Separation of variables for the Dirac equation in an extended class
of Lorentzian metrics with local rotational symmetry
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The question of the separability of the Dirac equation in metrics with local rotational
symmetry is reexamined by adapting the analysis of Kamran and McLenaghan [J. Math.
Phys. 25, 1019 (1984) ] for the metrics admitting a two-dimensional Abelian local isometry
group acting orthogonally transitively. This generalized treatment, which involves the choice
of a suitable system of local coordinates and spinor frame, allows one to establish the
separability of the Dirac equation within the class of metrics for which the previous analysis of
Iyer and Vishveshwara [J. Math. Phys. 26, 1034 (1985)] had left the question of separability

open.

I. INTRODUCTION

Chandrasekhar’s' proof of the separability of the Dirac
equation in the Kerr metric was not only the culmination of
a long list>® of separability properties which—to quote
Chandrasekhar’s own words* —have the ““aura of the mirac-
ulous,” but also the starting point of a series of new investiga-
tions on the separability properties of the Dirac equation in
curved space-time. Reviews of these contributions can be
found in Refs. 5 and 6.

A deeper understanding of the geometrical aspects of
Chandrasekhar’s result was achieved through the work of
Carter and McLenaghan’ who constructed a first-order ma-
trix differential operator—a generalization of the total angu-
lar momentum operator of flat space-time—commuting
with the Dirac operator in the Kerr metric and admitting the
separable solution of the Dirac equation as an eigenspinor
with the corresponding separation constant as an eigenval-
ue. They showed that this operator is constructed from the
rank-two Killing-Yano tensor field whose associated Kill-
ing tensor field arises from the separability of the Hamilton—
Jacobi equation for the geodesic flow in the case of noniso-
tropic geodesics.> Subsequently, Kamran and McLen-
aghan® investigated in detail the question of the separability
of the Dirac equation in the class of metrics admitting a two-
dimensional Abelian local isometry group acting orthogo-
nally transitively and a pair of shear-free geodesic congru-
ences of isotropic curves. They could treat this case in detail
because of the earlier results of Debever, Kamran, and
McLenaghan,®'® which provide a canonical form for this
class of metrics and a single expression for the general solu-
tion of the Einstein-Maxwell and Einstein vacuum field
equations with cosmological constant assuming a type D
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Weyl tensor and a nonsingular aligned Maxwell field.
Around the same time, Iyer and Vishveshwara'' investigat-
ed the separability properties of the Dirac equation in space-
times with local rotational symmetry.'>!* These space-times
form a subclass of the generalized Goldberg~Sachs class and
include a number of well-known solutions like the Fried-
mann, Godel, Kasner, Kantowski-Sachs, and Taub-NUT
geometries as special cases. A direct adaptation of Chandra-
sekhar’s treatment yielded separation in only a subclass and
left open the issue of separability in the remaining cases. This
is the issue we address in this paper. Adapting the treatment
of Ref. 8—which involves and appropriate choice of coordi-
nates and spinor frame—to the case of metrics with local
rotational symmetry, we show explicitly in Propositions 1
and 2 below how the separability of the Dirac equation can
be achieved within the class of metrics for which the question
was left open by Iyer and Vishveshwara in Ref. 11. All the
separable systems we obtain are examples of systems Miller®
calls factorizable separable systems. As such, we know from
Theorem 7 of Miller’s paper® that for each of our separable
systems, there exist three linearly independent first-order
matrix differential operators commuting amongst them-
selves and with the Dirac operator and admitting the separa-
ble solutions as eigenspinors with the separation constants as
eigenvalues. These operators are constructed explicitly in
Proposition 3 below and characterized invariantly in terms
of the two commuting Killing vector fields and the rank-two
Killing—Yano tensor field admitted by the locally rotational-
ly symmetric metrics studied in this paper.

