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We develop graph theoretic methods for analyzing maximally entangled pure states
distributed between a number of different parties. We introduce a technique called
bicolored merging, based on the monotonicity feature of entanglement measures,
for determining combinatorial conditions that must be satisfied for any two distinct
multiparticle states to be comparable under local operations and classical commu-
nication. We present several results based on the possibility or impossibility of
comparability of pure multipartite states. We show that there are exponentially
many such entangled multipartite states among n agents. Further, we discuss a new
graph theoretic metric on a class of multipartite states, and its implications. © 2005
American Institute of Physics. �DOI: 10.1063/1.2142840�

. INTRODUCTION

Given the extensive use of quantum entanglement as a resource for quantum information
rocessing,6,19,23 the theory of entanglement, in particular, entanglement quantification, is a topic
mportant to quantum information theory. However, apart from a limited number of cases like low
imension Hilbert spaces and for pure states, the mathematical structure of entanglement is not yet
ully understood. The entanglement properties of bipartite states have been widely explored �see
efs. 8 and 12 for a comprehensive review�. This has been aided by the fact that bipartite states
ossess the nice mathematical property in the form of the Schmidt decomposition,19 the Schmidt
oefficients encompassing all their nonlocal properties. No such simplifying structure is known in
he case of larger systems. Approaches using certain generalizations of Schmidt
ecomposition4,14,20 and group theoretic or algebraic methods,15–17 have been taken in this direc-
ion. A number of methods for comparing or quantifying or qualifying entanglement have been
roposed for bipartite systems and/or pure states such as entanglement of formation,3 entangle-
ent cost,3,26 distillable entanglement,3,21 relative entropy of entanglement,11 negativity,27
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oncurrence,28 and entanglement witnesses.13 However, these quantifications do not always lend
hemselves to being computed, except in some restricted situations. As such, a general formulation
s still an open problem.

It is known that state transformations under local operations and classical communication
LOCC� are very important to quantifying entanglement because LOCC can at the best increase
nly classical correlations. Therefore a good measure of entanglement is expected not to increase
nder LOCC. A necessary and sufficient condition for the possibility of such transformations in
he case of bipartite states was given by Nielsen.18 An immediate consequence of his result was the
xistence of incomparable states �the states that cannot be obtained by LOCC from one another�.
ennett et al.,4 formalized the notions of reducibility, equivalence and incomparability to multi-
artite states and gave a sufficient condition for incomparability based on partial entropic criteria.

In this work, our principal aim is not to quantify entanglement, but to develop graph theoretic
echniques to analyze the comparability of maximally entangled multipartite states of several
ubits distributed between a number of different parties. We obtain various qualitative results
oncerning reversibility of operations and comparability of states by observing the combinatorics
f multiparitite entanglement. For our purpose, it is sufficient to consider the graph theoretic
epresentation of various maximally entangled states �represented by specific graphs built from
PR, GHZ, and so on�. Although this might at first seem overly restrictive, we will in fact be able

o demonstrate a number of new results. Furthermore, being based only on the monotonicity
rinciple, it can be adapted to any specific quantification of entanglement. Therefore, our approach
s quite generic, in principle applicable to all entanglement measures. Since the entanglement of
aximally entangled states is usually represented by integer values, it turns out that we can

nalyze entangled systems simply by studying the combinatorial properties of graphs and set
ystems representing the states. The basic definitions and concepts are introduced through the
ramework set in Sec. II. We introduce a technique called bicolored merging in Sec. III, which is
ssentially a combinatorial way of quantifying maximal entanglment between two parts of the
ystem, and inferring transformation properties to be satisfied by the states.

In Sec. IV, we present our first result: the impossibility of obtaining two Einstein-Podolsky-
osen �EPR� pairs among three players starting from a Greenberger-Horne-Zeilinger �GHZ� state

Theorem 2�. We then show that this can be used to establish the impossibility of implementing a
wo-pronged teleportation �called selective teleportation� given preshared entanglement in the
orm of a GHZ state. We then demonstrate various classes of incomparable multipartite states in
ec. V. Finally, we discuss the minimum number of copies of a state required to prepare another
tate by LOCC and present bounds on this number in terms of the quantum distance between the
wo states in Sec. VII.

We believe that our combinatorial approach vastly simplifies the study of entanglement in
ery complex systems. Moreover, it opens up the road for further analysis, for example, to
nterpret entanglement topologically. In future works, we intend to apply and extend these insights
o nonmaximal and mixed multipartite states, and to combine our approach with a suitable mea-
ure of entanglement.

I. THE COMBINATORIAL FRAMEWORK

In this section we introduce a number of basic concepts useful to describe combinatorics of
ntanglement. First, an EPR graph G�V ,E� is a graph whose vertices are the players ��V� and
dges ��E� represent shared entanglement in the form of an EPR pair. Formally, we have the
ollowing.

Definition 1: EPR graph. For n agents A1 ,A2 , . . . ,An an undirected graph G= �V ,E� is con-
tructed as follows: V= �Ai : i=1,2 , . . . ,n�, E= ��Ai ,Aj� :Ai and Aj share an EPR pair, 1� i , j .

n ; i� j�. The graph G= �V ,E� thus formed is called the EPR graph of the n agents.
A spanning tree is a graph which connects all vertices without forming cycles �i.e., loops�.

ccordingly, we have the following.
Definition 2: Spanning EPR tree. A spanning tree is a connected, undirected graph linking all
ertices without forming cycles. An EPR graph G= �V ,E� is called a spanning EPR tree if the
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ndirected graph G= �V ,E� is a spanning tree.
The above notions are generalized to more general multipartite entanglement by means of the

oncept of a hypergraph. A usual graph is built up from edges, where a normal edge links
recisely two vertices. A hyperedge is a generalization that links r vertices, where r�2. A graph
ndowed with at least one hyperedge is called a hypergraph. From the combinatorial viewpoint, a
imple and interesting connection can be made between entanglement and hyperedges, an n-cat
tate �also sometimes called an n-GHZ state� corresponds to a hyperedge of size n. In particular,
n EPR state corresponds to a simple edge connecting only two vertices. Formally, we have the
ollowing.

Definition 3: Entangled hypergraph. Let S be the set of n agents and F= �E1 ,E2 , . . . ,Em�,
here Ei�S ; i=1,2 , . . . ,m and Ei is such that its elements (agents) are in �Ei�-CAT state. The
ypergraph (set system) H= �S ,F� is called an entangled hypergraph of the n agents.

