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The trapping of neutrinos in strong gravitational fields is considered. The zero-mass Dirac equation for curved
space-time is specialized to the case of a static spherically symmetric object of constant density. The WKB method is
applied to obtain the energy spectrum of the semibound states of the neutrinos. The probability of penetration
through the barrier presented by the gravitational field is calculated for each level and the lifetime of a neutrino in
the well obtained. It is shown that in the energy domains of interest the classical approximation is applicable and the
total fraction of neutrinos trapped after emission is obtained. It is shown that neutrino trapping may take place in

neutron stars with stiff equations of state. .-

L. INTRODUCTION

About a decade ago one of the present authors,
while studying the scattering of waves of different
spins by black holes, noticed that the effective
potential in the case of neutrinos comprised both
a well and a barrier. The well depth was found
to increase with the angular parameter of the neu-
trino. However, a WKB analysis revealed the
total absence of bound states and hence of the
trapping of neutrinos in the potential well. It was
conjectured at that time that such bound states
should exist if the black hole were to be replaced
by a sufficiently collapsed material object. We
now return to this question and what follows is a
natural sequel to the considerations pertaining to
neutrinos in the field of a Schwarzschild black
hole.! :

We consider in this work? the possible trapping
of neutrinos in the strong gravitational fields of
compact objects. In compact dense objects, and
in explosive situations, neutrinos are considered
to be of importance in the transport of energy
from the region of energy production to the out-
side. This is because neutrinos interact weakly
with matter. However, in the situations where
the gravitational field is sufficiently strong, the
neutrinos may be gravitationally trapped in the
region of production. If this happens, the neu-
trinos will be less efficient as vehicles of energy
transport than they are normally expected to be.
Trapped neutrinos may also affect the rates of nu-
clear processes by forming a degenerate sea.
We explore in this paper the formalism necessary
for the treatment of gravitationally trapped neu-
trinos.

Since the trapping will occur in strong gravita-
tional fields, it is necessary to use the general
theory of relativity to describe the field. The

neutrinos themselves are described using the
zero-mass Dirac equation generalized to curved
spacetimes. Our aim will be to see if the gravi-
tational field can act as a potential well and pro-
duce quasi-bound-state solutions of the Dirac
equation. We develop the formalism, using for
the background gravity the field due to a static
spherically symmetric distribution of matter, and
later specialize to the case of an object of con-
stant density. Application of the WKB method
shows that neutrinos are gravitationally trapped
for durations of time which depend upon the quan-
tum numbers of the neutrino and the mass and
radius of the gravitating object. We neglect the
back reaction of the neutrinos on the metric.
Neutrinos in curved spacetime were first con-
sidered by Brill and Wheeler,® who were looking
into the possibility of building neutrino geons.
They considered neutrinos in the field of a spheri-
cally symmetric thin-shell geon, but they did not

treat in detail the application of the WKB method

to the problem of trapping. The Dirac equation
is a differential equation of the first order, where-
as the WKB method is applicable to a second-or-
der equation of the type of the Schrodinger equa-
tion. If the Dirac equation is reduced to the sec-
ond order by taking derivatives, and solutions of
these equations obtained in the WKB approxima-
tion, it is important to notice that a transforma-
tion of these solutions is necessary before solu-
tions of the original first-order equations are ob-
tained. We show that only if this is done can the
WKB method be applied in the usual way.

A drawback of the Brill-Wheeler formalism is
that in it neutrino and antineutrino states are al-
ways mixed. It is possible to have pure neutrino.
and pure antineutrino states by using curved-
spacetime Dirac matrices which are related to
those used by Unruh? in connection with the second
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quantization of the neutrino field in the Kerr met-
ric. We use this representation of the Dirac
matrices and separate out in the usual manner the
angular part so that a pair of coupled first-order
differential equations involving only the radial co-
ordinate is obtained. This is then reduced to a
pair of uncoupled second-order equations to which
the WKB method is applied.

We present numerical results for various values
of the parameter 2M/R and show how, from the
set of curves presented, information regarding
the trapping and escape of neutrinos may be ob-
tained. It follows from the calculations that in the
energy regime of interest, the spectrum of energy
levels is nearly continuous. It is possible in this
regime to treat neutrinos classically and assume
that they move along null geodesics. We obtain
in the classical approximation the distribution
function for the neutrino impact parameter and
from this calculate the fraction of neutrinos
trapped after emission in the entire volume of the
star. This fraction is independent of the energy
of the neutrinos.