Il. THE DIRAC EQUATION IN SPACE-TIMES WITH
LOCAL ROTATIONAL SYMMETRY

We first recall from Ref. 12, some general facts about
space-times with local rotational symmetry that are needed
in order to study the separability of the Dirac equation in
these space-times.

The space-times with local rotational symmetry admit

© 1991 American Institute of Physics 2497



local coordinates (x°x',x%,x>) in which the metric is of the
form

ds* = (1/F?)dx°®dx°

~ A2 dx'@dx' — B2(dx’Odx* + t? dx’©dx?)

— W/FH2dx° —ydx*)@dx’

+ hA2(2dx' — hdx*)©dx’, )
where F, A, and B are functions of x° and x' only and ¢, y, and

h are functions of x* only. The metric function ¢ has one of
the following expressions

t = sinh x?, (2)

where a is a constant and the metric function ¢ is related to
the metric functions 4 and y by the relations

t=a, t=x% t=sinx?

dh dy
—=ct, ——=C("t, (3)
dx? dx?

where ¢ and ¢’ are real constants.

The locally rotationally symmetric space-times fall into
three classes defined by the following conditions.

Class 1:

JdB JF

A=1, — =0, — =0, h=0. (4)
ax° ax°

Class 2:

h=0, y=0. (5

Class 3:
A4 JB

F=1, —=0, —=0, y=0. 6)
ax! ax! y (

It was shown in Ref. 11 that the Dirac equation is sep-
arable for the space-times in Class 1 if ¢' =0, that is y is a
constant. For Class 2, it was established that while the angu-
lar variable can always be separated, the temporal and radial
variables only separate in the following two special cases:
(a)

M _o 9B _o OF_

ax° 0 §=0’ ax‘_O; D
(b)

94 _o 9B _o O9F_,, (8)

ax° ax! ax!

Some exact solutions corresponding to these two cases
are given in Refs. 14 and 15.

The starting point of our paper is the observation that
since the metrics in Class 1 and Class 3 admit a two-dimen-
sional Abelian local isometry group acting orthogonally
transitively, the general results of Ref. 8 should be adaptable
to the study of the separation of variables problem for the
Dirac equation in these locally rotationally symmetric
space-times.

The metrics in Class 1 are given by

ds? = F(x") ~(dx® — y(x*)dx>)(dx° — y(x?)dx?)
— dx'@dx' — B(x')%dx*(Ddx*
— B(x")#(x*)2dx’(dx’, 9)

while for Class 3 we have
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dst = — A(°)Hdx' — h(x*)dx*)Ydx' — h(x*)dx?)
+ dx°Gdx® — B(x°)%dx*(dx?
— B(x°)%t(x*)%dx*(dx’. (10)

We observe that for the metrics (9), the two-dimensiop-
al Abelian local isometry group generated by the Killing
vector fields d /9x° and 3 /dx* acts on timelike orbits while
for the metrics (10) the orbits of the local isometry group
generated by d/dx' and d /dx® are spacelike.

To study the separability of the Dirac equation in the
metrics (9) and (10), it is convenient to use a slightly differ-
ent set of local coordinates. These are precisely the coordi-
nates that appear at the starting point of the study of the

Dirac equation made in Ref. 8.
We consider the metrics

do? =f:;§l:))zdw®dw

— 2 4 dx — X(x)p(w)dvDdv
X(x)?
2
— O Gy 4 m(x) o)A + mx)db),
p(w)

(1
where f is a parameter taking the values + 1 or — 1 ac-
cording to whether the orbits of the local isometry group
generated by d /du and 3 /dv are spacelike or timelike.

Proposition 1: (i) Consider the local diffeomorphism
defined by

wod = f‘l g _ , xoP = f? t(y)dy, (12)
F(&)
uod = x° vod =x>. (13)
If we choose the metric functions so as to have
(po®@) (x') = B(x")?, (Xo®)(x?) =t(x?), (14)

(Wod) (x') = B(x")/F(x"),
(15)

(mo®) (x*) = — y(x?),

then }
P*do? | =ds:. (16)
(ii) Consider the local diffeomorphism W defined by

x° X2
wow = f A(O)dE, xo¥ = f 1) dy, an
uoW = x!, po¥ = x> (18)
If we choose the metric functions so as to have
(po¥) (x°) = B(x°)?, (XoW)(x?) =t(x?), 19

(WoW) (x°) = A(x°) B(x%),
(20)

(mow)(x*) = — h(x?),

Then we have

Y*do? =dsi.

