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The massless Dirac equations for the neutrino are studied in the background geometry relevant to a gravitational
collapse, i.e., a Friedmann dust interior matched onto a Schwarzschild exterior. The interior normal modes are
obtained and continued consistently across the collapsing surface into the exterior. This yields the expected spectral
shifts quite naturally in addition to the phenomenon of backward emission. The complete exterior modes are
obtained by matching solutions at the Schwarzschild barrier. The asymptotic transmission coefficient is computed,
and this includes in addition to the effects of gravitational collapse the effects of the exterior potential barrier.

I. INTRODUCTION

The problems of the interaction of neutrinos
with strong gravitational fields have been consid-
ered in different contexts. For instance, Brill
and Wheeler® studied the possibility of the gravi-
tational self-binding of neutrinos (geons), whereas
Unruh® showed the absence of neutrino superradi-
ance in the Kerr metric. Kembhavi and Vishve-
shwara® studied the possible trapping of neutrinos
in compact objects, while investigations of Dhur-
andhar and Vishveshwara*® on the behavior of neu-
trinos during gravitational collapse in the geo-
desic approximation yielded interesting features
like bursts and decays in late stages of collapse.

In this paper we set up the necessary formalism
to study the massless Dirac equation for the neu-
trino in the collapse scenario. The collapse is
modeled by a Friedmann dust interior matched
to a Schwarzschild exterior, and our aim is to
investigate the principal general-relativistic ef-
fects in the problem. To this end matter is as-
sumed to be transparent to neutrinos, and non-
gravitational interactions are not considered. The
work reported here is meant to set up the requi-
site formalism and to complement the investiga-
tion of Dhurandhar and Vishveshwara®® in the
geodesic approximation.

In the next section we give a brief summary of
the classical background geometry. In Sec. III
the Dirac equation is written down both in the
interior and the exterior and the solutions obtained
in the WKB approximation are matched across
the Schwarzschild barrier. In Sec. IV the interior
solutions are matched consistently across the
junction to the exterior solution. The matched sol-
utions exhibit the expected spectral shifts as also
the backward emission. In the last section the
above modes are employed to compute the asym-
ptotic transmission coefficient and this includes
in addition to the effects of gravitational collapse
the barrier effects also.

II. THE BACKGROUND SPACETIME

In this section we quote without proofs details
of the background geometry relevant to our pur-
poses. For further discussions see Ref. 4 and ref-
erences cited therein.

The line element in comoving coordinates for
the interior of the collapsing body is given in
geometric units (c=G=1) by the Friedman dust
solution

ds?=dT? - S*T)[dR*(1 — aR?®)'+R%Q?], (2.1)

where ¢R,®=2M. Here R, is the R coordinate
for a particle on the boundary and the scale fac-
tor S(T) satisfies

. 1 1/2
§§T‘ES= H(Ts) . (2.2)
Defining
T
arT
=) S (2.3)
L S(T)

the above metric is conformal to
ds?=d7? - [dR*(1 - aR?)™ + R%N? (2.4)

with conformal factor S¥(T').
From (2.2) and (2.3) it follows that

T=‘/——1-a=(x+sinx cosy), (2.5)
2
= 2. (2.6)

The exterior geometry is given in the usual
Schwarzschild coordinates by

ds?= <1 ~-21—W)dt2
v

- [dw(l _—2i—”>" + erm] , @.7)

where M is the geometrized mass of the collapsing
object.
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Spherical symmetry implies that the coordinates
6 and ¢ may be chosen to be the same both in the
interior and the exterior. The metric tensor and
its derivatives are matched at the interface R=R,.
This gives

7=RS(T) (2.8)

and we choose initial conditions so that the col-
lapse (T =0) starts at Schwarzschild time ¢=0.
We shall need to use the partial derivative of

t and » with respect to T and R near the junction
R=R,. They are obtained straightforwardly and
are given by

/ -1

o) =(1- 21—”) (1-aR,?)?, (2.9)
oT R=Ry 4

ot . 2M

hdd = 1= - 2\=1/2 3

R por, R,,SS( " )(1 aR,?) , (2.10)
oy o 7

— =R,S, —— =S. (2.11)
oT R=Ry i oR R=R,

III. THE DIRAC EQUATION IN THE COLLAPSE
GEOMETRY

In the tetrad formalism, the massless Dirac
equation in a general curved spacetime is given
by

YV =0, (3.1)

where latin indices are tetrad labels and run over
from O to 3. Further, y° are the 4x 4 flat space-
time Dirac matrices satisfying the anticommutation
relations