A graph is connected if there is a path �having a length of one or more edges� between any two
ertices. Accordingly, we have the following.

Definition 4: Connected entangled hypergraph. A sequence of j hyperedges E1 ,E2 , . . . ,Ej in a
ypergraph H= �S ,F� is called a hyperpath (path) from a vertex a to a vertex b if

1� Ei and Ei+1 have a common vertex for all 1� i� j−1,
2� a and b are agents in S,
3� a�E1, and
4� b�Ej.

If there is a hyperpath between every pair of vertices of S in the hypergraph H, we say that H
s connected.

Analogous to a spanning EPR tree we have the following.
Definition 5: Entangled hypertree. A connected entangled hypergraph H= �S ,F� is called an

ntangled hypertree if it contains no cycles, that is, there do not exist any pair of vertices from S
uch that there are two distinct paths between them.

Further, we have the following.
Definition 6: r-uniform entangled hypertree: An entangled hypertree is called an r-uniform

ntangled hypertree if all of its hyperedges are of size r for r�2.
In ordinary graphs, a vertex that terminates, i.e., has precisely a single edge linked to it is

alled a terminal or pendent vertex. This concept is extended to the case of hypergraphs.
Definition 7: Pendant vertex. A vertex of a hypergraph H= �S ,F� such that it belongs to only

ne hyperedge of F is called a pendant vertex in H. Vertices which belong to more than one
yperedge of H are called nonpendant.

In the paper we use polygons for pictorially representing an entangled hypergraph of multi-
artite states. �There should be no confusion with a closed loop of EPR pairs because we consider
nly tree structured states.� A hyperedge representing an n-CAT amongst the parties �i1 , i2 , . . . , in�
s pictorially represented by an n-gon with vertices distinctly numbered by i1 , i2 , . . . , in. We write
hese vertices i1 , i2 , . . . , in corresponding to the n vertices of the n-gon in the pictorial representa-
ion in arbitrary order. This only means that out of n qubits of the n-CAT, one qubit is with each
f the n parties.

A result we will require frequently is that there exist teleportation2 protocols to produce
-partite entanglement starting from pairwise entanglement shared along any spanning tree con-
ecting the n parties. That is, there exist LOCC protocols to turn a n-party spanning EPR tree into
n n-regular hypergraph consisting of a single hyperedge of size n. The protocol is detailed in
efs. 24 and 23, but the basic idea is readily described. It is essentially a scheme to determinis-

ically create a maximally entangled n-cat state from n−1 EPR pairs shared along a spanning tree.
riefly, the protocol consists in teleporting entanglement along a spanning tree. Players not on

erminal vertices along the tree execute the following subroutine. Suppose player Alice shares an
-cat with �m−1� preceding players along the tree and wishes to create an �m+1�-cat state
ncluding Bob, the next player down the tree. First she entangles an auxiliary particle with her
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article in the m-cat state by means of local operation. She then uses her EPR pair shared with Bob
o teleport the state of the auxiliary particle to Bob. The �m+1� players, including Alice and Bob,
ow share an �m+1�-cat state, as desired.

Another result we will require in some of our proofs, given as the theorem below, is that the
panning EPR tree mentioned above is also a necessary condition to prepare an n-CAT state
tarting from shared EPR pairs.

Theorem 1: Given a communication network of n agents with only EPR pairs permitted for
airwise entanglement between agents, a necessary condition for creation of a n-CAT state is that
he EPR graph of the n agents must be connected.

Proof of the theorem is given in Appendix A using our method of bicolored merging devel-
ped in Sec. III.

II. BICOLORED MERGING

Monotonicity is easily the most natural characteristic that should be satisfied by all entangle-
ent measures.12 It requires that any appropriate measure of entanglement must not change under

ocal unitary operations and more generally, the expected entanglement must not increase under
OCC. We should note here that in LOCC, LO involves unitary transformations, additions of
ncillas �that is, enlarging the Hilbert space�, measurements, and throwing away parts of the
ystem, each of these actions performed by one party on his or her subsystem. CC between the
arties allows local actions by one party to be conditioned on the outcomes of the earlier mea-
urements performed by the other parties.

Apart from monotonicity, there are certain other characteristics required to be satisfied by
ntanglement measures. However, monotonicity itself vastly restricts the choice of entanglement
easures �for example, marginal entropy as a measure of entanglement for bipartite pure states or

ntanglement of formation for mixed states�. In the present work, we find that monotonicity, where
roven for a particular entanglement measure candidate, restricts a large number of state transfor-
ations and gives rise to several classes of incomparable �multipartite� states. So, in order to study

he possible state transformations of �multipartite� states under LOCC, it would be interesting to
ook at the kind of state transforms under LOCC which monotonicity does not allow. We can
bserve that monotonicity does not allow the preparation of n+1 or more EPR pairs between two
arties starting from only n EPR pairs between them. In particular, it is not possible to prepare two
r more EPR pairs between two parties starting only with a single EPR pair and only LOCC. This
s an example of impossible state transformation in the bipartite case as dictated by the monoto-
icity postulate. We anticipate that a large class of multipartite states could also be shown to be
ncomparable by using impossibility results for the bipartite case through suitable reductions. For
nstance, consider transforming �under LOCC� the state represented by a spanning EPR tree, say

1, to that of the state represented by another spanning EPR tree, say T2 �see Fig. 1�. This

FIG. 1. Spanning EPR trees T1 and T2.
ransformation can be shown to be impossible by reducing to the bipartite case as follows: We
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ssume for the sake of contradiction that there exists a protocol P which can perform the required
ransformation. It is easy to see that the protocol P is also applicable in the case when a party A
ossesses all the qubits of parties 4, 5, 6, and 7 and another party B possesses all the qubits of the
arties 1, 2, and 3. This means that party A is playing the role of parties 4, 5, 6, and 7 and B is
laying the role of parties 1, 2, and 3. Clearly, any LOCC actions done within group �1, 2, 3� ��4,
, 6, 7�� is a subset of LO available to B �A� and any CC done between one party from �1, 2, 3�
nd the other from �4, 5, 6, 7� is managed by CC between B and A.

Therefore, starting only with one edge �e3� they eventually construct T1 just by LO �by local
reation of EPR pairs representing the edges e1, e2, e4, e5, and e6 ��e1 ,e2� by B and �e4 ,e5 ,e6� by
�. They then apply protocol P to obtain T2 with the edges f1, f2, f3, f4, f5, and f6 �refer to Fig.
�. All edges except f2 and f3 are local EPR pairs �that is, both qubits are with the same party, A
r B�. Now the parties A and B share two EPR pairs in the form of the edges f2 and f3, even
hough they started sharing only one EPR pair. But this is in contradiction with monotonicity, that
xpected entanglement should not increase under LOCC. Hence, we can conclude that such a
rotocol P cannot exist.