II. THE ZERO-MASS DIRAC EQUATION
IN THE GENERAL SPHERICALLY SYMMETRIC
METRIC )

The generalization of the flat-spacetime Dirac
equation to curved spacetime has been described
in some detail by Brill and Wheeler® and in the
references given by them. For curved spacetime
the Dirac matrices v* (=0, 1,2, 3), which trans-
form together as a contravariant vector under
arbitrary transformation of the coordinates, satis-
fy the relations

Y F vt =2g i, (1)

where g *® is the metric tensor. Equation (1) is
clearly a generalization of the flat-spacetime re=
lations satisfied by the Dirac matrices. The neu-
trino, which is taken to be a zero-rest-mass
particle of spin %, is described by a four-compo-
nent spinor ¥. A covariant derivative V, of the
spinor is defined by

Ve = (5%«' -
where the spinor affinity I, is determined uniquely
up to an additive multiple of the unit matrix by

'}’i;k- LY +9'T,=0, (3)

5o, @)

where a semicolon indicates the usual covariant
derivative for the metric g;.. By an appropriate
spinor transformation y—sy, ¥ ~s¥'s™, the I
can be chosen such that

Trr‘k =0. (4)

For every spinor § an adjoint spinor P is de-
fined by

$=d)fa’ (5)

where a dagger denotes Hermitian conjugation
(complex conjugate of the transposed matrix) and
the matrix « satisfies the equations

O{’))z—')/“a=0 (6)
and _
a,,+Tla+al,=0, \)]

where a comma indicates ordinary differentiation.
The covariant derivative of the adjoint spinor ¥

- is given by
Vel = a%ifs +yTy. , o (@®

The massless Dirac equation for curved space-
time is

’)’thZ/)-:O (9

and the equation satisfied by the adjoint spinor [
is
(Ved)r* =0. : (10)

It is known that the neutrino is purely left-handed,
i.e., the spin of the neutrino is always polarized
antiparallel to its momentum. The neutrino is
therefore really a two-component object. The
extra degrees of freedom from the four-compo--
nent spinor ) are removed by imposing the con-
straint i

(1+#)p=0, (11)
where

and €%* is the totally antisymmetric tensor den-
sity with €2 _ 1. The constraint equation for the
antineutrino, which is purely right handed, is

1-iY)p=0. (13)

For any two solutions ¥; and ¥; of Eq. (9), a
current four-vector j* is defined by

=T . (14)

The current is conserved, i.e., Vij*=0, and it
follows that the integral

f v "gjkdok
(]

is independent. of the spacelike hypersurface o on
which it is evaluated. An inner product is now
defined by (Unruh?)

Gyt = [ TR (15)
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The neutrino equation may be written in the
form

;2

i —% =Hy, H=iTj-()*v,],

#:1,2,’3.

(18)

The operator H is Hermitian in the inner product
defined in Eq. (15) and it plays the role of the
Hamiltonian. If a normal-mode solution is de-
fined by

i%:flw:wd), (17)
the e1genva1ues w are real and may be identified
with the energy eigenvalues.

We now specialize the above formalism to the
case of the spherically symmetric metric in the
usual Schwarzschild coordinates,

ds® =e¥df? — dv* - (a9 + sin’6 de?).. (18)

Before we proceed, we have to choose a set of
matrices satisfying Eq. (1). A set of matrices
could be obtained by using the vierbien formalism
outlined by Brill and Wheeler,® but then mixed
neutrino and antineutrino states are obtained. We
find it convenient to use ¥ matrices related to Un-
rub’s representa.tion,4 for these lead to pure neu-
trino and pure antineutrino states. Our ¥ ma-
trices are defined by

.),t___e—u/z,;o’ y

(19)

where the 7% are flat- spacetime Dirac matrices
in the Bjorken-Drell® representation. We choose

a=9, (20)
The matrix ¥° is now given by
LP=VIPP. (21)

For this choice of the ¥ matrices, the spinor af-
finities are

7

14
Pt :-4— e"'}’l'}’o', rz =0,

(22)
29
yyzyl r, rsm ——— (P +rcotdr®¥).
The wave equation (9) now reduces to
2y ,(_ v 1)
Yttt )
+>*"< +3 cot9)zp+7 g:{;:o. (23)

We have defined energy normal modes in Eq. (17).

The angular normal modes are similarly defined
by '

A2~ 1. 1 .
r=e*, Y=V, v= 7,

i—==mp. (24)

If the spinor ¥ is written as

p= [“‘], (25)
Qy

where @;, @ are two-component objects, in the
Bjorken-Drell representation the constraint equa-
tion (11) implies

a1 = 012 . (26)

The radial and angular parts of Eq. (23) may now
be separated by writing ¢ as

e-zwte'imw n [R1(7’)S1(9)]
1!): v . ’ n= ’ (27)
& sind) (n] Ry(r)S4(6) «

and the radial and angular functions satisfy the
coupled first-order differential equations

v/2
e"/z')'/z iR_l - lel‘_': ke Rz ’
) (28)
2,2 dR v/
umx/zd_rz_‘_ R, = ‘R1,
and
S
i.l. +_1:}¢._SL =k52 ,
df siné (29)
S S
B My _ g
d® sinf

respectively, where % is a constant. It has been
shown by Schri:}dinger6 that 2 has-a spectrum of
positive and negative integral eigenvalues. The
angular functions S; and S; are normalized so that

fo " $,2(0)d0 = fo " 5,2(0)d6 = % ) (30)

If antineutrino states are obtained using the con-
straint (13), w in Eq. (27) is replaced by —w.

