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The application of the van der Panw—Hall measurement technique to implanted samples in whichs
the mobility varies with depth has still not been fully justified. A proof that the technique is in fact

applicable in this situation is given.
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The general validity of the van der Pauw-Hall measure-
ment technique' for arbitrarily shaped samples was recently
questioned.” Beck® showed that arbitrary shapes could be
used for homogenous samples. However, the technique has
been widely used for implanted samples in which the proper-
ties vary with depth. Petritz* has considered the case of inho-
mogenous samples but only in the standard Hall geometry.
Further, his analysis is based on a microscopic transport
model, the Boltzmann equation. However, the final result
for the measured Hall coefficient depends only on the mac-
roscopic transport coefficients suitably averaged over thick-
ness [see eq. (8)]. In this paper we treat the problem in the van
der Pauw geometry using just the macroscopic relation
between the current density J and the electric field E.

We first note that van der Pauw’s original treatment' as
well as the arguments given by Beck® require that the current
density J equals its value in zero magnetic field J,. In what
follows, the suffix O is used for quantities in zero magnetic
field. If J = J,, we have

E =E, — [u(z)/c]E, X B,

where the mobility 4 depends on the depth z in general. This
implies VXE = — (B,/c) (9u/32)Ey#0 which is unaccep-
table in a steady-state situation. The current lines remain
unaltered by the application of a magnetic field only when
the sample is homogenous or has variations in carrier con-
centration alone with mobility remaining constant. We now
show that in the general case, the current density integrated
over thickness does remain unchanged with magnetic field.
Assuming isotropy in the xy plane, in a notation similar to
Refs. 1 and 2, we have

Jo(xp2) = 0 (Z)E, (X)) + 0, (2)E, (x) (1a)
and

Jy (xJ’,Z) = - ny (Z)Ex (xly) + Oxx (z)'Ey(x!y)' (lb)
We take E, and E, to be independent of z and comment on

this later. Define the components I, and I, of the current per
unit width as follows:

L= f Jexp2)dz ], = fow Jybxp,2idz. @
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The integration is over the thickness w of the sample. I, and

I, are functions of x and y. Substituting Eq. (2} in Eq. (1) and

solving for the electric field, we find

Ex=Pxx Ix +ny Iyl (38,,
E,=—-P,I +P,1I, (3b)
where

ra=3 /5 p,,=-z/z, (4a
e P R

xx xx

The charge conservation condition for steady current reads

/4 J4
vi=%,% _, (5)
ax dy
Substituting Eq. (3) into VX E = 0 and using Egq. (5} gives
ar, I
VXI=—%——=0. (6)
ax dy

Equations (5) and (6), together with the sample geometry and
the boundary conditions at the current leads, are enough to
determine I, (x,y) and 7, (x,y) which are therefore indepen-
dent of the magnetic field.

We can now use Eq. (4) and the field independence of I,
and J, to calculate the Hall voltage ¥, defined as half the
change in voltage between contacts c and d at the edge of the
sample when the magnetic field is reversed.

Vy = (1/2)r [E.(B)— E,(— B)]dx

+ [E,(B)—E,(— B)]dy
= — ,,(B)f (I, dy — Idx). a

In writing down Eq. (7), the symmetry properties of P,, and
P ., viz., that they are odd and even under reversal of the
field, have been used. The line integral from ¢ to d is nothing
but the total current I through the sample. The measured
Hall coefficient is given by
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w| o,,dz
w way J; i
R=-Vogr="3 = ®

2
B(fwa,“ dz),
o

dropping corrections of order B ? in the denominator. Equa-
tion (8) is just the result found by Petritz* which we now see
depends neither on the assumption of the standard Hall ge-
ometry nor on the microscopic transport model.

The solution both here [Eq. (8)] and in the treatment
given by Petritz has been found on the assumption that E,
and E, are independent of z. Strictly speaking, this condition
cannot apply to the boundary region along the vertical edge
of the sample if mobility varies with depth. In that case, with
magnetic field on, the Hall angle tan~' (0, /0,, ) being dif-
ferent in various x-p planes, the normal component of the
current density J cannot vanish at this boundary if J, is zero.
Note that the normal component of the integrated current
density 7 can still be taken to vanish on the boundary. For
example, one might have

Jn>0 for 0<z<w/2
and
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Jn<0 for w/2<z<w withIn=0.

To satisfy the true boundary condition J-n = 0, we have to
inject some current into the lower half of the thickness and
withdraw an equal current from the upper half. The extra
superposed currents and electric fields due to this dipolar
distribution die off rapidly as we move from the edge to the
interior of the sample, giving corrections of order w/L where
L is a typical transverse dimension. If w/L < < 1, as is usual-
ly the case, the voltage contribution from the boundary re-
gion with nonzero E; can be neglected as compared to that
from the rest of the sample with zero E,."In short, Eq. (8)
applies to a sample if w/L < < 1.

In conclusion, the validity of the van der Pauw—~Hall
measurement technique for implanted samples has been con-
firmed, and the measured Hall coefficient can be expressed
in terms of the depth dependent transport coefficients in the
same manner as found by Petritiz* for a particular geometry
and transport model.

'L. J. van der Pauw, Philips Res. Rep. 13, 1 (1958).

D. M. Boerger, J. J. Kramer, and L. D. Partain, J. Appl. Phys. 52, 269
(1981).

*W. A. Beck, J. Appl. Phys. 53, 5350 (1982).

“R. L. Petritz, Phys. Rev. 110, 1254 {1958).

lyer, Nityananda, and Kumar 4451