The approach we took in the above example could also be motivated from the marginal
ntropic criterion �noting that this criterion in essence is also a direct implication of monotonicity�.
s clear from the above example, the above scheme aims to create a bipartition among the n
layers in such a way that the marginal entropy of each partition is different for the two states. In
any cases, this difference will simply correspond to different number of EPR pairs shared

etween the two partitions. Given two multipartite states, the relevant question is, “is there a
ipartition such that the marginal entropy for the two states is different?” If yes, then the state
configuration of entanglement� corresponding to the higher entropy cannot be obtained from that
o lower entropy by means of LOCC. It is convenient to imagine the two partitions being colored
istinctly to identify the partitions which they make up.

In general, suppose we want to show that the multipartite state ��� cannot be converted to the
ultipartite state ��� by LOCC. This can be done by showing an assignment of the qubits �of all

arties� to only two parties such that ��� can be obtained from n �n=0,1 ,2 , . . . � EPR pairs

FIG. 2. Converting T1 to T2 under LOCC.
etween the two parties by LOCC while ��� can be converted to more than n EPR pairs between
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he two parties by LOCC. This is equivalent to saying that each party is given either of two colors
say A or B�. Finally all qubits with parties colored with color A are assigned to the first party �say
� and that with parties colored with the second color to the second party �say B�. This coloring

s done in such a way that the state ��� can be obtained by LOCC from less number of EPR pairs
etween A and B than that obtained from ��� by LOCC. Local preparation �or throwing away� of
PR pairs is what we call merging in combinatorial sense. Keeping this idea in mind, we now

ormally introduce the idea of bicolored merging for such reductions in the case of the multipartite
tates represented by EPR graphs and entangled hypergraphs.

Suppose that there are two EPR graphs G1= �V ,E1� and G2= �V ,E2� on the same vertex set V
this means that these two multipartite states are shared amongst the same set of parties� and we
ant to show the impossibility of transforming G1 to G2 under LOCC, then this is reduced to a
ipartite LOCC transformation which violates monotonicity, as follows:

1� Bicoloring, assign either of the two colors A or B to every vertex, that is, each element of V.
2� Merging, for each element �vi ,v j� of E1, merge the two vertices vi and v j if and only if they

have been assigned the same color during the bicoloring stage and assign the same color to
the merged vertex. Call this graph obtained from G1 as BCM �bicolored-merged� EPR graph
of G1 and denote it by G1

bcm. Similarily, obtain the BCM EPR graph G2
bcm of G2.

3� The bicoloring and merging is done in such a way that the graph G2
bcm has more number of

edges than that of G1
bcm.

4� Give all the qubits possessed by the vertices with color A to the first party �say, party A� and
all the qubits possessed by the vertices with color B to the second party �say, party B�.
Combining this with the previous steps, it is ensured that in the bipartite reduction of the
multipartite state represented by G2, the two parties A and B share more number of EPR pairs
�say, state ��2�� than that for G1 �say, state ��1��.

We denote this reduction as G1�G2. Now if there exits a protocol P which can transform G1

o G2 by LOCC, then P can also transform ��1� to ��2� just by LOCC as follows: A �B� will play
he role of all vertices in V which were colored as A �B�. The edges which were removed due to

erging can easily be created by local operations �local preparation of EPR pairs� by the party A
B� if the color of the merged end vertices of the edge was assigned color A �B�. This means that
tarting from ��1� and only LO, G1 can be created. This graph is virtually amongst �V� parties even
hough there are only two parties. The protocol P then, can be applied to G1 to obtain G2 by
OCC. Subsequently ��2� can be obtained by the necessary merging of vertices by LO, that is by

hrowing away the local EPR pair represented by the edges between the vertices being merged.
ince the preparation of ��2� from ��1� by LOCC violates the monotonocity postulate, such a
rotocol P cannot exist. An example of bicolored merging for EPR graphs has been illustrated in
ig. 3.

The bicolored merging in the case of entangled hypergraphs is essentially the same as that for
PR graphs. For the sake of completeness, we present it here. Suppose there are two entangled
ypergraphs H1= �S ,F1� and H2= �S ,F2� on the same vertex set S �that is, the two multipartite
tates are shared amongst the same set of parties� and we want to show the impossibility of
ransforming H1 to H2 under LOCC. Transformation of H1 to H2 can be reduced to a bipartite
OCC transformation which violates monotonicity thus proving the impossibility. The reduction is
one as follows:

1� Bicoloring, assign either of the two colors A or B to every vertex, that is, each element of S.
2� Merging, for each element E= �vi1 ,vi2 , . . . ,vij� of F1�F2�, merge all vertices with color A to

one vertex and those with color B to another vertex and give them colors A and B, respec-
tively. This merging collapses each hyperedge to either a simple edge or a vertex and thus the
hypergraph reduces to a simple graph with vertices assigned with either of the two colors A
or B. Call this graph obtained from H1 as BCM EPR graph of H1 and denote it by H1

bcm.
Similarily obtain the BCM EPR graph H2

bcm of H2.
3� The bicoloring and merging is done in such a way that the graph H2

bcm has more number of
bcm
edges than that of H1 .

2 Jan 2006 to 202.54.37.74. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



�

c
h
o
t

m
l
m
i
S
i
d
m
b

122105-7 Combinatorial approach to multipartite states J. Math. Phys. 46, 122105 �2005�

Downloaded 0
4� Give all the qubits possessed by the vertices with color A to the party one �say party A� and
all the qubits possessed by the vertices with color B to the second party �say party B�.

We denote the above reduction as H1�H2. The rest of the discussion is similar to that for the
ase of EPR graphs given before. In Fig. 4, we demostrate the bicolored merging of entangled
ypergraphs. Note that the two entangled hypergraphs H1 and H2 are LOCC comparable only if
ne of H1�H2 and H2�H1 is not true. Equivalently, if both of H1�H2 and H2�H1 hold, then
he entangled hypergraphs H1 and H2 are incomparable.

