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Chandrasekhar’s technique for separation of the Dirac equation in the Kerr background is
applied to perfect fluid space-times with local rotational symmetry. These space-times fall into
three distinct types. It is found that in case (1) the Dirac equation separates if the space-time is at
least “locally static’ while in case {3) it separates if the space-time is at least “locally diagonal,” in
contrast to the massless case where Dhurandhar, Vishveshwara, and Cohen showed that the *
Hertz potential is separable in all cases. In case (2), however, the Dirac equation is separable in ail
those cases where the Hertz potential for neutrinos is separable.

I. INTRODUCTION

In a series of papers Dhurandhar, Vishveshwara, and
Cohen' have been systematically studying massless pertur-
bations of varying spins in perfect fluid space-times with lo-
cal rotational symmetry. These space-times first discussed
by Ellis? and Ellis and Stewart? form a subclass of the gener-
alized Goldberg—Sachs class. This class includes a wide spec-
trum of interesting space-times like Friedmann, Godel,
Kantowski-Sachs universes, Taub-NUT, anisotropic cos-
mological models, etc. The above investigation used the
Hertz-Debye formalism developed in detail for curved
space-times by Cohen and Kegeles.*

The above treatment for neutrinos is in need of modifi-
cation if the neutrinos turn out to be massive.® As a prelimi-
nary to the study of massive spin half-perturbations, it is
interesting to ask whether in the above background space-
times wherein the Hertz potential for every massless spin
field—in particular the neutrino—is separable,the massive
Dirac equation is also separable. This motivates us to look
into the question of whether the Chandrasekhar separation
for the Dirac equation in Kerr background® can be extended
to the above class of space-times. In the next section, we
write down the general form of the background metric for
perfect fluid space-times with local rotational symmetry and
collect together geometrical details of relevance. In Sec. III
the Dirac equation is written down in the Newman-Pen-
rose” spinor form. In Sec. IV, we show that Chandrasekhar’s
method separates the Dirac equation in a certain subclass of
space-times. In the last section we discuss this subclass and
obtain decoupled equations for the angular and radial parts.
Finally we also briefly discuss the behavior of the angular
and radial functions.

Il. PERFECT FLUID SPACE-TIMES (PFST) WITH LOCAL
ROTATIONAL SYMMETRY (LRS)

Perfect fluid space-times with local rotational symme-
try are described by the line element™?

ds® = (dxo)z/pz __XZ(dxl)z — YZ[(dxil)z + tZ(dx:!)Z]
= (y/F*)2dx° — y dx’)dx®
+ hX?(2dx" — h dx*)dx®, (1)
where F, X, Y are functions of x? and x' and ¢, y, 4 are func-

tions of x* only. The space-times fall into three different
classes as follows:
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() X=1, Y=Y, F=F{x'), h=0. (2a)
(i) h=yp=0. (2b)

i) F=1, X=X{x", Y=Y y=0. (2c)
It is to be noted that ¢ can take one of the following functional
forms:

(a) £ =sin{x?), (b)¢=sinh(x?),

(c}¢=x? (d)¢=const, (3)
while 4 and y are obtained from ¢ by the relation

h,=ct, y,=c", 4

where ¢ and ¢! are constants.
A convenient null tetrad for these space-times has been
given by Wainwright® as

ke = é(ni;,o,o), (Sa)

n°=%(a"7‘,o,o), (5}

3

me = _l_(_:_’y_—_”':_l.:_’_) (5¢)
2\ 1 Yt Y It

m-{L2 LD (54)
Z\YIYr Y Yt

As usual we have for the only nonvanishing innerpro-
ducts of the above null vectors

kn®=1 mm*= —1. (6)
The associated directional derivatives are given by
1 1
D=k<q, = —(Fa 1y ) , 6a
ﬁ (1] + X 13 ( )
A=n9, = L(Fa,, - ia,) : (6b)
V2 X

s=mta, == (25,429, 49,4 13), 60

sriit, =—— 29+ %5, - 5, + fa,) . 6d)
J— t t

After a lengthy computation the spin coefficients are
computed straightforwardly and are given by
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r=-3 [_( °+F=) er(Xh’+sz)]
V2L
e=—-‘1/7[£(X.o ?2)-*- 2;'2:(Xh’z - yTz)]’

el B2 o

Y .
p=— 1 (FY,O +_-‘_)_ —L(Xhz _ :Y_’_)],
Y x) 2r\""? T F

a= —B ()’Yo+hY1)]