%7 ]=2n" (3.2)
and V,¥ the tetrad component of the extended co-
variant derivative of ¥:

Vip=eg(®, =T, ). (3.3)

The greek indices are coordinate labels. And
eh are the chosen tetrad fields while I', are the
spinor affine connections given by

T, =-3v%ee, ., - (3.4)

The spin of the neutrino is always polarized
antiparallel to its momentum and hence the neu-
trino satisfies an additional helicity condition
expressed as

(1+4y5)9=0, (3.5)

where

€%y uy Yo

= T BIyTafp =

VST aiv g VT eqv’, (3.6)

€#¥%8 jg the totally antisymmetric tensor density.
To write down the Dirac equation in the interior

we introduce the tetrad e} with nonvanishing com-

ponents as given below:

el=1, e?=(RSsing)™,

(3.7)
& =[RS)?, eX=R™1-aR?)1/2,

Employing Eqs. (3.4) and (3.7) the T'’s after a
straightforward calculation are given by

Tp=0, Tx= —%(1 — QR2) /29093
RS 1 -aR?)/?

To=—=57 °‘}’1+(—‘“2—)Y’Y3 , (3.8)
RS 1~ 2\1/2

r°=-——2§}’°‘)’2+( azR sin9y2y3-c°sey‘y2.

Choosing the ¥ matrices in the Bjorken-Drell®
representation we find that

75=[° i]. (3.9)
i 0

Setting ¥=(n,,n,)T in Eq. (3.5) yields
n="7,. (3.10)

Inserting Eq. (3.8) in (3.1) the massless Dirac
equation in the interior is given by

35 1
{RSY °(6T+§ §>+R(1 - aR"")‘/273(8R +R)

+ [y1<39 + C—(;EQ>+ 7?2 cscea'o] }z{m 0. (3.11)
Equation (3.11) is separable and putting

1
V=557 exp[—i(wr —=m¢)](n,n)T,

(3.12)
where
n=(R,(r)S,(6),R,(r)S,(6))" , (3.13)

yields the following set of coupled angular and
radial equations for S,, S, and R, R,, respect-
ively:

d
(—+£‘£g—+mcsce>52= -kS,,

5t 3 (3.14a)
(&2 -mesco)s,= s, (3.14b)
(dg LZSRYT, z-w)Rf%, (3.152)
(2 *+(1‘°;f2’”2_iw>31=%12, (3.15b)
where
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dR* _ 1
dR (1 -aR?)/z

(3.16)

A. The angular functions

From equations (3.14) one can easily obtain
the following decoupled equation for S,(6):

d? d m?+s2+ 2ms cos@
(d92+ cotg - ~ sm:z ) S,(0)= — (k* —3)S,(8) ,
(3.17)
where s=3. Regularity of S,(6) at 0 and 7 yields

an eigenvalue equation for k. The eigenfunctions
are formally the spin-weighted spherical har-
monics’ ST(8) of spin weight s=3 and order I=F
-3 where

|£|=1,2,3,... and - k| +3<ms |k| -%.

The explicit form of S7(6) may be given in terms
of Jacobi polynomials for arbitrary real values
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we normalize S, and S, so that
_[Sf(e)dﬂ=f822(9)dﬂ=% . (3.18)

B. The radial solutions

To discuss the radial solutions it is more con-
venient to introduce the following linear combi-
nations of R, and R ,:

F=R +R,, iG=R,~-R,, (3.19)
which satisfy the following equations:
d k-Q —aR2)1’2>
- 2y1/2 % R TN = -
((1 aR?) R R F wG ,
‘ (3.20a)
- 2y1/2
((l—aRz)llzzig'Jrle‘iil—Eg‘R;) )G=wF.
(3.20b)

of s.? §,(9) satisfies the same differential equation Eliminating F from Eq. (3.20) yields the following
as S,(m - 9). S, and S, are chosen to be real and second-order differential equation for G:
j

d*G 2 aR? \dG 1/, k2+k+(1—a32)1/2-(1-a32))

a2 . 2(1- & - =0. .21

dR2+R< 2(1-a32))dR+1—aRz\°’ R? G=0 (3.21)
For small values of the variable VoR Eq. (3.21) becomes

R? - 3.22
((wR) d(wR)2+ Z(wR)d( R [w?R? - k(k+ 1)])G 0, (3.22)

which is the spherical Bessel function of order 2 with argument wR. The solutions can be conveniently
chosen as 2*’(wR) and 7{®(wR). In this limit the corresponding F can be obtained from Eq. (3.20Db).
Using the recurrence relations for the spherical Bessel functions the solutions for F turn out to be