It is also interesting to note at this point that LOCC incomparability shown by using the
ethod of bicolored merging is in fact strong incomparability as defined in Ref. 1. We would also

ike to stress that any kind of reduction �in particular, various possible extensions of bicolored
erging� which leads to the violation of any of the properties of a potential entanglement measure,

s pertinent to show the impossibility of many multipartite state transformations under LOCC.
ince the bipartite case has been extensively studied, such reductions can potentially provide many

deas about multipartite case by just exploiting the results from the bipartite case. In particular, the
efinitions of EPR graphs and entangled hypergraphs could also be suitably extended to capture
ore types of multipartite pure states and even mixed states and a generalization of the idea of

FIG. 3. Bicolored merging of EPR graphs.
icolored merging as a suitable reduction for this case could also be worked out.

2 Jan 2006 to 202.54.37.74. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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V. LOCC INCOMPARABILITY AND SELECTIVE TELEPORTATION

We know that a GHZ state amongst three agents A, B, and C can be prepared from EPR pairs
hared between any two pairs of the three agents using only LOCC.24,7,29,30 We consider the
roblem of reversing this operation, that is, whether it is possible to construct two EPR pairs
etween any two pairs of the three agents from a GHZ state amongst the three agents, using only
OCC. By using the method of bicolored merging, we answer this question in the negative by
stablishing the following theorem.

Theorem 2: Starting from a GHZ state shared amongst three parties in a communication
etwork, two EPR pairs cannot be created between any two sets of two parties using only LOCC.

Proof: Suppose there exists a protocol P for reversing a GHZ state into two EPR pairs using
nly LOCC. In particular, suppose protocol P starts with a GHZ state amongst the agents A, B,
nd C, and prepares EPR pairs between any two pairs of A, B, and C �say, �A ,C�, and �B ,C�,
orresponding to configuration G1 as shown in Fig. 5�. Since we can prepare the GHZ state from
PR pairs between any two pairs of the three agents, we can prepare the GHZ state starting from
PR pairs between A and B, and A and C. Once the GHZ state is prepared, we can apply protocol

P to construct EPR pairs between A and C and between B and C using only LOCC �i.e., configu-
ation G2	��A ,C� , �B ,C���. So, we can use only LOCC to convert a configuration where EPR
airs exist between A and C and between A and B, to a configuration where EPR pairs are shared
etween A and C and between B and C. The possibility of P means that the marginal entropy of

can be increased using only LOCC, which is known to be impossible. �

The same result could also be achieved by similar bicolored merging directly applied on the
HZ state and any of G1 or G2 but we prefer the above proof for stressing the argument on the

FIG. 4. Bicolored merging of entangled hypergraphs.
ymmetry of G1 and G2 with respect to the GHZ. Moreover, this proof gives an intuition about

2 Jan 2006 to 202.54.37.74. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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ossibility of incomparability amongst spanning EPR trees as G1 and G2 are two distinct spanning
PR trees on three vertices. We prove this general result in the Theorem 8.

The above theorem motivates us to propose some kind of comparison between a GHZ state
nd two pairs of EPR pairs in terms of the nonlocal correlations they possess. In this sense,
herefore, a GHZ state may be viewed as less than two EPR pairs. It is easy to see that an EPR pair
etween any two parties can be obtained starting only from a GHZ state shared amongst the three
arties and LOCC. The third party will just do a measurement in the diagonal basis and send the
esult to the other two. By applying the corresponding suitable operations they get the required
PR pair. From Theorem 1, we observe that a single EPR pair, between any two of the three
arties, is not sufficient for preparing a GHZ state amongst the three parties using only LOCC.
hese arguments can be summarized in the following theorem.

Theorem 3: 1-EPR pair �LOCC a GHZ state �LOCC 2-EPR pairs.
An interesting problem in quantum information theory is that of selective teleportation.22

iven three agents A, B, and C, and two qubits of unknown quantum states ��1� and ��2� with A,
he problem is to send ��1� to B and ��2� to C selectively, using only LOCC and a priori
ntanglement between the three agents. A simple solution to this problem is applying standard
eleportation,2 in the case where A shares EPR pairs with both B and C. An interesting question is
hether any other form of a priori entanglement can help achieving selective teleportation. In
articular, is it possible to perform selective teleportation where the a priori entanglement is in the
orm of a GHZ state amongst the three agents? The following theorem answers this question using
he result of the Theorem 2.

Theorem 4: With a priori entanglement given in the form of a GHZ state shared amongst
hree agents, two qubits cannot be selectively teleported by ane of the three parties to the other
wo parties.

Proof: Suppose there exists a protocol P which can enable one of the three parties �say A� to
eleport two qubits ��1� and ��2� selectively to the other two parties �say B and C�. Now A takes
our qubits; she prepares two EPR pairs one from the first and second qubits and the other from the
hird and fourth qubits. He then teleports the first and third qubits selectively to B and C using P
consider first qubit as ��1� and the third qubit as ��2��. We can note here that in this way A is able
o share one EPR pair each with B and C. But this is impossible because it allows A to prepare two
PR pairs starting from a GHZ state and only using LOCC. This contradicts Theorem 2. Hence

FIG. 5. LOCC irreversibility of the process �2 EPR→GHZ�.
ollows the result. �
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. COMBINATORIAL CONDITIONS FOR LOCC INCOMPARABILITY
F EPR GRAPHS

An immediate result comparing an n-CAT state with EPR pairs follows from noting that,
iven a spanning EPR tree among n parties, an n-CAT state can be constructed using only LOCC
sing the teleportation protocol described in Sec. II. The result we present below generalizes
heorem 3.

Theorem 5: 1-EPR pair �LOCC n-CAT �LOCC �n−1�-spanning EPR tree.
We can argue in a similar manner that an n-CAT state amongst n-parties cannot be converted

y just using LOCC to any form of entanglement structure which possesses EPR pairs between
ny two or more different sets of two parties. Assume this is possible for the sake of contradiction.
hen the two edges could be in either of the two forms: �1� �i1 , i2� and �j1 , j2� and �2� �i1 , i2� and

i2 , j2�, where i1 , i2 , j1 , j2 are all distinct. In bicolored-merging assign the colors as follows. In case
1�, give color A to i2 and j2 and give the color B to the rest of the vertices. In case �2�, give color

to i2 and color B to the rest of the vertices. Since both the cases are contrary to our assumption,
he assertion follows. Moreover, from Theorem 1 �see Appendix A for proof�, no disconnected
PR graph would be able to yield n-CAT just by LOCC. These two observations combined

ogether lead to the following theorem which signifies the fact that these two multipartite states
annot be compared.