[ (F X F
=K== — h(—'l+-—-'-l-)+ ( l)+X°)]
22¥il \ F X F X
1 F X
SN A LA W LA |
22yt \ F X F X
A=0=0

Ill. THE DIRAC EQUATION IN PFST WITH LRS

Following Chandrasekhar® the Dirac equation in
curved space-time is written as a set of four coupled first-
order differential equations

D+e—plF +(0*+7— aWz @Gy, (8a)

B+p—pF+B+B8—1F =ii,G, (8b)

(D +€*—p*G, — 6+ 7* —a*)G, =i F,  (8)

A +p*— "G, —8* +B* — G, =i F, (8d)
where

F,=P% F,=P', G,=0" G,=—-0% (9

The four-component Dirac wave function ¢ is given by
¢ =(P*, 0,.)" and mass of the particle is z, = 2. As
explained earlier the PFST with LRS fall into three distinct
classes and we shall write down the Dirac equation in each of
the three cases.

A.Case (1)

Employing the particular values X =1, ¥= Y{(x'),
F=F(x'), and & = 0 in Egs. (6) and (7) and substituting in
Egs. (8), we obtain the Dirac equation for this case:

F iy, )
Fiy+8, — =L+ =L :
( + + tarar)

2F Y
(iao az+-a,— —)Fz i, Gy, (10a)
F Y )
(Fao R - )
2F Y  4YHF
- —(——80+(92+—33 + 2 )Fl iycGzﬂ (IOb)
F Y iy
Fy+9,— L4+ - =2 )G
( ota- ety T rar)”
(230+32+—¢93+ )GI i F, {10c)
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F Y iy,
Fdy— 0, +—= — == : )G
( oAty Ty TarwE/”
1(iy i t,z) i
—~ Y25 —9, 419, - 2)6,=iu.F, 10d
y\ %% + 72 5) i Iy (10d)
The above equations do not depend on x° and x> and
hence the x° x* dependence is of the form
exp i{wx® + mx?). (11)
Writing
F, = exp flwx® + mx*\F,(x' x%), i=12,
L)
{12)
G; = exp {wx® + mx))G,(x',x?), i=12,
and noting that y , /¢ = ¢', a constant, Eq. (10) can be rewrit-
ten as

(D, +ic'/4YF)F, — & F, = iu YG,, (13a)
(D +ic'/4YF)F, + L1F, = —iu, YG,, (13b)
(D, —ic'/AYF)G, + LG, = iu, YF,, (13c)
(D —ic'/4YF)G, — £ G, = —iu, YF,, (13d)
where
D =Y(3, +iwF+Y,/Y—F,/2F), (14a)
DI=Y (3, — iwF+Y,/Y—F, /2F), (14b)
L=0,+ (wy +m)/t+1,/2, (15a)
Ll=0, — (wy +m)/t +t,/2t. (15b)

To separate the x' and x* dependence in Egs. (13) one
introduces

Fi=R_(&)S_(c) F,=R.("S,()
(16)

=R, (x)S_(x?), G,=R_{x')}s,(x),

and rearranges terms to obtain

(D, +ic'/AYF)R_= A, +iu YR, (17a)
LS, =45_, (17b}
(Dt +ic"/4YFR . = — (A, +ip. YR _, (18a)
ZLI1S_=4,8,, (18b)
(D, —ic'/AYF)R_=(—Ay+iu, YR, (19a)
ZLI1S_=A4,8,, (19b)
(Dt —ic'/AYFR, = A, —iu Y)R_, (20a)
LS, =S, (20b)

where A, A, 45, A, are four constants of separation. Consis-
tency of Egs. (17b) and (20b) imply A, = A, while that of (18b)
and (19b} give A, = A,. Substituting this in the equation for
R, weget

(D, +ic"/4YF)R_ = (A, + iu, Y)R ., (21a)
(Dt +ic'/4YF)R, = — (A, + in. Y)R_, .(21b)
(D, —ic"/4YF)R_ =(— A, +iu, Y)R,, 21¢)
(Pt —ic"/AYFR, = (A, —iu,Y)R_. (21d)

Consistency of the above equations is possible only if
A, = — A, and ¢' = 0. Thus in space-times of type I, the’
Dirac equation is separable in the subclass given by ¢! = 0.
The above analysis however, does not preclude separability
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- by some other method when c¢'#0. For ¢' =0, the Dirac

equation becomes
DR_=A+inYR,, (22a)
DR, =A—ipYR_, (22b)
LS, =48_, (23a)
LIS_= —AS,. (23b)
B. Case (3)