R{)(wR) and A{2)(wR), respectively. Putting

= g 3.23
G R(l—aR2)17“’ ( )
Eq. (3.21) can be put in a form amenable to the WKB treatment. This yields
d’g 1 2i/4, 2=3aR? 5a (2 -3aR?) (2 - 3aR?)?
dr®" 1 —aR2[3°‘(1 — ORI T+ T (1 —aR®/? " 2R*(1 - aR?)
2 _ 12 _ 2\1/2 _ (1 2
w2 =R+ b+ (1 ;‘? )2~ (1-aR )]g=0. (3.24)
I
For reasons which will be obvious when one con- 1 R
siders the exterior situation we shall solve the gR)= ap1)7 Z[A exp(z' f PdR)
above equation for large values of w and %, i.e., Ro
2>1, w>Va, w~k, In this limit Eq. (3.24) be- R
comes +B exp(—if de)] B (3.26)
Ry
where
d? 1 k(k+1
ﬁ'&-l_aRz(wZ_ (R2 ))g=0, (3.25) p=qw(1_aR2)-1/2, (3.273.)
/
The solutions of Eq. (3.25) in the WKB approxi- = (1 —kgfz;:))l : (3.27b)

mation are given by
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Using Eq. (3.26), G and hence F can be obtained
using Eq. (3.20b). Equations (3.19) give R, and
R, and hence the two independent solutions of the
neutrino equation are written down as

ZP“l):u'(”exp(i fﬂde) ’
Ry

T exp[—i(wT —~me)]
- 2RS372

(3.28a)

T
(a+317a-szaa+sua-sz) ’

(3.28b)

'R
PR =g 4@ exp(—if
R

PdR) s (3.28c)

b

ey _ €Xp[—i(wT —mo)]
u - 2R33/2

* * * *xo \T
(@*S,,a}8,,a%5,,a}S,)",

(3.28d)

where

1 B+ (1 —aR2)/2 .
a*(q)=([qw[)1/2[ +( ©R ) +l(qt1)] . (3.29)

Note that these solutions are valid only for B
=[k(k+ 1)]/2/w< R< R, and that the maximum
value of B is R,.

I

2M\2 2M\** ?M)‘”z%
{( -7) vaﬁ(l- y> 2r-T) 2

For the neutrino the solutions are written in the
form

_exp[-i(wt-me)]
b= 1’(1—2M/'r)”4 \7,

T (3.33)

with
1 =(R,(7)S,(6), Ry(7)S,(0) 7 . (3.34)
The radial equations are then
— A1~ 172 _
(ﬁ-i@) R, = HL=2M/)" 21{"’/” R,, (3.352)
51 — 172 _
(ﬁ-;na)fzz JHi-2m/n” 2;”/7) R,. (3.35b)

Here 7* is the usual tortoise coordinate defined by

dr* 7
ar Troan (8:36)

S, and S, satisfy the same differential equations.

C. The exterior solutions

The Dirac equation in the Schwarzchild back-
ground has been discussed in many contexts.®
For completeness and to establish our notation
we give these details and use them to obtain the
complete WKB solutions in the presence of the
Schwarszchild barrier.

With the nonvanishing exterior tetrad field com-
ponents ef. chosen to be

-1/2
e3,=(1_—_2}1"—4) , e2.,=(rsing)*/?,
(3.30)

1/2

eal'=(y)-l’ e§’=<1_—21y—> ’

v

where the primed and barred indices represent
the exterior tetrad and coordinate labels, respec-
tively, the corresponding I‘”’s are given by

(3.31)
2 1/2
T,= L [cos@'y"y2 - (1 - —M) sine’y273] ,
2 v
and the Dirac equation becomes

73+%['y‘ (89+E(;t—9) +72csc980]} $=0.