Theorem 6: A CAT state amongst n agents in a communication network is LOCC incompa-
able to any disconnected EPR graph associated with the n agents having more than one edge.

The above result indicates that there are many possible forms of entanglement structures
multipartite states� which cannot be compared at all in terms of nonlocal correlations they may
ave. This simple result is just an implication of the necessary combinatorics required for the
reparation of CAT states. One more interesting question with respect to this combinatorics is to
ompare a spanning EPR tree and a CAT state. A spanning EPR tree is combinatorially sufficient
or preparing the CAT state and thus seems to entail more nonlocal correlations than in a CAT
tate. The question whether this ordering is strict needs to be further investigated. It is easy to see
hat an EPR pair between any two parites can be obtained starting from a CAT state shared
mongst the n agents just by LOCC �Theorem 5�. Therefore, given n−1 copies of the CAT state
e can build all the n−1 edges of any spanning EPR tree just by LOCC. But whether this is the

ower bound on the number of copies of n-CAT required to obtain a spanning EPR tree is even
ore interesting. The following theorem shows that this is indeed the lower bound.

Theorem 7: Starting with only n−2 copies of n-CAT state shared amongst its n agents, no
panning EPR tree of the n agents can be obtained just by LOCC.

Proof: Suppose it is possible to create a spanning EPR tree T from �n−2� copies of n-CAT
tates. As we know, an n-CAT state can be prepared from any spanning EPR tree by
OCC.24,7,29,30 Thus, if �n−2� copies of n-CAT can be converted to T, then �n−2� copies of any
panning EPR tree can be converted to T just by LOCC. In particular, �n−2� copies of a chain
PR graph �which is clearly a spanning EPR tree, Fig. 6� can be converted to T just by LOCC.
ow, we know that any tree is a bipartite connected graph with n−1 edges across the two parts.
et vertices i1 , i2 , . . . , im be the members of the first group and the rest be in the other group.
onstruct a chain EPR graph where the first m vertices are i1 , i2 , . . . , im in the sequence, and the

est of the vertices are from the other group in the sequence �Fig. 6�. In bicolored merging, we
ive the color A to the parties �i1 , i2 , . . . , im� and the rest of the parties are given the color B. This
ay we are able to create �n−1� EPR pairs �note that there are n−1 edges in T across the two
roups� between A and B starting from only �n−2� EPR pairs �considering the n−2 chainlike
panning EPR trees�. So, we conclude that �n−2� copies of n-CAT cannot be converted to any
panning EPR tree just by LOCC. See Fig. 6 for illustration of the required bicolored merging. The
roof could also be acheived by similar kind of bicolored merging directly applied on n-CAT
nd T. �

In the preceding results we have compared spanning EPR trees with CAT states. We discuss
he comparability/incomparability of two distinct spanning EPR trees in the next theorem and

orollary.
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Theorem 8: Any two distinct spanning EPR trees are LOCC incomparable.
Proof: Let T1 and T2 be the two distinct spanning EPR trees on the same n vertices. Clearly,

here exist two vertices �say i and j� which are connected by an edge in T2 but not in T1. Also by
irtue of connectedness of spanning trees, there will be a path between i and j in T1. Let this path
e ik1k2¯kmj with m�0 �see Fig. 7�. Since m�0, k1 must exist.

Let Ti
1	subtree in T1 rooted at i except for the branch which contains the edge �i ,k1�, Tj

1

subtree in T1 rooted at j except for the branch which contains the edge �j ,km�, Tkr
	subtree in

1 rooted at kr except for the branches which contain either of the edges �kr−1 ,kr� and �kr ,kr+1�
k0= i, km+1= j�, Ti

2	subtree in T2 rooted at i except for the branch which contains the edge �i , j�,
nd Tj

2	subtree in T2 rooted at j except for the branch which contains the edge �i , j�.
It is easy to see that the set Ti

2�Tj
2 is nonempty as T1 and T2, being distinct, must contain

ore than two vertices. Also Ti
2 and Tj

2 must be disjoint; for, otherwise there will be a path
etween i and j in T2 which does not contain the edge �i , j�. Thus there will be two paths between
and j in T2 contradicting the fact that T2 is a spanning EPR tree �Fig. 7�. With these two

haractistics of Ti
2 and Tj

2, it is clear that k1 will lie either in Ti
2 or in Tj

2. Without loss of generality,
et us assume that k1�Ti

2. Now we do bicolored merging where the color A is assigned to i and all
ertices in Ti

1 and the color B is assigned to the rest of the vertices �refer to Fig. 7 for illustration�.
ince T1 and T2 were chosen arbitrarily, the same arguments also imply that there cannot exist a
ethod which converts T2 to T1. This leads to the conclusion that any two distinct spanning EPR

rees are LOCC incomparable.
Corollary 1: There are at least exponentially many LOCC-incomparable classes of pure

ultipartite entangled states.
Proof: We know from results in graph theory9 that on a labelled graph on n vertices, there are

n−2 posible distinct spanning trees. Hence there are nn−2 distinct spanning EPR trees in a network
f n agents. From Theorem 8 all these spanning EPR trees are LOCC incomparable. It can be
oted here that the most general local operation of n qubits is an element of the group U�2�n �local
nitary rotations on each qubit alone�. So, if two states are found incomparable, this means that

FIG. 6. n−2 copies of n-CAT are not sufficient to prepare a spanning EPR tree.
here are actually two incomparable equivalence classes of states �where members in a class are
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elated by a U�2�n transformation�. Thus we have at least exponentially many LOCC-
ncomparable classes of multipartite entangled states. �

I. COMBINATORIAL CONDITIONS FOR LOCC INCOMPARABILITY OF ENTANGLED
YPERGRAPHS

Since entangled hypergraphs represent more general entanglement structures than those rep-
esented by the EPR graphs �in particular spanning EPR trees are nothing but 2-uniform entangled
ypertrees�, it is likely that there will be even more classes of incomparable multipartite states and
his motivates us to generalize Theorem 8 for entangled hypertrees. However, remarkably this
ntuition does not work directly and there are entangled hypertrees which are not incomparable.
ut there are a large number of entangled hypertrees which do not fall under any such partial
rdering and thus remain incomparable. To this end we present our first imcomparability result on
ntangled hypergraphs.

Theorem 9: Let H1= �S ,F1� and H2= �S ,F2� be two entangled hypertrees. Let P1 and P2 be
he set of pendant vertices of H1 and H2, respectively. If the sets P1 \ P2 and P2 \ P1 are both
onempty then the multipartite states represented by H1 and H2 are necessarily LOCC incompa-
able.