It is convenient at this stage to introduce a new
variable * defined by

Iodrt=eMiv gy, (31)
Introducing
d kev/2
D= — el A:——;—, (32)

the radial equations reduce to the simple form

DR]_ - ‘lel :AR-Z N

(33)
DRy +iwRy =AR; .
Defining functions F; and G; by
Fi=Ri+Ry, G1= —(Rl.— Ry), (34)

the radial equations may be written as
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(D - A)Fy =-wG;y,

(D +A)Gy = wF, . (35)

These are just the first-order radial equations ob-
tained by Brill and Wheeler® using a different set
of ¥ matrices.

Operating on the two equations in (35) by D+A
and D - A, respectively, and adding and subtract-
ing the resulting equations leads to two uncoupled
second-order equations:

(D? + W?)Fy ~ A’Fy — DAF, =0,

(36)
(D2 + wZ)Gl —A261 +DAGl =0.

It is convenient to use these equations in analyzing
the neutrino problem. However, not all solutions
of the second-order equations (36) are solutions

of the first-order equations (35). Given, there-
fore, solutions F and G of Eqs. (36), it is neces-
sary to modify them so that solutions of the first-
order equations are obtained. For any given solu-
tions F and G of (36), this is achieved by defining

Fy= 5o{(D +A)G + wF],
@ (37)

Gy==—[=(D=A)F +wG].

1
5ol
If F and G are solutions of (36), F; and G; are al-
ways solutions of (35). I F, G are already solu-
tions of (35), the transformation (37) gives Fy=F,
G1=G. The corresponding equations for antineu-
trinos are obtained by replacing w with —-w.

The second-order equations (36) are of the type

2
—d‘f;% +[of = E(*)x =0, (38)

with the “potential term” £(+*) suitably defined.
Such an equation can be solved in the WKB approx-
imation,” and the solution is given by

x(r™) =W exp(i fr*p dy*)

T

where .
p(r*) =[w® = £, (40)

For any solution ¥ of Eq. (9), a conserved par-
ticle number density current is given by

P*=Prty. (41)
The net number of particles flowing out of a sur-
face v =constant per unit Schwarzschild time ¢ is
then given by

oN

= V=gjrde dy

7=constant

= |Ry|* = | Ry |* = 3i(F{Gy1 ~ F1GY), (42)

where the asterisk denotes complex conjugation.
In what follows we will find it convenient to ex-
press 3N/t directly in terms of solutions F and
G of the second-order equations. We will not
write down such an expression as it is rather un-
wiedly. We will need only an approximate ex-
pression which will be introduced in the next sec-
tion after conditions for its validity are discussed.

III. COMPACT SPHERICALLY SYMMETRIC
UNIFORM DENSITY OBJECTS

In the previous section we reduced the Dirac
equation to a form suitable for any static, spheri-
cally symmetric metric. We will now consider a
particular solution of Einstein’s equations belong-
ing to this class—the spacetime metric in the
interior and exterior of a static, spherically sym-
metric object with uniform density o,

o= constant . (43)

If the radial coordinate at the boundary of the ob-
ject (star) is taken to be =R, the metric in the
interior and exterior is given by (18) with

v 1 oM i/2 2M’l’2 1/7)2
“‘4[3(1-?) -(1- Rs) ,]

M2\t
(o-2eg)

and

(r<R) (44)

evze-x=(1_3g"->, r>R (45)

if a system of units with c=G =1 is used. Intro-
ducing

v 2M\3 2M
p:M, a:z(7>, b= 3(1-—) y (46)

Eqgs. (44) and (45) may be written as

e’ =4b-(1=ap )P, =(Q1=-ap®)?, p<R/M
(47)
and
. 2\1!
e":e)‘z( —-'E) B D>R/M. (48)

To prevent a pressure singularity at the center it
is required that

2M 8 . oM

= <§, i.e., R> rak (49)

Using (47) and (48), Eqs. (36) may be reduced to

the form (to avoid confusion we use F and G when
writing second-order equations and F; and G, in
the first-order equations)
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2 2
L+ = 5P =0, LG [ 66 =0,
(50)
with
* 2

EEZ*§}= Tilo - (1= )T

. ZM—Z?Z;_)I[b - (1 _ap2)1/2]+ (1 _ap2)1/2

£ Z%’};[b— (1=ap®)'*], p<R/M (51)
and

o= (1-2)

F k <1--2-)m<1_ 3) p>R/M (52)
M\ " b o)’

with the upper signs used in £(»*) and the lower
signs in n(»*) in Eqs. (51) and (52).