I
Introducing F and G similar to F and G, we have

(3.32)

d  R1=-2M/")"A\=_ _~
(d—'r;_ 7 F=-w, (3.37)
z 172\ _ _ ’
d_ E(-2M/7) )G=6F_
dr* 2

The second-order differential equation for F and
G may be found.® For large %, F and G satisfy
the same equation and we find

@&, F 2M\ |~
[c—l;;—i-l-wz—;z-( —T)]G=0. (3.38)
The external potential
k2( 2y
Veul?) =3 (1 - T) (3.39)

has a maximum at » =3 of value 23(27M%).
Hence at later stages of the collapse the exterior
has a potential barrier which will have to be taken
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into account when writing out the exterior solu-
tions. In the WKB regime the solutions of Eq.
(3.38) are

_ 1 " ¥
G=(|1_7|)1/2 [Aexp(i_[* pd/y‘*}
b
‘r*
+Bexp (—z[ Z)'dr*)] , (3.40)
&
where
p=q, (3.41a)
- B2 2M\|1/?
e (3.410)

The functions R, and R, may be obtained as before
and the two exterior solutions are taken to be

7
A7) =ue‘”((7)exp(z‘a f i adr*) , (3.42a)
)

_, _exp[-i(wt-m e —c =a =
Me(l)(q) = 25(1 Z_( ZM/:V;S?I (a+Slr a_52, a+sly a_sz) T ’
(3.42Db)

°?(7) =uc®(7) exp (—i@ _[):*ﬁdr*) , (3.42¢)

b

_ _exp[-i(wt-me)] - - — —
ue®(g) = 25(11(21”/:;31 (a*S,,a’S,,a*s,,arS,)7”,
(3.424d)

where

1 (15(1 —2M/P)*? >
(7o = +i(g+1)). (3.43)
As is obvious the above solutions are valid only
for values of W?>V_ (7*) and in the range W?<V,,
the two WKB solutions go like

(3.44)

(|ﬁ[)'1’2exp<i6f]6|dr*).

Near the turning points given by roots of the
equation ®?=V,_ (»*) the above forms are not ap-
plicable and the solutions have to be matched
using, say, Airy functions. This case is relevant
in later stages of the collapse when the Schwarzs-
child barrier uncovers and we exhibit the matching
in detail for this case.

D. The WKB solutions with the Schwarzschild barrier

Let 7, (=1, 2) be the turning points, i.e., roots
of the equation @ =V,_ (v*), i.e.,

¥® = bPr - 2Mb%=0, (3.45a)
where
E
bss and 7, <3M<7,. (3.45Db)
Expanding V.. (#*) about ¥ we have
Vir*) =Vrk+ &)
o  2BF
—'V('Vk) —7—5(7’k— 2M)(’}’k— 3M)£ . (3.46)
k
Putting
3| 2k2 p
p= Zg‘(?’n— 2M)(v, - 3M) (3.47)
and defining £ by
E = _Bg ] k = 2
=g, k=1 (3.48)
Eq. (3.38) becomes, near 7},
a6 ——
L—i?—§G=O, (3.49)

which is the Airy equation with solutions A#(%) and
Bi(£). We schematically show our construction in
Fig. 1.

Physically it is obvious that a wave incident on
the barrier in region III gives rise to a reflected
wave in III. In II both the growing and decaying
solutions are possible giving rise to an outgoing
solution in region I. We start for convenience
with the outgoing wave in region I of the form

= AI : r*-‘ *
GI_(lﬁl)”zexP ’(f* pdr +1r/4> . (3.50)
T2
Near v =7,
p=B(-%)'"*, E<0 (3.51a)
so that
[ part=3-po=. (3.51b)
o
Hence near 7,, G, goes like
G ~—Z—I——{cos[§(—g)3/2+ﬂ/4]
Ly (Ent
+isin[3(-2)°*2+7/4]}, (3.52)

which, using the asymptotic form of Airy func-
tions, is the combination
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0

RY

WKB

1E<0(§>0
18>0[§<0

AIRY WKB

2Mhg 4l 3m

", %

FIG. 1. The figure shows the effective potential V,; (7) and the regions of validity of the WKB approximation and the
Airy approximation of the exterior wave function. Ve (¥), 7€(7, ), has a maximum of R227M %1 at »=3M and goes
to zero as 7 approaches infinity. The WKB approximation is valid everywhere except in neighborhoods of r; and 7,,

the width of the neighborhoods being given by | Z| ~0(10).

- 1/2
Gﬁ&(%) [Bi(D) +i Ai(D)]. (3.53)

This combination for £>0 goes like

Aa — _
GIN-\/FTIZLI)‘7 [exp(3E°72) + ziexp(~5E€°/%)] .

3.54)
Now, near 7,, (
|B|=8VE (3.55a)
so that
f* |B|dr*=%(E)*2. (3.55b)

T2

Hence G, goes into the combination

Gu (|p|)“2 [exp(fj ]’3|d”*>
+gexp<— [:2* |1_>|dr*)] . (3.56)

Defining

*
T=exp(— f*z 'j_)idy*) s (3.57)
71

Eq. (3.56) becomes

In the figure the width of these regions is exaggerated.