Proof: Using bicolored merging we first show that H1 cannot be converted to H2 under LOCC.
mpossibility of the reverse conversion will also be immediate. Since P1 \ P2 is nonempty, there
xists u�S such that u� P1 \ P2. That is, u is pendant in H1 but nonpendant in H2 �Fig. 8�.

In the bicolored merging assign the color A to the vertex u and the color B to all other vertices.
his reduces H1 to a single EPR pair shared between the two parties A and B whereas H2 reduces

o at least two EPR pairs shared between A and B. The complete bicolored merging is shown in

FIG. 7. Spanning EPR trees are LOCC incomparable.
ig. 8. �
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We note that this proof does not utilize the fact that H1 and H2 are entangled hypertrees, and
hus the theorem is indeed true even for entangled hypergraphs satisfying the conditions specified
n the set of pendant vertices.

The conditions specified on the set of pendant vertices in Theorem 9 cover a very small
raction of the entangled hypergraphs. However, these conditions are not necessary and it may be
ossible to find further characterizations of incomparable classes of entangled hypergraphs. We
resent two examples where the conditions of Theorem 9 are not satisfied.

Example 1: �Figs. 9 and 10� P1� P2 but either P1� P2 or P2� P1.
Example 2: �Fig. 11� P1= P2.
In the first example, the entangled hypergraphs H1 and H2 staisfy P1� P2 and P1� P2. H1 and

2 are comparable in Fig. 9 but incomparable in Fig. 10. In Fig. 10, the incomparability has been
roved by showing that H1 is not convertible to H2 under LOCC because the impossibility of
everse conversion follows from the proof of Theorem 9 �P2 \ P1���. Figure 11 gives examples of
omparable and incomparable entangled hypergraphs with condition P1= P2.

Theorem 8 shows that two distinct EPR spanning trees are LOCC incomparable and the
panning EPR trees are nothing but 2-uniform entangled hypertrees. Therefore, a natural gener-
lization of this theorem would be to r-uniform entangled hypertrees for any r�3. As we show
elow, the generalization indeed holds. It should be noted that Theorem 9 does not necessarily

FIG. 8. Entangled hypergraphs with P1 \ P2 nonempty.
apture such entanglement structures �multipartite states� �Fig. 12�. However, in order to prove
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FIG. 9. Comparable with P1� P2 and P1� P2.
FIG. 10. Incomparable with P1� P2 and P1� P2.
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FIG. 11. P = P .
1 2
FIG. 12. r-uniform entangled hypertrees not captured in Theorem 9.
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hat two distinct r-uniform entangled hypertrees are LOCC incomparable, we need the following
mportant result about r-uniform hypertrees. See Appendix B for the proof.

Theorem 10: Given two distinct r-uniform hypertrees H1= �S ,F1� and H2= �S ,F2� with r
3, there exist vertices u ,v�S such that u and v belong to the same hyperedge in H2 but

ecessarily to different hyperedges in H1.
Now we state one of our main results on LOCC incomparability of multipartite entangled

tates in the following theorem.
Theorem 11: Any two distinct r-uniform entangled hypertrees are LOCC incomparable.
Proof: Let H1= �S ,F1� and H2= �S ,F2� be the two r-uniform entangled hypertrees. If r=2 then

1 and H2 happen to be two distinct spanning EPR trees and the proof follows from Theorem 8.
herefore, let r�3.

Now from Theorem 10, there exist u ,v�S such that u and v belong to the same hyperedge in

2 but necessarily to different hyperedges in H1. Let the same hyperedge in H2 be E�F2. Also,
ince H1, being hypertree, is connected, there exists a path between u and v in H1. Let this path be
E1E2¯Ek+1v. Clearly k�0 because u and v necessarily do not belong to the same hyperedge in

1.
We introduce the following notations �Fig. 13�.
Tu

1, subhypertree rooted at u in H1 except the branch that contains E1. Tv
1, subhypertree rooted

t v in H1 except the branch that contains Ek+1. Twi
, subhypertree rooted at wi in H1 except

ranches containing Ei and Ei+1. TEi
, Collection of all subhypertrees in H1 rooted at some vertices

n Ei other than wi−1 and wi �where w0=u and wk+1=v� except for the branches which contain Ei.
= ��E1�E2� ¯ �Ek+1�� �TE1

�TE2
� ¯ �TEk+1

�� �Tw1
�Tw2

� ¯ �Twk
�� \ �u ,v�=set of all

ertices from S \ �u ,v� which are not contained in Tu�Tv. Tu
2, subhypertree rooted at u in H2

xcept the branch that contains E. Tv
2, subhypertree rooted at v in H2 except the branch that

ontains E. TE, collection of all subhypertrees in H2 rooted at some vertices in E \ �u ,v� except for
he branches which contain E.

In order to complete the proof we consider the following cases.
2 2

FIG. 13. Two distinct r-uniform entangled hypertrees.
Case 1: ∃w�T such that w� �Tu�Tv�.

2 Jan 2006 to 202.54.37.74. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



T
m

a

r
p

�
p

s

o
a
w
w

o

a

v

b

122105-17 Combinatorial approach to multipartite states J. Math. Phys. 46, 122105 �2005�

Downloaded 0
Without loss of generality let us take w�Tu
2. Now since w�T, w� exactly one of Ei, Twi

, or

Ei
for some i. Accordingly there will be three subcases. Case 1.1, w�Ei for some i �take such

inimum i�.
Do bicolored merging where the vertex u along with all the vertices in

Tu
1,E1,E2, . . . ,Ei−1,Tw1

,Tw2
, . . . ,Twi−1

,TE1
,TE2

, . . . ,TEi−1

re given the color A and the rest of the vertices are given the color B.
Case 1.2: w�Twi

for some i.
Do the bicolored merging while assigning the colors as in the above case.
Case 1.3: w�TEi

for some i.
Bicolored merging in this case is also the same as in Case 1.1.
Case 2: There does not exist any w�T such that w�Tu

2�Tv
2.

Clearly, Tu
2�Tv

2 �Tu
1�Tv

1 and T�TE� �E \ �u ,v��. Note that whenever we are talking of set
elations like union, containment, etc., we are considering the trees, edges, etc., as sets of appro-
riate vertices from S which make them. First we establish the following claim.