The proof of Proposition 1 is straightforward. We now
show how the Dirac equation can be solved by separation of
variables for the locally rotationally symmetric metrics (9)
and (10) using the coordinates (u,v,w,x) introduced in
Proposition 1 and an appropriately chosen coframe.
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First, we consider the isotropic coframe

ol =2~l/2[pr—l/2(du+mdv) +pl/2W—ldw]’
(21)

Hp¢: = (i¥'V, —v2u Dy =0, (26)
where V, denotes the covariant differentiation operator
four-spinors and I is the 4 X 4 identity matrix, for the metrics
(11) using the Weyl representation for the Dirac matrices

0% =2""2[Wp~"*(du + mdv) — fp'*W ~ ' duw],
? # (]22) and the Newman-Penrose spin coefficient formalism. Thus
lettin
93=2—-1/2[Xp1/2dv+l:pllzx—ldx]’ (23) € 8
04=2~I/2[Xpl/2 dU—lPl/ZX_ldx], (24) 91 =n, dxi, 02:11‘ dxi,
in which we have 0= —m, dx', 8*= —m,dx 27)
do?=2(0'08%—-6°®8*). (25)
We shall express the Dirac equation the Dirac equation (2.26) reads
|
— i, 0 Dt+e-p 6+7-3\ [P\ [0
0 —iu, 6+B—-7T A+u-—-7y P} Jo 28
Atpu—y —(6+B—17) —iu, 0 o°] (o} (28)
- @+7r—a) D+e—p 0 —iu, o' 0,
{
where Y(u,v,w,x) = Ay p(w) ~'*
il J‘ dt )
ex R, (x)S,(w
D+e_p=2—l/2p—|/z[Wa + W t;i P( & 2 (w)
exp(—f ‘:—g)) R, (x)S, (w)
1 _ . 1 X
—-—Wp~ (- ’+1m’)+—W'], 29) ’
P 2 exp ) R, ()8, (w)
(§ )
- 3 . " f )
A+,u—y=2 1/2p ]/2[_/W_6;+W |pE ( (f) Rz(x)Sz(W)
(33)
1 . L 1 , where 4, and 4, are arbitrary constants, if the metrics do }
+ :fWP (—=p +im') — '-z-fW ] s are of Petrov type D, that is m(x) = 2/x, / an arbitrary con-
(30) stant, and the coordinate w is chosen so as to have
p(w) =uw* 412
v 12 ) Proof: From Eq. (4.2) of Ref. 9, we know that the met-
S+p—1=2"""p" [ - ’Xg rics do % will be of Petrov type D if and only if
m(x) =2Ix+n, (34)
x - d —m i ) 1 X’ 1) where / and n are arbitrary real constants. The constant n
+ N du 2 ’ may be set to zero by an appropriate translation on x, so we
have m(x) = 2Ix with no loss of generality.
_ We now transform the Dirac spinor ¥ according to
. d
ts+17'—a=2_llzpﬁl/z[lXE— ¢—S¢, (35)
29 =Y,
where
a aJ o w
+x M (gemI)rso]. oD g, (exn(2 [ 25 ) (&)
=p~ 7" diag| exp expl — | —1,
o " p@&) N2 o
Proposition 2: The Dirac equation (26) expressed in the ex p( il f ) ( d—g)) , (36)
isotropic coframe (8 '0?6°0 *) for the metricsdo ? givenby P& p(&)
Egs. (21) to (24) admits in the Weyl representation an R-  i$ a nonsingular matrix. Letting
separable solution Y = (F,F\F,F,), 37
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we have using Egs. (28) to (39) S ~'H,Sy' =

