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Molecular Elasticity and the Geometric Phase
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We present a method for solving the wormlike-chain (WLC) model for twisting semiflexible
polymers to any desired accuracy. We show that the WLC free energy is a periodic function of the
applied twist with period 4�. We develop an analogy between WLC elasticity and the geometric phase
of a spin- 12 system. These analogies are used to predict elastic properties of twist-storing polymers. We
graphically display the elastic response of a single molecule to an applied torque. This study is relevant
to mechanical properties of biopolymers such as DNA.
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the bead. One will find that twisting the bead by 4� is
equivalent to not twisting it at all. Under the influence

configuration. This regime has been explored experi-
mentally [11]. In contrast, the present Letter theoretically
Some long molecules are as stiff as needles, others as
flexible as thread. The elasticity of a stiff molecule is
dominated by energy, while the elasticity of a flexible
molecule is dominated by its configurational entropy. It
has lately become feasible [1] to stretch, bend, and twist
single molecules to study their elastic properties. The
subject of this Letter is the elasticity of semiflexible
polymers in which there is competition between energetic
and entropic effects. We consider a polymer which can
bend as well as twist [2]. The flexibility of such a mole-
cule is characterized by two dimensionless parameters
� � LBP=LTP and � � L=LBP, where L is the length of
the molecule and LBP and LTP are the bend and twist
persistence lengths, respectively. For example, DNA has a
bend persistence length of about 52 nm and a twist per-
sistence length of about 70 nm.

The main purpose of this Letter is to draw attention to
an experimentally relevant topological subtlety which
has not been discussed in previous theoretical treatments
of the elasticity of twisting polymers. To appreciate the
point, take a strip of paper (a ribbon or belt will do as
well) and tape one end of the strip to a table. Pull the strip
taut by its other end and twist it by four half-turns (4�
rotation). If you now slacken the strip, you will find that it
is possible, keeping the end fixed, to pass the strip around
the end. Pulling the strip taut will reveal that the 4� twist
has been released. This demonstration shows that a poly-
mer can release twist two turns at a time by going around
its end. A twist of 2� cannot be so released but can be
transformed to �2�. This, of course, merely illustrates
the well known mathematical fact that the rotation group
is doubly connected. We now see that this mathematical
fact has concrete experimental consequences for the elas-
tic properties of twist-storing polymers. Mentally replace
the table with a translation stage, the strip with a DNA
molecule with a micron sized magnetic bead at its free
end, and let the twisting be done with a magnetic field.
If the DNA molecule is about 16 �m long, and not pulled
taut, it can release 4� worth of twist by passing around
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of thermal agitation, the molecule will explore all con-
figurations which it can reach by continuous deformation.
As we have shown, a configuration with a 4� twist can be
continuously deformed to a configuration with 0 twist. It
follows that the free energies for these two situations are
the same. If one were to measure the free energy G� � of
the molecule as a function of applied twist  (by, say,
measuring the torque-twist relation), one would find that
G� � is a periodic function of  with period 4�. From the
4� periodicity of the free energy, it follows that the
torque-twist relation and other measurable elastic proper-
ties have the same periodicity.

The above discussion is even more relevant to theoreti-
cal models of polymers which do not incorporate self-
avoidance. Such a polymer is a ‘‘phantom chain’’ [3] and
can pass through itself. In the absence of self-avoidance, a
polymer does not even need to pass around its end: it can
pass through itself and so release twist two turns at a
time. Indeed, such effects have been seen in recent single
molecule experiments [4] and even earlier [5]: the en-
zyme topoisomerase II converts real DNA into a phantom
chain [4,6] and in the presence of this enzyme (which
plays a crucial role in replication), the DNA molecule
releases twist two turns at a time [4,5]. The release of
twist through bending modes (geometric untwisting) has
also been discussed in Ref. [7].

It is thus clear that in theoretical models which do not
have self-avoidance, the free energy is a periodic function
of applied twist with period 4�. Bearing this in mind, we
now explore the wormlike-chain (WLC) [8] model for
twisting polymers. As was emphasized recently [9] in a
review of single molecule experiments, ‘‘the precision of
control and quantitative measurement and simple inter-
pretation of these experiments make detailed theoretical
analyses appropriate.’’ While there has been some theo-
retical progress [3,10] on the WLC for twisting polymers,
interest has been confined primarily to the high tension
regime, which is theoretically more tractable because the
molecule has only small perturbations about a linear
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explores the nonlinear regime of small forces, where the
perturbative methods described in [3,10] are inapplicable.
In this regime we find that the WLC free energy has a 4�
periodicity in contrast to the aperiodic free energy of the
high tension regime.