Claim: ∃t� �E1 \ �u ,w1��� �E2 \ �w1 ,w2�� such that t�TE.
We have k�0. Therefore, both E1 and E2 exist and since H1 is r-uniform �E1�= �E2�=r. Also

E1 \ �u ,w1��� �E2 \ �w1 ,w2�� is empty, for, otherwise there will be a cycle in H1 which is not
ossible as H1 is a hypertree.5,10 Therefore,

��E1 \ �u,w1�� � �E2 \ �w1,w2��� = ��E1 \ �u,w1�� + �E2 \ �w1,w2��� = �r − 2� + �r − 2� = 2r − 4.

Also �E�=r implies that �E \ �u ,v��= �r−2�.
It is clear that u ,v� �E1 \ �u ,w1��� �E2 \ �w1 ,w2��. Therefore,

��E1 \ �u,w1�� � �E2 \ �w1,w2��� − �E \ �u,v�� = �2r − 4� − �r − 2� = r − 2 � 1

ince r�3.
Also �E1 \ �u ,w1��� �E2 \ �w1 ,w2���T�TE� �E \ �u ,v��, and so by pigeonhole principle,25

∃t � �E1 \ �u,w1�� � �E2 \ �w1,w2�� and t � TE���E \ �u,v���

Hence our claim is true.
Now we have t� �E1 \ �u ,w1��� �E2 \ �w1 ,w2�� such that t�TE. Since t�TE, by the definition

f TE it is clear that there must exist w�E \ �u ,v� such that t�Tw, the subhypertree in H2 rooted
t w except for the branch containing E. Depending on whether t�E1 \ �u ,w1� or t�E2 \ �w1 ,w2�,
e break this case into several subcases and futher in sub-subcases depending on the part in H1

here w lies.
Case 2.1: t�E1 \ �u ,w1� �Fig. 14�.
Case 2.1.1: w�Tu

1.
Do the bicolored merging where u and the vertices in Tu

1 are assigned the color A and the rest
f the vertices from S are given the color B.

Case 2.1.2: w�Tv
1.

Bicolored merging is done where v as well as all the vertices in Tv
1 are assigned the color B

nd rest of the vertices from S are given the color A.
Case 2.1.3: w�T.
Here in this case, depending on whether w is in Tt or not, there can be two cases.
Case 2.1.3.1: w�Tt.
Bicolored merging is done where all the vertices in Tt are given the color A and the rest of the

ertices are assigned the color B.
Case 2.1.3.2: w�Tt.
w�Tt implies that either w�Ei for some i, or w�Tq, where q�Ei for some i and q� t. For

oth of these possibilities, bicolored merging is the same and is done as follows.

Assign the color A to u as well as all vertices in
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FIG. 14. Case 2.1.
FIG. 15. Case 2.2.
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Tu
1 � E1 � TE1

� Tw1
� ¯ � Ei−1 � TEi−1

� Twi−1
� �Ei \ �q,w,wi�� � �TEi

\ Tq�

nd assign the color B to rest of the vertices.
Case 2.2: t�E2 \ �w1 ,w2� �Fig. 15�.
Case 2.2.1: w�Tu

1�E1�TE1
�Tw1

.
Do the bicolored merging where all the vertices in Tu

1�E1�TE1
�Tw1

including u are given
he color A and rest of the vertices are assigned the color B.

Case 2.2.2: w�Tv
1 �TEk+1

�Ek+1�Twk
� ¯ �TE3

�E3�Tw2
.

In bicolored merging give the color B to all the vertices �including v� in

v
1 �TEk+1

�Ek+1�Twk
� ¯ �TE3

�E3�Tw2
and color A to the rest of the vertices.

Case 2.2.3: w�E2�TE2
.

In this case depending on whether w�Tt, or w�Tt the bicolored merging will be different.
Case 2.2.3.1: w�Tt.
Bicolored merging is done where all the vertices in Tt are given the color A and rest of the

ertices are assigned the color B.
Case 2.2.3.2: w�Tt.
w�Tt implies that either w�E2, or w�Tq for some q��t��E2. In any case do the bicolored

erging where the color A is assigned to all the vertices in

Tu
1 � E1 � TE1

� Tw1
� �E2 \ �w,q,w2�� � �TE2

\ Tq�

nd the rest of the vertices are assigned the color B.
Now that we have exhausted all possible cases and shown by the method of bicolored merging

hat the r-uniform entangled hypertree H1 cannot be LOCC converted to the r-uniform entangled
ypertree H2. The same arguments also work for showing that H2 can not be LOCC converted to

1 by interchanging the roles of H1 and H2. Hence the theorem follows. �

Before ending our section on LOCC incomparability of multipartite states represented by EPR
raphs and entangled hypergraphs, we note that partial entropic criteria of Bennett et al.4 which
ives a sufficient condition for LOCC incomparability of multipartite states, does not capture the
OCC incomparability of spanning EPR trees or entangled hypertrees in general. Consider two
panning EPR trees T1 and T2 on three vertices �say 1, 2, 3�. T1 is such that the vertex pairs 1, 2
nd 1, 3 are forming the two edges where as in T2 the vertex pairs 1, 3 and 2, 3 are forming the
wo edges. It is easy to see that T1 and T2 are not marginally isentropic.

II. QUANTUM DISTANCE BETWEEN MULTIPARTITE ENTANGLED STATES

In the proof of Theorem 8, we have utilized the fact that there exist at least two vertices which
re connected by an edge in T2 but not in T1. This follows as T1 and T2 are different and they also
ave equal number of edges �namely n−1, if there are n vertices�. In fact, in general there may
xist several such pairs of vertices depending on the structures of T1 and T2. Fortunately, the
umber of such pair of vertices has some nice features giving rise to a metric on the set of
panning �EPR� trees with fixed vertex set and thus giving a concept of distance.9 The distance
etween any two spanning �EPR� trees T1 and T2 denoted by QDT1,T2

on the same vertex set is
efined as the number of edges in T1 which are not in T2. Let us call this distance to be the
uantum distance between T1 and T2. We have proved in Theorem 8 that obtaining T2 from T1 is
ot possible just through LOCC, so we need to do quantum communication. The minimum
umber of qubit required to be communicated for this purpose should be an interesting parameter
elated to state transformations amongst multipartite states represented by spanning EPR trees; let
s denote this number by qT1,T2

. We note that qT1,T2
�QDT1,T2

. This is because each edge not
resent in T2 can be created by only one qubit communication. The exact value of qT1,T2

will
epend on the structures of T1 and T2 and, as we can note, on the number of edge disjoint paths
n T1 between the vertex pairs which form an edge in T2 but not T1.