En=a;—§l)T/z[1?exP ("_/T-:* Iﬁldr)é
+Z;zzexp(f;* Iﬁldaf*)] . (3.58)

Repeating a similar procedure near the point » =%,
we can continue into region III and obtain the sol-
ution here as

SN CNE 1] )
(; Z)exp[ ([rlﬁdr*+ﬂ/4>]

(3.59)
In order to facilitate the matching with the inter-
ior solution at the boundary », we introduce

T1=exp[—i (ffﬁdaf*—- 7r/4)] (3.60)
b

S —

r

so that we can write

= A4 11 1 ¥
G5 3“2[ G 4)‘”‘"( if, par)
b

7*
+T1(1?+§->exp(i f* Z)dr*)] . (3.61)
Ty

The corresponding F’s can be obtained and hence
the wave function in the three regions is given by
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-1 T _ e 1 T _ o
¢§11=A1[71(;—Z)ue ‘”(q)exp_(—z f ; PdV*)+T1(?+Z)uem(q)exp<z fr : pdr*)],

r

zp§1=:{l[—17:ue‘”(—i]E[)exp(— I ]'ﬁldv*) L g exp( [ [Z)]dr*)], (3.62)

¥ =4,u°"(g) exp [1 (I:*ﬁdaf* +7/ )] .

IV. THE JUNCTION CONDITIONS

The collapse scenario has been modeled by a
Friedmann interior and a Schwarzschild exterior
separated by a surface »,=R,S across which the
geometry, i.e., the metric and its derivatives
is continuous. We are in fact considering one
spacetime charted out by two different coordinate
systems in two different regions. For a scalar
field the boundary condition would have been the
equality of values at the boundary. For the spinor
field one has to be more careful since the Dirac
wave function is always tied up with a choice of the
Lorentz frame, in this case, a locally Lorentzian
one. For convenience of setting up the Dirac
equation in the interior and the exterior we have
made an implicit choice of the tetrad tied up with
the coordinate directions. Thus the interior wave
function is tied up to the Lorentz frame along the
(T,R) directions whereas the exterior ¥ is with
respect to the frame in the (¢,7) direction (the
6 and ¢ directions are the same by choice). Thus
for the Dirac field the junction condition on i is
that the appropriately rotated interior wave func-
tion equals the exterior wave function at the
boundary (note that under the coordinate trans-
formation ¢ is a scalar). So

)

pe=8y', @.1)

where the rotation matrix § depends on the Lo-
rentz transformation as specified later. More-
over, since going from the interior to the ex-
terior involves in addition to a tetrad transforma-
tion a coordinate transformation the derivatives
would transform as

ox

Vair= ox?

8v, yt. 4.2)

This matching of derivatives is in accordance
with the theory of first-order partial differential
equations in which both the value of the function
and its derivatives must agree on the boundary.
In the specific case of a partial differential equa-
tion in two variables the geometrical picture is
that the tangent planes must match across the
boundary, that is, their normals must be the
same. However, our case is a little more com-

r

plex. The Dirac equations in the two geome-
tries, the interior and the exterior, are not con-
nected merely by a coordinate transformation
owing to the choice of representations of y*’s.
Therefore, the tangent planes at the boundary
are not matched in the usual way but with the help
of Eq. (4.2). This equation defines a rule which
uniquely specifies the tangent planes in the exterior
geometry if given the tangent planes in the in-
terior.

For the 6 and ¢ coordinates Eq. (4.2) gives the
anticipated results

=k, m=m (4.3)

because the 6 and ¢ coordinates are chosen to be
the same in both the interior and exterior geo-
metries. For T it yields the relationship be-
tween the “energies” w and w measured by the
interior, i.e., comoving observers, and ex-
terior, i.e., the observer at fixed coordinate 7,
respectively.