Before going to case (2) we treat case (3) since the treat-
ment is very similar to that of case (1). In this case, F=1,
X =X (x°, Y = Y (x°, and y = 0. Employing the directional
derivatives and spin coefficients appropriate to this instance
the Dirac equation may be written down as before. The equa-
tions, however, now are translationally invariant with re-
spect to x' and x° and further &, /¢ = ¢, a constant. Writing

F, =exp ik x' + kX’ )Fx°x%), i=1.2,
(24)
G, = exp ilkx' + kx°)G,(x°X%), i= 1.2,
the equations may be written in the form
(D5 — icX /AYF, — L 4F, = in, YG,, (25a)
(D} — icX /4Y|F, — ZL1F, = in YGy (25b)
(D, + icX /4Y )G, + L1G, = it, YF,, (25¢)
(D + icX /4Y)G, + LG, = iu, YF, (25d)
where
X Y
D= (a et B —°) 26
3= o+ X + = ZX Y (26a)
ik Y,
D= (a _ ik X ) 26b
(3 X + X S+ Y (26b)
hk,+ ky 12
L=0, + —— =, 27
=0, + p + 2 (27a)
t
Pl=o,— Mtk | 2 (27b)
t 2t
Writing
=T_{(x)5_(x%), F= T, (xS, (x% ,
(28)
=T, (x)S_(x%), G,=T_{x)S.(x%

and repeatmg consistency arguments similar to the previous
case, one obtains the result that the Dirac equation is separa-
ble if we have ¢ = 0. As before, this does not rule out separa-
bility by different procedures when ¢50. For ¢ = 0, the sep-
arated equations are of the form

DT_=A+p YT, (29a)

DIT, =(—A+iuY)T_, (29b)

£,8,. =AS_, (30a)

LI1S_= —AS,. (30b)
C.Case (2)

Finally we look into case (2) which is characterized by

h = y = 0. In this case consequently the Dirac equation may
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be written down using Egs. (6), (7), and (8). Further noting
that in general only 4, is a Killing vector the x> dependence
of Fand G is given by exp ik,x>. Consequently, the equation
may be simplified to the form

D Fy — LF,=ip, Y6, (31a)
DIF, — LIF, =iu YG,, (31b)
2,6, + £1G, = iu, YF, {31c)
DG, + £,G, = iu, YF, (314)

where ., and . are the “angular’ operators depending
on x? only while &, and 2} are in general “radial-tempo-
ral” operators depending on both x° and x'

1 F F
.@2EY[F80+—A;3, ZX(XD Flz)

1 Y
2]
1 F F,
a1=r|rs,— 30 v it )
1 Y l)]
FY, — =], 32b
+7( °T x (320)
L=0,+ ki/t+1,/2, (33a)
L1=0, — ky/t +1,/2. (33b)

The “angular” dependence may be extracted out by in-
troducing

=Z_(°XN)S_(%), F=Z,x"x")S.(x%),
G =Z,"xS_(¥}), G, =Z_(x’x"\S.(x’). (34)
Consistency arguments along the lines of case (1) now
show that the angular part separates in all cases. We then

obtain for the following system of equations for the angular
part and the radial-temporal part:

D2Z_=RA+ipY\Z,, (352)
DIZ, =(—A+iuY)Z_, (35b)
£,8, =AS_, (36a)
LIS_= —AS,. (36b)

Equations (35) are more complicated than in the earlier cases
since the time and spatial dependence are Stll] couplcd
Though in general X, ¥, and F are functions of x®and x'a
useful restriction obtains if one assumes

X=X(x'), Y=Y{'), and F=Fx).  (37)
In this case, Egs. (35) become
A+ ip, 1 Y,
FaZ_ = ——;‘—z+ - ;(a,+—YL)z_. (382)
_ A—IF,”) 1( Y.l)
Fi,Z, = -( 7 Z_+~ I+ )2
(38b)

The above equations can be separated by writing
Z_=THR_(x'), Z,=TEIR. (), (39)
whence one obtains
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8T _L["_tE'R -L(a Q)R ]
FT"R_ Y Tt -

= constant w say.
Integrating the equation for T one obtains

dx°]

T= —_ 41

ool o

while the x! dependence is given by the coupled equations
(1/X)0, + w)YR_=@A +iu,Y)R,, (42a)

(1/X)3, —w)YR, = (A —ip, Y)R_. (42b)

Thus in this restricted case the Dirac equation is com-
pletely separable. '