We can say more about quantum distance. Recall Theorem 7 where we show that a lower

ound on the number of copies of n-CAT to prepare a spanning EPR tree by LOCC, is n−1. Can
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e obtain a similar lower bound in the case of two spanning EPR trees and relate it to the quantum
istance? The answer is indeed yes. Let CT1,T2

denote the minimum number of copies of the
panning EPR tree T1 required to obtain T2 just by LOCC. We claim that 2�CT1,T2

, CT2,T1
QDT1,T2

+1. The lower bound follows from Theorem 8. The upperbound is also true because of
he following reason. QDT1,T2

is the number of �EPR pairs� edges present in T2 but not in T1. For
ach such edge in T2 �let u, v be the vertices forming the edge�, while converting many copies of

1 to T2 by LOCC an edge between u and v must be created. Since T1 is a spanning tree and
herefore connected, there must be a path between u and v in T1 and this path can be well
onverted �using entanglement swapping� to an edge between them �i.e., EPR pair between them�
nly using LOCC. Hence one copy each will suffice to create each such edges in T2. Thus QDT1,T2
opies of T1 will be sufficient to create all such QDT1,T2

edges in T2. One more copy will supply
ll the edges common in T1 and T2. Even more interesting point is that both these bounds are
aturated. This means to say that there do exist spanning EPR trees satifying these bounds �Fig.
6�.

It is important to note that a similar concept of distance also holds in the case of r-uniform
ntangled hypertrees.
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PPENDIX A

Proof of Theorem 1: We use the method of bicolored merging to prove the fact that any
isconnected EPR graph G on n-vertices cannot be converted to an n-CAT state on those vertices
nder LOCC. We first note that the BCM EPR graph of an n-CAT state, irrespective of the
icoloring done, is always a graph which contains exactly one edge. Now as G is disconnected it
ill have more than one connected components. Let these components be C1 ,C2
Ck, where k
2. The bicoloring is done as follows: assign the color A to all the vertices in the component C1

nd the color B to all other vertices, i.e., all vertices in G \C1. After merging, therefore, G reduces
o a disconnected graph with no edges, i.e., the BCM EPR graph of G is a graph with k isolated
ertices and no edges. Now if we are able to prepare an n-CAT state from G just using LOCC, we
ould also prepare an EPR pair between two parties who were never sharing an EPR pair just

FIG. 16. Saturating bounds on copies required to go from one EPR spanning tree to another via LOCC.
sing LOCC. This violates monotonicity and hence the theorem is proved. �
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PPENDIX B

Proof of Theorem 10: We first establish the following claim.
Claim: ∃E1�F1 ,E2�F2 such that E1�E2�� and E2�F1�F2.
Proof of the claim: We first show that on the same vertex set, the number of hyperedges in any

-uniform hypertree is always same. Let n and m be the number of vertices and hyperedges in a
-uniform hypertree. We show by induction on m that n=m� �r−1�+1.

For m=1, n=1� �r−1�+1=r which is true because all possible vertices �since no one can be
solated� fall in the single hyperedge and it has exactly r vertices.

Let us assume that this relation between n and m for a fixed r holds for all values of the
nduction variable up to m−1. We show that it holds good for m.

Now take a r-uniform hypertree with m hyperedges. Remove any of the hyperedges to get
nother hypergraph �which may not be connected� having only m−1 edges. This removal may
ntroduce k connected components �subhypertrees�; 1�k�r. Let these components have, respec-
ively, m1 ,m2 , . . . ,mk number of hyperedges. Therefore, �i=1

k mi=m−1. The total number of verti-
es in the new hypergraph �with the k subhypertrees as components�, n1=�ni where ni is the
umber of vertices in the component i. Therefore, n1=�ni=�i=1

k �mi�r−1�+1�= �m−1��r−1�+k
under induction assumption�.

Now the number of vertices in the original hypertree, n=n1+ �r−k� because k vertices were
lready covered, one each in the k components. Therefore, n= �m−1��r−1�+k+ �r−k�= �m−1��r
1�+r= �m−1��r−1�+ �r−1�+1=m�r−1�+1. The result is thus true for m and hence for any
umber of hyperedges by induction. This result implies that any r-uniform hypertree on the same
ertex set will always have the same number of hyperedges.

Let F=F1�F2 and m= �F1�= �F2�. Obviously m� �F� otherwise H1=H2. This implies that
E�F2 such that E�F.

Take any vertex say w�E. Since w�S and H1 is a hypertree therefore connected, w can not
e an isolated vertex and therefore ∃E1�F1 such that w�E1. Take E1=E1 and E2=E. This proves
ur claim.

Now we prove the theorem. Choose E1 and E2 so as to satify the above claim.
Let E1= �u1 ,u2 , . . . ,ul ,wl+1 ,wl+2 , . . . ,wr� and E2= �u1 ,u2 , . . . ,ul ,vl+1 ,vl+2 , . . . ,vr�.
Since E1�E2��, l�1 and E1�E2 implies that l�r−1.
Hence 1� l�r.
Now based on the value of l, we have the following different cases.
Case 1: l�1.
Case 1.1: ∃vi such that u1 and vi are not in the same hyperedge in H1.
Take u=u1 and v=vi in the statement of the theorem.
Case 1.2: Each vi is in some hyperedge in H1 in which u1 also lies.
None of these vi’s can belong to the hyperedges in H1 in which u2 lies.
This is due to the fact that if, say, v j happens to be in same hyperedge as of u2 in H1 then

1u2v ju1 will be a cycle in H1, which is absurd as H1 is a hypertree.
Note that at least one such vi must exist as l�r. Take u=u2 and v=any vi.
Case 2: l=1.
Case 2.1: ∃vi such that u1 and vi are not in same hyperedge in H1.
Take u=u1 and v=vi.
Case 2.2: Each vi is in some hyperedge in H1 in which u1 also lies.
Since vi’s are r−1 in number and E2�F1�F2, these vi’s will be distributed in at least two

istinct hyperedges in H1 in which u1 also lies.
Therefore, ∃vi, v j such that they are in the same hyperedge in H2 �namely in E2� but in

ecessarily different edges in H1, otherwise �that is, if they lie in the same hyperedge in H1�
1viv ju1 will be a cycle in H1, which is absurd as H1 is a hypertree.

Also note that both vi and v j will exist as r�3.
Take u=vi and v=v j.

Thus we have proved Theorem 10 in all possible cases. �
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We would like to point out that the result of Theorem 10 could follow from some standard
esults in combinatorics. We have however not found literature proving this result.
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