WLC model.—The WLC model ignores self-avoidance
and views the polymer as a framed space curve C �
f ~xx�s�; êei�s�g, i � 1; 2; 3, 0 � s � L of contour length L,
with an energy cost E�C� for bending and twisting. We
suppose that one end of the polymer is tethered to the
origin ~xx�0� � 0 and the other end at ~xx�L� � ~rr is tagged.
The unit tangent vector êe3 � d~xx=ds to the curve de-
scribes the bending of the polymer, while the twisting is
captured by a unit vector êe1 normal to êe3. êe2 is then fixed
by êe2 � êe3 � êe1 to complete the right-handed moving
frame êei�s�, i � 1; 2; 3. The rate of change of the moving
frame êei�s� along the curve can be measured by its
‘‘angular velocity vector’’ ~�� defined by

d
ds
êei�s� � ~�� � êei�s�: (1)

The components of ~�� in the moving frame are �i �
~�� 	 êei and the energy E�C� of a configuration C is given

by

E
C� � 1=2
Z L

0
fA
��1�

2 � ��2�
2� � C��3�

2gds; (2)

where A is the bending modulus and C the twist modulus.
Imagine that the ends of the polymer and the frames at

these ends 
êei�0�; êei�L�� are held fixed. We wish to com-
pute the number of configurations

Q
~rr; êei�0�; êei�L�� � 
C exp��E
C�=kT�; (3)

counted with Boltzmann weight exp��E
C�=kT�, which
start at the origin with initial frame êei�0� and end at ~rr
with final frame êei�L�. The function Q is related to the
free energy of the molecule and its measurable elastic
properties such as the force-extension relation and the
torque-twist relation (TTR). An overall multiplicative
constant is not important in the calculation of Q. This
leads only to an additive constant in the free energy,
which drops out on differentiation and does not affect
elastic properties.

Let us fix a ‘‘lab frame’’ ~eebi and write eai �s� � Rab�s�~ee
b
i ,

where a � 1; 2; 3 is a vector index (as opposed to the
frame index i) and R�s� 2 SO�3� is a 3� 3 rotation
matrix. There is a clear analogy between the elastic
properties of the WLC and the motion of a top. Indeed,
as Bouchiat and Mezard [10] and Moroz and Nelson [3]
point out, the WLC problem can be mapped to the quan-
tum mechanics of a symmetric top. From this mapping,
one may naively conclude [12] that the periodicity of the
free energy is 2�.We now show that a careful treatment of
the path integral (3) gives the correct 4� periodicity.
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Each configuration C in (3) is characterized by a curve
fR�s�g in the rotation group with fixed end points R�0� and
R�L�. The sum is over all configurations which are
sampled under the influence of thermal agitation. It is
evident that we should sum over configurations fR�s�g
only in a single homotopy class: thermal agitation causes
only continuous deformations and therefore cannot knock
the polymer out of its homotopy class.Q thus depends not
only on [~rr; R�0�; R�L�], but also on the homotopy class

fR�s�g� of the paths fR�s�g being summed over. This
information is exactly captured by going to the covering
space SU�2� of the rotation group SO�3�. This step is
essential to correctly describe the elastic properties of
the twisting polymer. [If we do not take this step but
remain on SO�3�, we are effectively summing over both
homotopy classes, which is a physically incorrect proce-
dure.] The result is that, while the WLC Hamiltonian is
the same as that of the top, the WLC configuration space
is not the configuration space SO�3� of the top, but its
double cover SU�2�. As we see below, this results
in a 4� periodicity for the free energy. SU�2� is the
same as S3, the four-dimensional sphere defined by
fx�; � � 1; 2; 3; 4; g, 
��x

��2 � 1. In fact, x� are the
Cayley-Klein parameters traditionally used in describing
tops. C can be described by a continuous curve g�s� �
P
exp

R
L
0 i
~���s0� 	 ~��=2ds0�g�0� in SU�2� with fixed end

points g�0� and g�L�. The standard Euler angles
��;�;  � on the rotation group can be used as coordi-
nates on SU�2� � S3 if the range of  is extended to 4�.
SU�2� acts on itself by right and left action generated
by space-fixed �Jx; Jy; Jz� and body-fixed �J1; J2; J3� an-
gular momenta.