—in, 0 ( -JW df) ~2r + ( -J.w d§) -2y -
expl —il | —— L} -] = L ;
, 0 i, P po/" T pe)?
: v dg — —_ - : “ d§ —-172 — : Y d; —1/2 + s Y dg - 12y —
exp(zlf ——) 2L - —ex (df —) Lexpl —il | —=|)p~ 'L texp| —il | —==)p~ 'L
n®/” ATV 5 5)
g (C - o (¢ dE —172 —iu, 0
—exp(tlJ. —-) 2L + ex (xIJ. —) 2L ¥ .
p&/” ) pe)? 0 i,
F,
F
&) (38)
F, .
I
where We left multiply the transformed operator S ~ 'H, S by
E} 3 3 i the nonsingular matrix '
Lf:=2" ”11’X—+X"(——-21x—) +—X’] ,
Ix /) Jdu 2 “ ge v g
(39 y=p-» diag(exp(ilf ——) y — exp(ilf _§) ,
a0 75 o)
LI:=2" [ —ixZ w v
ox - exp( - ilf ﬁ) ,exp( - ilf —t—ig—)) , (43)
3 3 i (&) p(&)
+X“'(——21x—)——X'], (40)
2 Ju 2 to obtain the equation
a a 1
+._n~122 o -1, 0 1o
Li:=2 [Waw+fW po W], (41) W = US - HyS¢ = 0, (44
L-—:=2- 1/2[ —w g +Wp a 1 fW’] . (42)  Which is by construction equivalent to the Dirac equation,
v dw u 2 where
]
. LY dE -
— i, 172 lf _) 0 L} L;
ip.p exp(z 26
0 inp'? exp(ilf d—g) ~L; ~L;
Wi = P& - (45)
~ L} L~ i, p'”? (_‘lf ——) 0
ip.p’“expl —i PG
. (¢ dE
—-L* L; 0 _ e1/2 (_IIJ- __)
; iu.p'”? expl )
[
Following the statement of Proposition 2 we set the met- °, e . .

. . . LG, +L; G, —iu (w—il)G, =0, 48
ric function p(w) equal to w? + /2 by an admissible local 2+ 3~ (w =G, “9
diffeomorphism of the form w—k(w). [See Egs. (4.24)- 0 o ) .

(4.28) of Ref. 9 for further details. ] It then follows that —L7G, —L;G +ip.(w—iDG, =0, (49)

(Y dE . 0 0
p(w)1/2exp(llf E):w—l[. (46) ~L:Gy+L7G, +iu,(w+il)G, =0, (50)

We can now proceed to separate the Dirac equation. We use 0 0
the existence of the two commuting Killing vector fields —L7G,+LJG, ~ip(w+il)Gy =0, (5D

d/du and 3 /dv to express-¢' in the form . o
where the superscript *“0” denotes the substitution

G, (w,x) d/3u—A,, 3/3dv—A,. The separation of variables is com-
g e G, (w,x) _ ' @ pleted by following the Chandrasekhar pattern
B G, (wx) |’ G, (w,x) R, (x)S, (w)
G, (w,x) G, (w,x) _ R, (x)S, (w) (52)
G, (w,x) R, (x)S, (w) |’

where A, and A, are arbitrary real constants, in which case

the transformed Dirac equation Wy’ = 0, reduces to G5 (w,x) R, (x)S; (w)
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which upon substitution into Egs. (48)—(51) leads to the
ordinary differential equations

0
L7Sy —ipws, =4,5,,

0

L7R, —p,IR, = — AR, (53)
0

L;S, —ipwS, = —A,8,,
0

L}R, —u,IR, = —A,R,, (54)

where A; is the separation constant. This completes the
proof of Proposition 2.