In the exterior potentials (o> R/M), it is obvi-
ous that for large # the term ~k* dominates the
term ~% for all values of p>R/M. The dominance
of terms ~%? over terms ~% for large % occurs also
in the interior potential, i.e., for p <R/M pro-
vided

2 _ 119

R 144 ° (53)

In the following we will assume that this condi-
tion is always satisfied. The potentials now take

the simple form

g]u t(y*) =T t(r*)

2 A
=W[b—(l-apz)m], p<R/M
(54)
and
buns) =) = g (1= 2), o/,
ext — Hext\’, _Mp 0 ’
(55)

Since the potentials in the two equations (50) are
now identical, we can take F=G. In the present
approximation Eq. (42) reduces to

oN 7
—) =~ —(FDF* - F*DF) . 56
(Bt ) 4w (FDF ) (56)

The interior potential &,,(»*)—~> as p—~0. Fur-
ther, £,,.(»*) has a minimum occurring at

- (2M)'3’2 (8 - 9(2M/R)>“2 ,

R 9—- 9(2M/R)

= (57)

with

PR TT, T I

The minimum exists when 2M /R> %, i.e., if R
<3M (if this condition is not satisfied, the mini-
mum should occur outside the surface of the star,
which is not allowed). The exterior potential
£oxt(r*) =0, as p—=, and it has a maximum of
2
gextmax: -2—7—]‘/—17 \(59)

occurring at p=3, i.e., »=3M. Clearly the
maximum will exist only if R <3M. We will here-
after consider values of 2M/R such that
§<3£1<%, i.e.,2—18—18-9M<R<3M. (60)
In this range the minimum in &,,,(»*)and the maxi-
mum in &,,(»*) exist. The potential £(»*) and its
derivative are continuous across the surface p
=R/M because of the continuity of the metric and
it first derivatives across the surface. For the
range indicated in (60), a potential well of the type
shown in Fig. 1 is therefore obtained.

Consider a neutrino with quantum numbers w and
% in the interior of the star. The energy of the
neutrino is £=%w. Comparison with the flat-
spacetime Dirac equation (i.e., using an equiva-
lence principle argument) shows that 2 is related
to the total angular quantum number j by

lk\:]*’%’ j:'-;::%;g"«~ . (61)
For large % the total angular momentum J is
I=[i(+ V"= |r|n. (62)

The neutrino finds itself in a potential well with
the barrier height k*/27M%. If the neutrino energy

P —»

FIG. 1. A schematic representation of the potential
£(p). The line x <x represents a neutrino with energy
E<[£(R/M)]Y?, where x=E%/ £ nax [See Eq. (67)].
Both the turning points are within the surface of the
star. In the notation of Egs. (72) and (73), I=I;, and I’
=I,+I,. For x >xp, the energy E >[£(R/M)]'/?, the outer
turning point is beyond the surface of the star, and I=1I,
+Iy, I'=I,. The line x=1 is used to determine the num-
ber of bound states for a given k.
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E> (K /27M%)'/? the radial wave function is oscil-
latory for all values of p>p;, where p; is the
turning point obtained as the lesser root of the
quadratic equation E* = £,,,(0). (We sometimes
find it convenient to express the potentials £ and

n as functions of 7 or p.) For E < (£ /27M*)V/% let
p1 and p; be the inner and outer turning points,
respectively, which are obtained as solutions of
E® = £(p) (see Fig. 1). The wave function in this
case is (i) real and decaying with decreasing p for
p<py, (ii) oscillatory for p; <p <p,, (iii) real and
decaying with increasing pfor p, < p < p;, where p;
is the greater real root of the equation E* = £.,(p),
and (iv) oscillatory for p>p;. The form of the
wave function suggests that the neutrino is trapped
in a semibound state in the gravitational potential
well, and that it eventually penetrates through the
potential barrier and escapes to infinity. The
average lifetime of the neutrino against barrier
penetration can be obtained by following a pro-
cedure similar to the one used in the virtual level
theory of @ decay.” However, it is sufficient in
the present case, as in the case of @ decay, to
use the WKB method to obtain the probability of
penetration. ) .

In applying the WKB approximation, it is first
assumed that there is no penetration through the
barrier. The energy eigenvalues are then dis-
crete, and are those values which satisfy the Bohr-
Sommerfeld quantization condition®

m+d)= [ pare, p=lat- eI, (69
p=0y

where 7, is a positive integer and p; and p; are the
turning points. For a given &, the total number
of eigenvalues N, is obtained as the largest posi-
tive integer less than or equal to the right-hand
side for E* =w? =F2/27M" (f=1). Having obtained
the energy eigenvalues, the penetration can be
“switched on” and the penetration factor obtained
by comparing the number of particles flowing out
of a »=constant surface in the regions p; <p<p,
and p > ps, respectively. Using Eq. (56) and WKB
functions F, which are appropriately joined in
passing from one region to another (see Ref. 7),
the penetration factor is found to be

P:exp(— 2 fﬂa pdr*)
4]

s (B o\ e
=exp|-2 —y - e do|, (64)
Py M p .
where p; and p; are defined above. It must be
noted that for consistency of the calculation, P
should be small compared to unity.
In the usual WKB calculations for massive par-

ticles, the probability of penetration II is taken to .

be II=P Xy, where v is the frequency of approach
to the turning point p; by the particle assumed to
be traveling along a classical trajectory in the
same potential. In the present case we take v to
be the frequency with which a neutrino traveling
along a null geodesic, with angular momentum

J =7k and energy E =7w in the potential £(p) ap-
proaches 7;. v is obtained from

) v \-1/2
vl=oMm f Al (1 - %f—z) dp, (65)
(N ‘ p
where ¢=J/E is the “impact parameter” (see Sec.
V for the details). The probability of penetration
and the average lifetime 7 of the neutrino in the
well are then

H:VP, T= N (66)

=] PN

respectively.