To obtain the matrix § we proceed as follows.
Since e is a coordinate vector, i.e., under a
fixed choice of the tetrad it transforms as

_  JxB
e;:a’;,e;, 4.4)
we get

-1 -
e;:(1 - %4) [(1-aR 20 +R,$563], (4.52)
e

ef=R,S0%+ (1 —aR,?)/26} (4.5b)

Since e! is also a Lorentz vector for a fixed value
of u it transforms like a vector under tetrad ro-
tations

et =M% (x)e? (4.6)

where A2, (x) is a position-dependent Lorentz
transformation. A straightforward computation
yields

a 7y Rbs (1_ asz)l/z ‘

4.7
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Setting
tanho=R, S (1 - aR,2)-1/2 (4.8)

it is seen that Eq. (4.7) is a boost by (- 6) in the
0-3 plane. Under this transformation the spinor
Y transforms by

S:exp<ga3) , 4.9)

which, after a straightforward calculation, can be
put in the form

-1/4
821(1-2—M> [(e. +e) +e —€)a;z], (4.10)
2 7y
where
e,=[(1 -aR,?'2+ Vo R, tany, /2. (4.11)

We now continue consistently the interior solu-
tion ' which represents an outwardgoing wave
as seen by a comoving observer to the outside.
Let us assume that ¢*® goes into A, times the
exterior solution °® with the appropriate rota-
tion, that is,

SYW= A yew (4.12)

where w and @ would be related by using Eq. (4.2)
in the form

v
sV 0= 2 g yew, (4.13)
T T v

Employing Eqs. (4.10), (4.12), and (4.13) we get
the four relations

a,e.exp(—iwT,)

4,14
S, (4.14a)

=a,Aexp(—iwt,),
a.c.exp(-iwT,)

4.14
3 (4.14p)

=d.Aexp(-iwt,),

:?1:("0 -$)= [(G + %)(1 - aR,?)Y?

+Va R, tanx,,i](l—i—M) , (4.15a)
b
L ) = —_]_W_ - 2)1/2
s @=9)=[(6- gm)u - ar?)

+VaR,tan xbﬁ] (1 - %)1 , (4.15p)

b
J

—Va Ry(1 - ¢®)(1 — aR,?)Y?tan x,+ ¢ (1 — aR,?sec?y,)

where Eqs. (4.14) have been used to simplify
(4.15). In the adiabatic approximation w> S and
since w> M/27,? Eqs. (4.15a) and (4.15b) be-
come identical:
© G- 21

— =w
b

)-1 [1-aRY?+Va R, tan x,3].
(4.16)

7

Equation (4.16) may be inverted and after some
algebra we obtain

0= Si[(l—aR,,z)‘/z—x/ER,,tanx,,q], (4.17)
b

where the proper sign has to be chosen after solv-
ing the quadratic equation for w.

Equation (4.17) gives the energy as measured
by the observer at fixed » (Schwarzschild observ-
er) with the expected spectral shifts. The S,
factor in the denominator is the correct “cosmo-
logical” blue shift whereas the bracketed terms
represent the Doppler shift between the two
frames chosen by the Friedmann and Schwarzs-
child observers, respectively. The other well-~
known gravitational red-shift for the Schwarzs-
child field would be obtained if one remembers
that £ is not the proper time. If this effect were
also taken into account the observed frequency
will contain an additional factor of (1 —2M/7,) V2,
These results are in agreement with those of
Ref. 4. What remains to be checked now is the
consistency of Eqs. (4.14) which are two equations
for one parameter A, which depend on the epoch
of matching x,.

The equations are consistent if

a, _a.€. (4.18)
a.

To check this we use the relation between w and
w, Eq. (4.16), and after some calculation it can
be shown that the task of proving Eq. (4.18) is
equivalent to proving

1+9 (1+q\e.
e _<—1_q)€+. (4.19)

To this end we first solve the quadratic for g
in terms of ¢. The algebra is fairly long and
yields

7= 1~ aR,%(1 +¢tan?y,)

(4.20)
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With our convention that ¢ be non-negative we
choose the positive sign in Eq. (4.20). With this
choice it is straightforward to check that Eq.
(4.19) holds and consequently Eqgs. (4.14) are con-
sistent. Note, however, that the relation (4.20)
cannot be taken for all values of B, since for
B>B,, where B, is the root of the equation

q(1 — aR,?sec?y )=VaR,(1- g*)(1 - aR,,z)Vztanx,, s
b
(4.21)

q becomes negative. Thus the type-1 interior
solution zp”l) can be matched to the type-1 exterior
mode cpe(‘) only for values of B in the range 0< B
< B,,. Note that B, is a function of the epoch ¥;.
We shall show subsequently that the values of B
given by B, < B< R, the type-1 interior solution
can be consistently matched only with the type-2
exterior solution zpe‘Z). This is the phenomenon
of backward emission'’ wherein a wave traveling
outwards with respect to the comoving observer
is traveling inwards as seen by the Schwarzschild
observer and which has been discussed in the
geodesic approximation.* Equation (4.14) can
now be solved for A,. Thus

- . _ 1 = \l/2
A1=%:exp[l(wtb—w‘rb+¢+—¢+)]< 14 ﬂ) )

1+9 quw
(4.22)
where
tang, = q;1>wR, (4.23a)
- [(q+1 W7,
tan¢+—-< 5 ) T =2m/r) 7" (4.23b)

A. The backward emission

In this section we investigate whether one can
match @ with $°® for any value of B. The pro-
cedure is exactly as before and we write down the
results.

