by
Eq. (40).

V. THE ELECTROMAGNETIC FIELDS

We conclude this investigation by computing the elec-
tromagnetic fields generated by the Harrison type transfor-
mation or in other words the magnetization prescription. As
mentioned in Sec. II the fields as seen by a locally nonrotat-
ing observer (LNRO) are directly calculable from the poten-
tial @ . For any metric of the form given by Eq. (1)aLNROis
specified by a tetrad whose nonvanishing components are
given by

e(,’= f”zp_',
eif=e;"= f'"P,
est=f"17, e =we' (67)

Employing Egs. (3) and (7) in Eq. (11), Eq. (12) yields in gen-
eral

B[ f— By + 9’
ay= = Bolt IA(I{ rel (682)
Ay = - 2o, (68b)
141

which for our specific case gives
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- B.o[/l'u +§¢2)(’1 %1 +¢2)]

A7 {69a}

45

By
A= — Z&,
° AP
with@and }A | being given by Egs. (29) and (45) respectively.
Using Egs. (14}, (12) and (69), after a straightforward
computation the electromagnetic field components may be
written down in all the cases as

86DPp (1 + B3A,,)

(69b)

BR= _ AT , (70a)
é?R= Vzﬁopflll"'[(l _}l_f'f:,{“)l_ﬁg¢z] , (70b)
P +Iis|:z..)2—ss¢»’] L o
E?R=2V2§3m”'r|j F +B24,] ’ (70d)

with A,,, P, D, @ and |A |? as defined by Eqs. (16), {23), (28),
(29) and (45) respectively. To see the structure more clearly
we write down the particular forms of the fields in each of the
cases discussed in the previous section.

A1. GTMMU fields
In this case,

BY=EM =0,

and
_ 14 B2p%/e2? — Bic?
B?R=“+bwo€b [( +_0p/ ) —Ocl]’
[(1+Bip"/ef + Bact |

201+ b)Bjc,e*(1 + Bp/ed)

[(1+BEp/e€P +Bici]®
Although the metric in general has a z dependence the elec-
tromagnetic fields in a LNRF are independent of z. Further
as p— oo, B;«R~T-(b=+3b+4), andEyR~T—(b’+5b+6) SO
that as p— co, B '® and E '*—0. It is interesting to note that
as p—0, BNR 1 —bV2 ENR __ b1l = )2 5 that for solu-
tions with linear density positive, m >0, i.e., b < 1, both B,
and E; vanish on the axis.!’

(71a)

NR

: (71b)

A2. TWLCM fields

In this case too

BYR=EN =0, (72a)
while
gy (1=0)B [(1+_F’§p’/€’)2—fsc§] (2]
@ [1+B3p/E) +Bict]”
g _ 21— 6)Bic, (1+B5p/@)

& [(1 +B3p*/@P +Béct )
(72c)

Here also the fields are z independent and as p— cc,

BIR 7~ 6=327+ 7/41_,0, However E R~ 7~ (b= —2

so that E Y'®—0 unless 2 < b < 3. In this case on the axis the

fields are divergent. b = 1 is a degenerate case as seen from,
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Eq. (72), since there are no electromagnetic fields. Thus the
cylindrical limit of the Schwarzschild solution under the
Harrison transformation does not pick up any clectromag-
netic field but a constant vector potential even if ¢, 0,

In both the cases it should be noted that if the constant
twist ¢, = 0 then only a magnetic field in the z direction js
produced but no electric field. The magnetic field for
GMMU is given by

pyn= (LibiBe (73
(1 + B3 g/ !
which for MMU becomes
2B,
R _
BNF = “+§§p2)2. . (74)
whilst that of WLCM becomes
1—b)B,
BNR = ——(—_—0. 75
Y B+ B pey 73)
For the TMMU however .
B 95, L1+ BipP —Bic (76a)
[(1+53pF +Bact|*
NR _ 4Bjc,(1+ B} p?) (76b)
T [0+BipP +BiA)
B.D0,¢c, =0

The structure of the electromagnetic fields in this case is
very different from the previous case because of the nontri-

" vial rotation present in the metric. The fields are no longer z

independent and are given as
3262DBlP(1 + B2A,,)z

BYR = , 77a)
’ ar !
BNR _ V2B,PA 7 [(1 + B34, — 16b2D*B$7*]
! A
{77b)
xk_ 46DB.P[(1+ B34, ) — 165°D°B;7’]
F - ) ’
4]
{77¢)
ENR _ 8v2bDBJPA 1, ,(1+ B3A, )z (77d)
’ N '

Itis easy to see that in this case also the fields vanish as p— o
for a fixed value of z. Using the tetrad components listed in
Eq. (67) and its inverse the coordinate components of the
electromagnetic field tensor may be obtained. We have done
this and verified explicitly that these fields satisfy the gener-
ally covariant Maxwell’s equations without any sources.

However, no one of the above solutions correspond to
the asymptotic form of the magnetized Kerr solution.
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