IV. NUMERICAL RESULTS

We will consider.in this section the energy ei-
genvalues, penetration factors, and lifetimes of
the semi-bound states which result for various
values of M and R, with 2M/R in the range indi-
cated in (60).

For this purpose, it is convenient to express the
energy of a given (semi) bound state as a fraction
of £remaxe FoOr a given value of # we write

2 xkz
E =x£extm=m—7 . (67)

The energy values E = (£, o) and E= (£, 1,012
correspond to

)

(68)

respectively. The value of x which corresponds
to E=[£(o=R/M)'* is

X =xp= 3}(%)2 (1 - %) . (69)

We now define two integrals I; and I, by

2 x 1 1/2
I=2f {.___ [b—(l—a 2)1/2 2}
L S PY A e

x[b = (1=ap®)' 211 - ap*)'ap, (70)

: “fx 1 2\1*% 2\

e [ E-p0-0) (-F) e @

2 A o7 52' 0 P P (71)
with the limits of integration to be specified in the

following. In terms of these integrals the Bohr-
Sommerfeld quantization condition reduces to

k
N =EI—0.5, (72)
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with I defined as follows: (i) For E®< £(p =R/M),
i.e., x<xg,I=I; with p; and p; the lesser and the
greater root, respectively of the quadratic equa-
tion E® = £, ,(p); (ii) For E®> t(o=R/M), i.e.,
x>Xg, I=I1 +1 with p; the lesser root of E?

= §a¢(0), P2=ps=pr=R/M, and p, the lesser
positive root of the cubic equation E? = £,,,(p).
With our definition of x, the limits of integration
are all independent of 2. The integral and the
limits of integration depend only on x and the ratio
2M/R.

For a given value of 2M/R, in order to deter-
mine the value of 2 for which the first bound state
occurs, the integral is evaluated for x =1, which
corresponds to the highest value of energy for
which a bound state may occur. The value of % is
then increased through positive integral values
until #, exceeds unity by a fraction (we consider
only positive integral values of % for convenience,
but all our results are true also for negative val-
ues of % if % is replaced everywhere by |%|). The
exact energy of the bound state is determined by
finding the value of x for which n,=1. No bound
state is possible for lesser values of 2. In gen-
eral, the number of bound states for a given value
of & is equal to the greatest integer less than or
equal tothe right-hand side of Eq. (72).

For a given energy level, Eq. (64) for the pene-
tration factor may be expressed as

P =exp(~2kI'), (73)

where the integral I’ is defined as: (i) I'=1,+1,
for x <xg, with p the greater root of the equation
El = £a4(0), P2=p3=pr=R/M, and p, the greater
positive root of the equation E = £,(p); (ii) I’
=1, for x > x5, with p3 and p, the lesser and great-
er positive roots respectively of the equation E
=£,.(0). The penetration probability per second
II and the average lifetime 7 are then obtained
using Eq. (66). v is obtained from

" -1
u:(“iém f?c’) sec™, (74)

with (i) for x<xg, I” =I;, where I; is defined as in
(70) except that the expression within the paren-
theses is now raised to the power -3, and (ii) for
% >xg, I"=1I3+1, with I defined as in (71) with the
expression within the parentheses in the integrand
raised to the power —3.

We present in Table I some values of % and the
corresponding number of bound states for 2M/R
=0.7465, which is the mean of the upper and lower
limits on the allowed values of 2M/R. In Table I
we have listed the x values for each of the nine
energy levels for k=166, The energy E corres-
ponding to each x is E =5,17x10° M~ (g)k/x (keV).
Against each level are shown the penetration fac-

TABLE 1. N, is the number of bound states allowed
for various values of the angular momentum quantum
number k. 2M/R is taken to be 0.7465.

kR 27 44 62 79 96 114 131 149 166 184

N, 1 2 3 4 5 6 7 8 9 10

tor P and the lifetime 7. It is found that in the
range of 2M/R being considered, the value of
Vx1", which occurs in Eq. (74), is a slowly vary-
ing function of x and 2M/R, with vxI”=0.011,
The error in assuming that vxI” has this constant
value is small (~5-10%). For M =~ 2M,, this value
of VxI” gives v=2.11x10° sec™.

We have made similar calculations for various
values of 2M/R in the allowed range. To avoid
the tedium of long tables, the results are present-
ed graphically. It is possible to use the curves
to get an approximate idea of the distribution of
energy levels and the corresponding penetration
factors for any value of 2M/R.

In Fig. 2 we have plotted as a function of 2M/R
the value of the integral I of Eq. (72) for x =1,
Given a value of 2M/R, the corresponding value
of I is determined from this curve. Equation (72)
can then be used to determine the number of
bound- state energy levels for any value of 2M/R.

In Fig. 3 we have plotted, for various values of
2M/R, the average spacing between the energy
levels for a given value of 2, as a function of %.
Given 2M/R and having determined from Fig. 2
the values of % for which bound states occur, Fig.
3 may be used to determine the average energy
separation Ax between the levels for each k.