Finally we consider another particular instance of case
(2) which also yields a completely separable system. In this
case

X=X(x'), Y=Y F=F({x%. (43)
Proceeding as before in this case, we are led to the equations

Z_=T_(xXR{E'), Z, =T (x)RK) 44)
where ‘

Rix")= exp[k,fde']. (45)

The x° dependence in this instance is given by the coupled
system

Y(FOo+ F(Yo/Y)+ k)T_ = (A +ip YT, (46a)

Y{FO+ F(Yo/Y)— k)T, =(—A+ipn Y)T_. (46b)
Thus in the case (2) the Dirac equation is completely separa-
ble in the two subclasses specified by Eqs. (37) and (43).

IV. THE PARTICULAR SPACE-TIMES AND DECOUPLED
EQUATIONS

In this section we examine the subclasses of space-times
in which the Dirac equation separates. We shall mention
some characteristics of such space-times based essentially on
the acceleration, rotation, expansion, and shear of the fluid
world-lines. As demonstrated in the previous section the
Dirac equation separates in case (1) if ¢! = 0. This implies,
using Eq. (4), that y is a constant. Thus the space-times where
the Dirac equation is separable are of the form
ds? = (1/F3)(dx° — y dx*)* — (dx')? — Y }{{dx?)? + t {dx)).

, : 47)
Since y is a constant, introducing

0= 2% — yx? (48)
puts the above metric in the form

ds? = (1/F3dx%)? — (dx'}: — Y?((dx?) + tY{dx>)).

{49)
If x* is a cyclic coordinate (the usual spherical coordinate ¢ )
the above transformation is an allowed transformation only
locally. In this case ¢! = O represents space-times which can
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be called “locally static.” We have thus proved that for me-
trics of type I the Dirac equation is separable if the metric is
at least locally static. A straightforward calculation shows
that the fluid world-lines have nonvanishing acceleration
with the other parameters, viz., rotation, expansion, and
shear, being zero.

We next proceed to obtain the decoupled equation for
the angular and radial parts. Operating on Eq. (23b) by .£,
and employing Eq. (23a) yields the equation satisfied by S _:

(L, LT +A35_=0. (50a)
Employing Egs. {15) .#,-#’] can be explicitly obtained.

Thus
t wy+m 1,y
P -'i(a ____-_)
P 4t

fa ( wy +m )2
2t !
so that Egs. (50) yield the decoupled equation satisfied by §_.
Similarly, S, (w,m,A;x? satisfies the same equation as
S_(—w, —mAx?).

To obtain the decoupled eqution for the radial part we
operate on Eq. (22a) by 2! and using Eq. (22b) we obtain

inY,Y ]
—_— A P A+ YY) |R_(wAx') =0.
Fuwad A2+ ulY?Y|R_(wA;x') o

Using Eqs. (14) 21 2, may be explicitly computed. Substi-
tuting this in Eq. (51) and after some simplifications we ob-
tain the decoupled equation satisfied by R_(w,4;x"):

Y’[f?? +(2-l-;'% - fl;:‘-+Qr)+in(Qr +f-'-)

2,21

+ (50b)

[@:g,

F
2
EARY AP e
+ Y—Y‘Q rwrpr o AT ';’:ZY Z]R_(w,i;xl) =0,
) (52a)
where
0 =0; (Ax)
(52b)

_Y.l(l Y )
Y A+in Y)

R (w,A;x") satisfies the same equation as R_( — w, — 4;x7).

Case (3): In this case the particular space-time for
which the Dirac equation separates are given by ¢ = Oso that
Eq. (4) implies 4 is a constant. Restricting to this subclass the
space-times are characterized by the line element of the form

dsz - (dx0)2 —Xz(dx‘ —h dxa)z

— YHdx?? — ¢2Y ¥dx*) (53)
Introducing, as before,
X =x'—hx? (54)

reduces the metric to a diagonal form. If x? is a cyclic coordi-
nate this is possible only locally and we may call the metric
“locally diagonal.” In this case fluid lines are geodetic and
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nonrotating, but have nonzero expansion and shear.