We can now write (3) more correctly as Q�~rr; q0; qL�
where q0 � g�0� and qL � g�L�, to explicitly display the
homotopy class dependence of Q. Q�~rr; q0; qL� has the
path integral representation:

N
Z
D
g�s��e
�E�C�=kBT�&
 ~xx�L� � ~rr�: (4)

N is a normalization constant and the path integral is
over all paths that go from q0 to qL on S3. We now
pass from Q�~rr; q0; qL� to its Laplace transform defined
as ~QQ�f; q0; qL� �

R
d~rr exp
 ~ff 	 ~rr=LBP�Q�~rr; q0; qL�, where

LBP � A=kT. Performing the elementary integrations
and changing variables to ( � s=LBP and ~!! � ~��LBP,
we see that ~QQ�f; q0; qL� can be represented as
N Z�f; q0; qL�, where Z has the path integral representa-
tion

Z
D
g�(��e�


R
�

0
d(�1=2��!2

1�!
2
2��

�1!2
3��

~ff	êe3�; (5)

where � � A=C � LBP=LTP. This is clearly the quan-
tum amplitude hqLj exp
��Hf�jq0i for a particle on the
surface of a 3-sphere to go from an initial position q0 on
S3 to a final position qL in imaginary time � in the
098305-2
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presence of an external force field. The Hamiltonian is
Hf � H0 � f cos�, where H0 � 1=2�J1

2 � J2
2 � �J3

2�,
which is the Hamiltonian of a symmetric top. If the
exact eigenstates of Hf were known, we could write:

Z � 
n exp
��En�u�n�q0�un�qL�; (6)

where fun�q�g is a complete set of normalized eigenstates
of the Hamiltonian Hf, and En are the corresponding
eigenvalues. Even though Hf cannot be diagonalized
analytically, we can exploit its symmetries to reduce
the problem to a numerically tractable form. Jz and J3
commute with the Hamiltonian Hf, reflecting the sym-
metry under space-fixed and body-fixed rotations about
the third axis. As a result, Z depends only on the differ-
ences � � �L ��0 and  �  L �  0 and we write
Z�f; �0; �L; �;  �. Consider the dependence of Z on  .
Since all the wave functions in (6) are single valued
functions on S3, it follows that Z� � is periodic in  
with period 4�: Z� � 4�� � Z� �. This means that
the free energy G � �1=� log
Z� and all elastic proper-
ties have the same period. This is the first main result of
this Letter. The fact that the periodicity is 4� and not
2� can be traced to the fact that the sum in (6) extends
not only over tensorial states but also over spinorial
ones. The variation of G with respect to the variables
�f; �0; �L; �;  � gives the elastic response to stretch (f),
bend (�;�), and twist ( ). G can be computed numeri-
cally for any value of its arguments using mathematica
programs [13] that run for a few minutes on a personal
computer, using methods similar to those of Ref. [14].
From G we can extract all possible information regard-
ing the elasticity of a polymer with bend and twist de-
grees of freedom. For instance, one can predict the form
of extension versus twist curves for various values of
the stretching force.

The 4� periodicity of the free energy strongly moti-
vates the use of spinorial methods. In fact, the WLC
configuration space S3 is the same as the set of normal-
ized states of a spin-1=2 quantum system. We now show
that there is a mapping between a configuration of a
twisting polymer and the quantum evolution of a
spin-1=2 system. This brings out an interesting connec-
tion between WLC elasticity and the geometric phase. Let
us introduce a 2 component complex vector (a spinor)
/1 � x1 � ix2, /2 � x3 � ix4, which is normalized
(/y/ � 1). We can write /1 � cos�=2 exp�i�=2expi =2,
/2 � sin�=2 expi�=2expi =2 and thus introduce coordi-
nates ��;�;  � ranging from 0 to ��; 2�; 4��, respectively.
These are similar to Euler angles on the rotation group
and differ only in the range of  . The frame êei can be
expressed as êe3 � /y ~��/, êe1 � iêe2 � /T�i�2� ~��/, where
the �s are the usual Pauli matrices. Notice that altering  
by 2� flips only the sign of / and therefore does not affect
the frame. Using this mapping between 2 component
spinors and frames, we can import ideas from the geo-
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metric phase to understand WLC elasticity. The informa-
tion in the spinor / can be decomposed into an overall
phase  =2 describing twist and a ray êe3 describing bend.
Fix a configuration C and note that /�s� � g�s�/�0� sat-
isfies the Schrödinger differential equation i d/�s�ds �

ĥh/�s�, where ĥh � � ~�� 	 ~��=2 is the ‘‘Hamiltonian’’ of a
spin half particle in an external magnetic field ~��. We can
now decompose the difference  =2 �  �L�=2�  �0�=2
between the final and initial phases into a geometric phase
and a dynamical phase. The dynamical phase is given by
the integral of the expectation value of the HamiltonianR
L
0 ds/

yĥh/, which using the definition of êe3 above is seen
to be

R
L
0 ds�3=2, half the twist �3 integrated along the

polymer. The geometric phase is given by half the solid
angle swept out by the ray êe3�s�. If the initial and final
rays are distinct (but not antipodal), one can join them
by the unique shorter geodesic [15] to enclose a solid
angle. The total twist difference  is the sum of the
‘‘dynamical twist’’—the integrated local twist —

R
�3ds

and the ‘‘geometric twist’’—the solid angle swept out by
the tangent vector—which depends on the bending of the
polymer. In the literature [3,10,16], the distribution of
applied twist between twisting and bending is compared
with the decomposition of link into twist and writhe.
This result is referred to as White’s theorem [17] (though
an earlier reference is [18]). The discussion [3,10,16]
applies to closed, self-avoiding polymers which have
been twisted an integral number of times. In con-
trast, our treatment applies also to open polymers which
have been twisted a fractional number of times. However,
since the WLC model does not take into account self-
avoidance, a twist of 4� is equivalent to no twist and the
integral part of the twist is measured only modulo two.
Our treatment captures the fractional part of the applied
twist (which is geometrical) and the earlier treatment
captures its integral part (which is topological). In this
sense, the two discussions are complementary. The anal-
ogy between twist elasticity and the geometric phase is
the second main result of this Letter. The analogy has
also been noted in Ref. [16], which, however, uses a
vectorial correspondence rather than a spinorial one.
The decomposition of applied twist into a geometrical
and a dynamical part leads to a coupling between the
bend and the twist degrees of freedom and has a direct
bearing on the elastic properties of the WLC polymer. As
a specific illustration, we give the results for the special
case of pure twist elasticity.

Pure twist elasticity.—We suppose that the tagged end
is not constrained in position, but only in orientation.
Integrating Q�~rr; q0; qL� over ~rr, we see that the applied
force f vanishes.We also suppose that the initial êe3�0� and
final êe3�L� tangent vectors are both in the same direction
(which we take to be the z direction). We compute the
distribution Z� � of  . In this case, only states for which
m � g contribute [19] and Z takes the form Z � 
gZgg.
Using standard techniques from angular momentum
098305-3
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FIG. 1. The torque-twist relation for � � L=LBP � 1 and
� � L=LTP � 0; 1; 7.
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theory, we can express Z as Z � 
geig Qg where Qg �

1
j�jgj�2j� 1� expf��=2
j�j� 1� � ��� 1�g2�g, where

j runs in integer steps. By an inverse Fourier trans-
form, we compute P� � and the free energy G� � �
�1=� log
P� ��. By differentiating with respect to  ,
we compute the torque � � @F=@ needed to twist the
molecule by an angle  . The torque-twist relation is
plotted in Fig. 1. This graph, which is the third main
result of this Letter, describes the pure twist elastic prop-
erties of a molecule in the WLC model. These graphs are
easily interpreted in terms of the geometric phase ideas
described earlier. For large � (� is the ratio of the bend to
the twist persistence length), twist costs very little energy,
the molecule twists without bending, and as it takes
hardly any torque to twist the molecule, the TTR is
almost flat. As � decreases, the applied twist is shared
between the twist and the bend. When � is zero, twisting
is prohibitively expensive and the applied twist is all
taken up by the bend. This causes the molecule to buckle
just as a towel does when it is wrung. When � � 0, the
‘‘polarization vector’’ êe1 is parallel transported along the
polymer. The distribution Z� � then reduces to the dis-
tribution of solid angles (Berry phases) enclosed by
closed Brownian paths on the (Poincaré) sphere, which
was calculated in [20] in the context of depolarized light
scattering.

In this Letter we have solved theWLC model with bend
and twist degrees of freedom and noticed analogies to
spin-1=2 systems and the geometric phase. These analo-
gies lead to a description in terms of a particle on a sphere
in external gravitational and magnetic fields. Such analo-
gies, apart from giving us analytic tools to solve the
problem virtually exactly for the first time, also provide
simple physical pictures: Imposing a twist on a molecule
is like applying a magnetic field. The helical shape of a
098305-4
towel when it is wrung is similar to the helical trajectory
of a particle in a magnetic field. We hope this Letter will
encourage experimental work on twisting polymers in the
nonlinear low tension regime and set up a dialog between
the theory and experiments on molecular elasticity.
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