In Fig.- 4 we have plotted ¥ maximum, averaged
over various % as a function of 2M/R. 1t is pos-
sible from this plot to determine approximately the
highest energy level for any % for a given value
of 2M/R. Progressively subtracting from this
level the average level separation Ax for a given
k, the energy spectrum for the required value can
be generated. For every 2M/R there are some

TABLE II. The energy spectrum for 2M/R=0.7465,
k=166, in terms of the parameter x=E%/¢ .

7y x P T (sec)

1 0.9161 ~10-18 ~5  x10
2 0.9270 ~10-18 ~5 x10
3 0.9381 ~101 ~5  x10°
4 0.9492 ~1018 ~5  x10'
5 0.9603 ~1 %10 ~5 x10°
6 0.9713 2.76 x 10”7 1.7 x10!
7 0.9818 7.16 x 107 6.6 x1072
8 0.9916 1.24 x10% 4 x107?
9 0.9999 9.48 x 1071 5 x10%¢
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FIG. 2. The integral I, is shown as a function of 2M/R,

The value of 2 at which the first bound state occurs is
also shown as a function of 2M/R.

k values for which only one energy level exists.
Such levels are not included in the above scheme
and a separate plot is made in Fig. 5 of the x
value for this level as a function of 2M/R.

It is found that the integral I’ of Eq. (73) can

be very well approximated as a linear function of

2M/R=08
1ot
= 2M/R =0.7465, 0.7300
I
ol
2M/R=0.7000
ool L Y
e} 100 1000

k —»

FIG. 3. Average spacing between levels plotted as a
function of x for various values of 2M/R.
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FIG. 4. The value of x for the highest energy level
averaged over k values shown as a function of 2M/R,

where x=FE%/£. ... [see Eq. (67)].

the parameter x.- We show in Table II the cor-
relation coefficient, and the parameters @ and B,
for a straight-line fit of the type I'=a +Bx. Hav-
ing obtained the approximate energy spectrum as
described above, the penetration factors can be
determined from a straight-line fit of this type.
Using v#I” = 0.011 in Eq. (74) then leads to the
lifetime 7 =1/Pv in each case. It shouldbe °
noticed that an error Al' in determining I’ leads
to the error AP=-kPAI’ indetermining P. Since
k ~102, a small error in determining I’ can lead
to an error of magnitude unity in determining P.

1.00
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0.98

(15" tevel) (Kmin)

— 0.97

X

0.96 |-

095 . 1 1 1 A
.70 72 .74 .76 .78 .80 .82

2M/R—

FIG. 5. The value of x for the first energy level (cor-
responding to kg, one bound state) shown as a function
of 2M/R, where x=E%/t 4 .o [see Eq. (67)].
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TABLE III. The parameters @ and 8 and the correla-
tion coefficient for the straight-line fit I’ = +8«.

2M/R a B 7

0.7000 1.6660 -1.6663 0.9976
0.7300 1.6367 -1.6376 0.9997
0.7465 1.6585 -1.6546 0.9996
0.8000 1.7196 -~1.7263 0.9992

V. CLASSICAL TREATMENT OF NEUTRINO
TRAPPING

. We have seen in the previous section that it is
possible to trap neutrinos in a gravitational poten-
tial well for periods of ~10” seconds. For neu-
trinos of energy E and angular momentum 7,
trapping occurs for E < (£, m) 2 =7c*k/3VIGM
with % sufficiently high. For any energy the frac-
tion of neutrinos trapped will depend upon how the
k values are distributed amongst the neutrinos.
To determine the distribution function in 2, we
will take advantage of the fact that in the regime
of interest the problem may be treated in the clas-
sical approximation.

For a spherically symmetric object of mass M
=2Mqg~4%10% g, the energy up to which trapping
is in principle possible is E = (#c*k/3V3GM) erg
=1.3X10"% (keV). The values of % that we con-
sidered in the previous section were ~102; for
these the energy for which trapping may occur is
very low. For trapping to occur in (say) the keV
range, it is necessary to have & ~10%. For values
of & as large as this, there is a nearly continuous
distribution of energy eigenvalues. Moreover,
the de Broglie wavelength of such neutrinos is
~10® c¢m, which is very small compared to the
radius R =~ 10°® cm of an object with M =1,5M,,
2GM/c*R=1. One can therefore safely apply the
classical approximation and assume that neutrinos
move along definite trajectories which are null
geodesics (by virtue of the assumed zero mass of
the neutrino).