Matching ¢ we get

a.e.exp(—iwT,)

A =ax A, exp(-iwt,), (4.24a)
b
“—"iﬂ\/é_-‘ﬂ =a* A, exp(-iwt,), (4.24b)
b
with
w —_ ZM -1 2y1/2 —
§=w —Tb [(l—aRb) —\/—&R,,tanx,,q].
(4.25)

Consistency of Eqgs. (4.24) is equivalent to showing

1-9 _1+q e

1+9 1-q ¢’ (4.26)
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where

__VaRy(1-¢*)(1-aR,?)"?tan x,+ q(1 — aR, seczx,,)

7= 1 - aR,*(1+4¢q%an?y,)
(4.27)

With the positive sign Eq. (4.26) does not hold
whereas for the negative sign it does. However,
in this case 7 is positive only for B, < B< R, since
the numerator is exactly the negative of Eq. (4.20).
Thus z/)’(’) can be consistently matched to y° )only
in the range B, < B< R, and in this case A, is
given by

= (T 1 =\1/2
Ab=j_Tbexp[z(wt,,—w—rb+¢f_55_)]<ﬁZ_:)
(4.28)
with
5 (2-1 wr
and- (%7 )(1—2M/yb)1/2' (4.29)

For completeness we mention that zp‘(Z) can be
similarly matched to $°® for all values of B
between 0 and R, whereas zp‘(Z) cannot be matched
at all to $*‘V for any possible value of B. These
results physically mean that a wave traveling
inward with respect to the comoving observer can-
not be forward moving with respect to the Schwarzs-
child observer but always inward moving. Inthis
case the coefficient A, is givenby

A= 75 expli(wty - wry + B 6. )]( 2 Z‘:) ,
(4.30)
where
® = —S“i [(1 - aR,®)¥2+Va R, tany ,q] (4.31)
b
and
tang. = <qk 1)wR (4.32)

The above effects can be looked upon as a re-
flection of the difference in the state of motion of
the two types of observers or as due to the drag-
ging effect of the collapsing matter on the neutri-
nos. One may also remark that the situation con-
cerning the matching of the ingoing and outgoing
waves at the boundary is reversed if the object
were expanding instead of collapsing.

.V. THE ASYMPTOTIC FLUX

We now employ the above matched modes to
compute the asymptotic transmission coefficient
in some relevant physical situations. To this end
recall that the Dirac equation defines a conserved
current J¥:
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v,J4 =0, (5.1)
where

J'=PMy (5.2a)
with

Y=e!y® and P=yTH°. (5.2b)

From Eq. (5.1) the time rate of the number of
particles flowing past the R = constant surface is
given by

Ll = f V—-gJ®dodo, (5.3)
oT R=constant R=constant

where
N=f¢-gJTde6d¢. (5.4)

The corresponding rate for the Schwarzschild
observer is given by

9
—gl =f V—=2J"dodo. (5.5)
at r= constant = constant

We define the transmission coefficient K as the

ratio of the two fluxes:

_(aN/ot)ry _ Jr=rp=Z J"dOd$

- (SN/at)Ro - fR=R0\/_g JRd6dp (5.6)

Before calculating K let us discuss the possible
cases that may arise. These cases depend on
three factors: (1) the radius of the collapsing
object when the neutrino crosses the boundary,

(2) whether the neutrino is forward or backward
emitted, and (3) whether the frequency is above

or below the potential barrier. We discuss in de-
tail one case and the quote the results for the
others. Consider the epoch wherein the collapse
has proceeded past »=3M. The Schwarzschild
barrier is now uncovered and those modes with
the values of w?> £%(27M?)™! will only be marginal-
ly affected. These correspond to values of b

< 3V3M. Of the modes with &> 3V3M those that are
backward emitted will fall into the eventually
formed black hole whereas those that are forward
emitted will hit the barrier and may tunnel through
it. The probability of penetration turns out to be
so negligible that these modes are almost totally
reflected.'®> The classical analog of such con-
finement has been discussed within the frame-
work of geodesic formalism.*