Applying the procedure of the previous section to Eqs.
(30) and (29) and using Egs. (21) and (26) we obtain the decou-
pled angular radial equations. Thus,

[a; +t._z(az+M —_ .ti)
t t 4

12 (hk, + Kk, )2 2]
+-2 (At g2 —o
Y - + _=0; (55)
2Y, X ik X
Yz[é% +( Y° +-}1+Q, )Bo+'—l(Q3‘— —-Xi)
X oo Y.oo X% Xo(ZYo
+ 2x Y w2y 25 )
kl ,12_’_ 3y2
+——Q3 +—+—Y’:-—]T_(k.,/1;x°)=o;
(56a)
Yo( in Y )
Ty =2{1- 2 ).
2 1) 7z Tray) (56b)
Sy(kyksA;x?)  satisfies the same equation as

S_(—ky, — k3 A;x%) while T, (k,,A;x% satisfies the same
equation as T'_( — k,, — 4;x9).

Case (2): In this case the angular part is separable in all
the cases. The decoupled equation for S_ by following a
procedure indicated previously is given by

B+~ 2y k) tn
[ *3 4t+t +2t
k3 2 2

— <A S (k) = 0. (57)

S, (k3,A;x?) satisfies the same equation as S_( — k,,4;x2).

The radial (temporal) part as shown in the previous sec-
tion is separable in two particular cases. In the first case
given by Eq. (37) the metric is

_ {dx?
Fxg)
X [(@x*) + ¢ *(x*)(dx*)]. (58)
This is a static metric with the fluid lines having all the pa-

rameters zero.
In this subclass R _(w,A;x}) satisfies

— X *(x")dx'f? — ¥?(x')

27, X, ) Y.,
[ ( Y O Pty B
Yy(Xl Q,) woy
A4 u?
- —Y’:—]R_(wm') =0,
Q5 =AY, /YA +iu,Y) (59b)
R, (wA;x") satisfies the same equation as R _( — w, — A;x).

The second subclass [Eq. (4)] corresponds to the line
:lement

= ——}d;’::):) — X 3x")dx'y?
= YO (dx?)? + £ *(x)dx*)). (60)
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Here the space-time is nonexpanding in the x* direction. In
contrast to the first subclass, the fluid world-lines, though
geodetic and nonrotating, have nonvanishing expansion and
shear. The decoupled temporal equation in this instance is

given by
Y[F’&f, +F2(2Y° Fo +Qs )
Y
+ Y'°°YF2 +F25°(—1;%+ oy ) +kFQL
_kf+'1_2+_‘u‘_Y__]T (kpAix®) = 0, (61a)
Q7 =AYo/Y(A +in,Y) (61b)

T, (kyA;x°) satisfies the same equation as T_( — k,, — A;xY).

V. DISCUSSION

In the previous sections we have obtained the subclass
of perfect fluid space-times with local rotational symmetry
wherein the Dirac equation is separable. For space-times be-
longing to case (1), the Dirac equation is separable if the
background is at least “locally static” while in case (3), it
separates if the space-time is at least “locally diagonal.” In
case (2) the massive Dirac equation is separable in those cases
where the Hertz potential for the massless spin-} equation is
separable.! We may mention in passing that though cases (1)
and (3) described, respectively, by Egs. (49) and (53), resem-
ble case (2) they are distinct from it. This is because F = F (x')
in case (1) while F = F(x%in case (2) and similarly X = X (x°)
in case (3) while X = X (x') in case (2). However, whether the
Dirac equation separates out in other cases for different, ju-
dicious choices of tetrads and variables remains an open
question.

We have also obtained the second-order decoupled
equations satisfied by the angular and radial (temporal) parts
of the wave function. To discuss further the angular and
radial equations, we note that the form of the various equa-
tions in different cases is of the same nature so that we need
to discuss in detail only a prototype for each. For instance,
comparing the radial and angular parts in cases (1) and (3},
i.e., Eqs. (50) and (55), Egs. (52) and (56), respectively, we find
that the equation for case (3) may be obtained for those of
case (1) by the identifications

xXox!, wek, mek, yoh, (62)

Fol/X, A2 4+p2YY)er— (A2 +u2Y?).

Further, the angular equation in case (2} also is of the same
form as for case (1) since p is a constant. They may be ob-
tained by the identification wy + m«>k,. One caution, how-
ever. In case x> is a cyclic coordinate, boundary conditions—
like single valuedness of ¥—would imply a different spec-
trum for m as compared to k,. In the two subclasses of case
(2) where the Dirac equation is separable the radial (tempo-
ral) equations have a similar structure. From Egs. (59) and
(61) it can be seen that the equations go into one another with
the identifications

Xox!, Fol/X, W2+p2Yeld?+up2Y?. (63)
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Further studies of the explicit solutions of the angular
and radial equations are in progress and will be published
elsewhere.
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