For a null geodesic in the spherically symmetric,
static Schwarzschild spacetime, we have the fol-
lowing first integrals of motion,®

. J . ~ . - 2,V
(p:ﬁ, t=e l)E, Tzzeph(l—g;ef'>, (75)

where the overdot indicates differentiation with
regard to some affine path parameter A. J and E
are constants of motion which may be taken to be
the angular momentum and energy, respectively.
g=J/E is the impact parameter. From these
equations it follows that

A\t Ao 2,
(1) =251~ 5%). o

Consider a neutrino emitted at an arbitrary
point ®(7, 8, ») making an angle ¢ in the locally
orthonormal frame of a static observer, with the
radial direction (see Fig. 6). Then

tang = (;-2-;-_%;27177 . (77)
Consider a three-dimensional volume element with
proper volume dv at ®. Let ny be the number of
neutrinos emitted per unit proper time, per unit
proper volume at ®. The number of neutrinos
emitted in dv in Schwarzschild time df is ndve’ /2 dt.
Since there is no preferred direction for the emit-
ters to be polarized in (the coupling of the emitters
to the gravitational field being neglected), the
emission is isotropic in the locally orthonormal
frame. The number of neutrinos emitted with
angles between ¢ and ¢ +d¢ with the radial direc-
tion is therefore (y/2) sint d¢ dve*?dt. Let n(¢, 7)
be the number of neutrinos emitter per unit
Schwarzschild time, per unit interval in ¢, per
unit interval in 7 at the radial coordinate » and
with any 6 and ¢ . #(Z, 7) is related to #, through

n(Z, ) =2mnye** 27 sint . (78)

Let n(g, 7) be the number of neutrinos emitted
per unit 7 interval, unit ¢ interval and unit ¢ inter-
val. Since sinf=gq/7e™”, for a given g the angle
of emission can be either £ or 7~¢. Since n(¢;7)
~sing, n(¢, v)=n(m —¢,7) and we have

nlg, v)dq dv dt =2n(t, v)d¢ dv dt, (79)

i.e.,

d
nlg, v)dg =2n(Z, 7) a—i— dq
=4mnye” Myg(Fe™ - ) Vdg.  (80)

We have used the locally measured isotropy of
emission to obtain the distribution function n(g, 7).
For a neutrino emitted at a given 7, since the
right-hand side of Eq. (76) should be greater than

zero, we have

quv
1-57>0, ie., g<re™ . (81)
At any given point, therefore, ¢, = re®”. For
this value of ¢, £ =¢, = 7/2. As { increases be-

yond this, ¢ decreasé¥from gy, to its minimum
value g=0at {=m.

rd¢

radial direction

r=o P(r,8,¢)

FIG. 6. Relation between the angles ¢ and ¢.
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Writing Eq. (75) as

2 -2
(&) -t - e, (62)
it is clear that the form of the effective potential
£(r) =J*¢”/7#*, which determines the turning points
and the motion of the null geodesic, is the same
as the quantum mechanical potential with large %.
Consider a neutrino emitted with a fixed energy

E and impact parameter ¢=J/E. The neutrino
sees a potential for which the maximum is J2/
27M% = g*E*/27M®. The neutrino is trapped when
E' < 2E*/27M*, i.e., when 3V3M <gq. Of all the
neutrinos emitted at radial coordinate » with the
distribution function #(g, 7), those with ¢ in the
range 3V3M<g< gmax are trapped and those with ¢
in the range 0< ¢ <3V3M escape. The fraction of
neutrinos trapped is

F(r) :M , q.=3V3M. (83)
fom nlg, v)dg

Using Eq. (80), F(») may be reduced to the simple

form
1

FT__E‘-i.".:— -

o5 (1=t b = (1 )1 25 [0 = (1- ag)2F) " a
[ "®p*(1-ap ~(1-ap ~gzlo-(1-ap o

F(r):(l__g.(l)_)m, £ = ¢ (84)

£ max r?

The trapping can occur only for those values of
7 at which g, < gy, i.€., 3V3M<re™?, Let 7y,
be the lesser root of the quadratic equation ¢’ /7
=1/2TM%. For r<vp,, 3V3M>re™” i.e.,
Eint)>& xpmax> 1-€45 E2> £ e max, Since always E2
> £¢(7). It follows that neutrinos which can reach
the region with » < »_,,, will escape to infinity. In
order to calculate the total number of neutrinos
trapped on emission in the object, d’rdtfgemax
Xn(q,7)dq has to be integrated from 7, to R. The
fraction of all neutrinos trapped is therefore

172

JET )
IR

floee(v*l)ﬂﬂd,r

Fr= J—VA—,T- = , (85)
where N is the total number of neutrinos emitted
by the object in Schwarzschild time Af (say) and
N is the number of the neutrinos trapped. Using
the notation of the previous sections, this result
may be expressed in terms of p=R/M:

(886)

In the above expressions it has been assumed that
7y, which is the number of neutrinos emitted per
unit proper time, per unit proper volume, is a
constant throughout the volume of the star. The
fraction of neutrinos trapped is independent of E,
because the barrier height available is proportion-
al to the energy.

Vilhu'® has independently performed a similar
classical calculation. He has, however, taken the
fraction of escaping neutrinos at 7 to be 2%/,
where Z is the half-angle of the escape cone at 7.
This amounts to omitting the factor sin{ which
appears in the distribution function (78). Omit-
ting this factor corresponds to replacing [1- £(#)/

£nax]'/2in Eqgs. (84) and (85) with cos™ [ £(r)/ £na]' /2.