Let us now calculate K for modes with B< B,,
and < 3V3M. For these modes, neglecting the
small reflected wave, the wave function in the
entire spacetime is given by zpm) in the interior
and A,$°V in the exterior. With these values of
the wave function a straightforward computation
yields

f V=g JRdodp=(S,w)™*, (5.7a)
R=R,
V=gJdrdedp=|A,|*@)". (5.7b)

Substituting for A, we finally obtain
~_S 1+q 17l
= =0 2__ 2% 21
K=K@=3 e 17 o (5.8)
where K; denotes transmission without the bar-

rier. For modes with B<B,, and b>3V3M, the
corresponding wave functions are given by

¥
Pi=Auc® exp[i(f* Zidr*+1r/4>] ,
T2

(5.9)
1 T
i_ = A2
AN
Employing these K comes out to be
_f1 TY? |
K—K,(q)(;, + Z) (5.10)
which for small values of 7<< 1 becomes
K=Kq(q)T?. (5.11)

The remaining cases are summarized in Table I.
It should be mentioned that in all the backward-
emission cases our results are given with the
understanding that in the actual case one would
be considering the wave packet formed from our

TABLE I. The truth table showing the asymptotic
transmission K, in the various cases that arise de-
pending on the radius of the collapsing object when the
neutrino crosses the boundary (r = 3M), on whether
it is forward (B <B,,) or backward emitted (B >B,),
and on whether the frequency is above ( < 3vV3M) or
below (b >3v3M) the barrier. Here 1 represents a true
statement and 0 a false statement, e.g., in the first
row all the three statements are true and in this case
the transmission is given by K;(g).

r<3M B<B, b <3V3M K
1 1 1 Ksg)
—[1 T\?
1 1 0 Kf(q)<-77+z>
1 0 1 0
1 0 0 0
0 1 1 Ks(q)
0 1 0 K(q)
0 0 1 0

— (4-T%\?
Kf‘“‘f)(m)
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FIG. 2. The plot of asymptotic transmission K® against the interior impact parameter B for various epochs x, is
shown. The curves fall into three different types labeled A, B, C depending on the epoch of matching, i.e., on whether
7,>W3M (1-aR,}), 3M<7r,<3V3M (1 -0oR,%, and 2M <7,<3M, respectively. The initial portion of the curve repre-
sents the forward emission whereas the second branch in cases A and B represents the backward-emitted waves re-
flected from the barrier. The vertical portion in the graphs B and C indicates the limiting value of B beyond which the
modes are confined (i.e., not observed at infinity). The apparent discontinuity in the derivative of K’ is a consequence
of the WKB approximation since the factor T varies rapidly near b =3V3 M.

type-1 and -2 solutions. It is this which yields b>3V3M will be reflected by the barrier present
the zero asymptotic flux for the backward-emitted in the exposed Schwarzschild exterior. This
cases except the last one which we shall discuss would seem like the usual scattering problem in
in slightly more detail. Consider modes which the Schwarzschild background and one can obtain
are backward emitted at an epoch when »> 3 M. the complete solution in terms of the WKB solu-
Since the backward-emitted modes will not catch tions of Sec. III. We write these down to make
up with the infalling surface'® those modes with obvious the quoted value of K for this case
]
%
— 1 Z e(2) : f'*“ _1.,_2 e(1) '<fr— *
¢‘§—Ab{<F+4)u exp| -1 pdrx+u/4)| - T 3~ exp|i s par*x+m/ )
2
T - g i 3
7 =Ab[5u"‘2’(-i Ipl)exp(f* lbldr*) - ;ue(”(—il'ﬁl)exp(— f* Iﬁldr*)] , (5.12)
r r

A
fll = #‘pe(Z) ’

1 T\ .

i 2, L), 5.1

v=(%+ Dwor,, (5.13)
r
where 1 T\%/1 T\? —
- K= <T —4') <7+:;) Ki(-1q), (5.15)

T,= —'f P *) . 5.14

2 exp( : v par (5.14) which for T<< 1 becomes

This yields K=~(1-T*Ki(-7). (5.16)
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The value of K if the inner surface R, is chosen
to be R, is denoted by K®. It should be noted that
K is related to K° by a simple scale factor

K=(§J;-> K. (5.17)

In Fig. 2 we give a plot of transmission K? as

a function of the source impact parameter B. This
summarizes the features which we have dis-
cussed in the previous sections. Further investi-
gations would involve constructing wave packets

to study the interesting features like flux pro-
files discussed in Ref. 5 and the necessary forma-
lism for these purposes has been set up in this
work.
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