The separable system for the Dirac equation obtained in
Proposition 2 is an example of a factorizable separable system
in the sense of Miller.® From Theorem 7 of Miller’s paper,®
we know that there should exist three first-order (matrix)
differential operators K,,, K,,, and K, commuting
amongst themselves and with the Dirac operator

[K.Hp] =0, [K,.K;,]1=0, (55)
and admitting the separation constants as eigenvalues, that
is

Kov=4, I1<ij<3, (56)
whered,,4,,and A, are the separation constants introduced
in Proposition 2. The operators K, and K ,, are simply the

Lie derivative operators on four-spinors corresponding to

the Killing vector fields 3 /du and J /dv, namely,
a 7]
K(n=IE’ K(2>=15-

The expression of K 5, is given through the following result.
Proposition 3: The first-order matrix differential opera-
tor K5, defined by

K, =SU~"“(UW, -U,W,_)S !, (58)
where S and U are given by Egs. (36) and (43) and where
U, = diag( — iLil, — il,il),

(57)

U, = diag(w, — w, — w,w), (59)
—ipw 0 L} 0
0 i 0 —L;
Ww = #ew “ ’
—L; 0 p,w 0
0 LS 0 —ipg,w
_:uel 0 0 L"_
0 pl —L;F 0
w, = i , (60)
0 L, —u.l 0
—L}y 0 0 #l
satisfies

[Ksy,H] =0, K ¥=4,9,. (61)

where # is the R-separable solution of the Dirac equation
given in Proposition 2 and A, is the separation constant ob-
tained in Egs. (53) and (54).

Proof: We have
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W=W,+W, U=U,+U, (62)

[W,.W,] =0,
[wwaUx] =0,

[W.U,] =0, [UnU.]=0, 63)
W =44, W= -4, 9. (64)

The eigenvalue equation K ;, ¢ = 4, ¢ is a consequence
of Egs. (64), (58), and (35). The proof of Proposition 3 is
complete.

In analogy with Carter and McLenaghan’s analysis’ of
the separability of the Dirac equation in the Kerr solution, it
can be verified that the operator K ;, obtained in Proposi-
tion 3 is constructed from the rank-two Killing—Yano tensor
field admitted by the locally rotationally symmetric metrics
given in Propositions 1 and 2. More precisely, K ;, may be
written as

Koy =D{y'y'V, + Vi (+D DY, (65)
where the tensor field D; dx' A dx’ defined by

iD; dx'Ndx) = w(0'NO* — i NO*), (66)
satisfies the Killing-Yano equation

V.D, +V,D, =0. (67)

We conclude our paper with a few brief remarks.

(i) We could have considered the problem of separating
the variables for the wave equation describing a Dirac spinor
field coupled to a Maxwell field, that is

[V, —ied,) —VI2u I =0, (68)
where A4, dx* is the one-form of a vector potential. It is
straightforward to show that Proposition 2 holds for Eq.
(68) as well with 4, dx* given by

A dx*=2"""p(w) ~ " [HWw)W(w) ~"(0'+6?)
+Gx)X(x) "8+ 6Y], (69)

where G and H are arbitrary functions of their respective
arguments. It should however be noted that the one-form
(69) will not be a solution of the Einstein-Maxwell equa-
tions for an arbitrary choice of p, G, H, W, and X.

(ii) The parameter / introduced in the statement of
Proposition 2 through the integration of the Petrov type D
condition is related to the parameters ¢ and ¢’ which appear
in Eq. (3). For Case 1 we have / = — ¢’/2 while for Case 3
wehave/ = — ¢/2. Likewise, X 2 will be a known function of
x on account of the local rotational symmetry conditions (2)
and the local diffeomorphism given in Proposition 1. The
explicit form of X' ? is however not required for the Dirac
equation to be separable, as shown by Proposition 2.

(iii) While the separable systems we have obtained in
this paper are factorizable in the sense of Miller, it is not true
that all separable systems for the Dirac equation have this
property. We have recently obtained separable systems that
are not factorizable and characterized by higher-order sym-
metry operators.'!”
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