In Table IV we have listed the values of F, and
F4/Fy for several values of 2M/R, where F} is
the fraction of neutrinos trapped when the sing
factor is omitted from the distribution function, as
is done by Vilhu. I is seen that the absence of
the sin¢ factor matters only for high values of
2M/R. In the last column of Table IV we have
shown the values F, given by Vilhu for the total
fraction of neutrinos trapped. It is seen that our
results are between 15 and 4 times in excess of
Vilhu’s. It is difficult to see where the discrep-
ancy arises, as the manner in which Vilhu aver-
ages over the volume of the star is not clear. The

I *2p*(1- ap®) (b — (1= ap®)**]dp

T
numerical results are shown graphically in Fig. 7.
Included in this figure are some points not shown
in Table IV. We have shown for comparison the
values for the fraction of neutrinos trapped as ob-
tained by Vilhu.

In the classical approximation, the trapping of

TABLE IV. Fy is the fraction of neutrinos trapped in
the potential well. Fj/F = [fraction trapped with sing
omitted from distribution function (70)]/(fraction
trapped with sin¢ included in the distribution function).
Fy is the fraction trapped in Vilhu’s calculation.

2M/R Fp F;-/FT Fy
0.6700 0.5579 x 1073 1.0000
0.6800 0.8523 x 1072 1.0003
0.7000 0.0485 1.0021
0.7100 0.0781 1.0037
0.7300 0.1513 1.0085
0.7330 0.1635 1.0093 0.01
0.7465 0.2213 1.0141
0.7600 0.2825 1.0201
0.7890 0.4172 1.0380 0.07
0.8000 0.4673 1.0468
0.8100 0.5115 1.0560
0.8264 0.5805 1.0735
0.8440 0.6479 1.0962 0.16
0.8600 0.7028 1.1203
0.8890 0.7847 1.1700 0.25
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2M/R —

FIG. 7. F ,is the total number of neutrinos trapped in
the gravitational field. F is the total number trapped as
calculated by Vilhu. '

neutrinos is permanent for there is no penetration
through the barrier. In the quantum-mechanical
formalism too the penetration would turn out to be
negligibly small, as the values of 2 which occur
in the penetration factor P=¢ %"’ are very large
in the classical region.

VI. ASTROPHYSICAL APPLICATIONS AND
CONCLUSION

It is not our intention here to consider in detail
the effects which gravitationally trapped neutrinos
~ can have an astrophysical phenomena. We will
only point out some circumstances in which a
gravitational well may occur and leave the de-
tailed calculations to a future report.

The maximum and the minimum in the potential
£ appear only when R<3M, i.e., when R<1,5Rg,
where R is the Schwarzschild radius of a spheri-
cally symmetric object of mass M. Of the known
equilibrium configurations, only a neutron star
can be compact enough to satisfy this condition.
Even in this case the radius can be made suffi-
ciently small only for stiff equations of state. It
is seen from the M-R curves given by Canuto'
that at the peaks of the curves corresponding to
stiff equations of state, R <1.5Rs with 2M/R
=Rs/R=0.67. For a constant density object with
this value of 2M/R, the calculations of this paper
show that ~0.05% of neutrinos produced are trap-
ped, irrespective of their energy. The analysis
is of course not directly applicable to a neutron
star, as the matter density varies in its interior.
Nevertheless, our numbers may be used to get an
approximate idea of how much time it would take
to produce neutrino degeneracy which would affect

further neutrino production.

For a neutron star of mass M ~2.2M , the radi-
us R=9.7 km if 2GM/c’R is to be 0.67. If it is
assumed that the density is uniform, this corre-
sponds to a density of 0=1.14X10" gem™
=2.130, 01, Where 0,0 =3.7X10" gem™ is the
nuclear density. Bahcall and Wolf have considered
the neutrino luminosities of neutron stars due to
various reactions. As an example, we will use
their results for the reactionn+n—n+p+e+v
to estimate the luminosity of our constant-density
object. The expression for the (anti) neutrino
luminosity for the above reaction is*

L, =(0/04401)* T (1 + F) X 10” ergcm™®sec™, (87)

where F=[1=2.25(0,,,:/0)*?1'%, and T is the tem-
perature in billions of degrees. Using T9=0.4
and 0=2.130,,.;, L,=1.94%10" ergcm™®sec™.
Taking the typical energies of the neutrinos to be
E =kT/3, the neutrino emission due to the above
reaction is N=3.64x10" cm®sec™. For 26M/
c®R=0.67, 0.05% of these neutrinos are gravita-
tionally trapped. This means that in about 1.3
X10° sec., the Fermi level of the degenerate sea
rises to 100 keV, inhibiting the further emission
of neutrinos with energies less than this.

The presence of a degenerate sea of neutrinos
can affect the rates of nuclear reactions taking
place inside the star. Moreover, if neutrinos are
trapped, they will not be able to transport energy
to the outside, and this can have serious conse-
quences on the thermal evolution of the star.
These considerations might become especially
interesting in the case of a collapsing phase which
leads to the formation of a compact, dense object.
However, during the collapse the interior metric
is time-dependent, and it will be necessary to ex-
tend the formalism to this case before the possi-
bility of trapping can be investigated. Preliminary
results by Dhurandhar and Vishveshwara'® show
that in the case of collapse, neutrino pulses and
bursts are obtained. Detailed calculations re-
garding the possibility and the nature of trapping
are in progress.
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