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Gravitational waves from black hole binary inspiral and merger:
The span of third post-Newtonian effective-one-body templates

Thibault Damour
Institut des Hautes Etudes Scientifiques, 91440 Bures-sur-Yvette, France

Bala R. lyer
Raman Research Institute, Bangalore 560 080, India

Piotr Jaranowski
Institute of Theoretical Physics, University of Biatystok, Lipowa 41, 15-424 Biatystok, Poland

B. S. Sathyaprakash
Department of Physics and Astronomy, Cardiff University, Cardiff, CF2 3YB, United Kingdom
(Received 14 November 2002; published 31 March 2003

We extend the description of gravitational waves emitted by binary black holes during the final stages of
inspiral and merger by introducing in the third post-Newton{8RN) effective-one-body(EOB) templates
seven new “flexibility” parameters that affect the two-body dynamics and gravitational radiation emission. The
plausible ranges of these flexibility parameters, notably the parameter characterizing the fourth post-Newtonian
effects in the dynamics, are estimated. Using these estimates, we show that the currently available standard
3PN bank of EOB templates does “span” the space of signals opened up by all the flexibility parameters, in
that their maximized mutual overlaps are larger than 96.5%. This confirms the effectualness of 3PN EOB
templates for the detection of binary black holes in gravitational-wave data from interferometric detectors. The
possibility to drastically reduce the number of EOB templates using a few “universal” phasing functions is

suggested.
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[. INTRODUCTION Two general viewpoints are possible to reach this goal: a

maximalist one or a minimalist one. Theaximalistview-

Current theoretical understanding, stemming both fronpoint consists in enlarging as much as is conceivaléng
general relativity and astrophysics, places black hole binarie a “democratic” way all available methods in the literature
at the top of the list of candidate sources for the interferofor treating binary coalescencthe bank of filters, with the
metric gravitational-wave detectors that are nearing thdwope that even the methods which appaariori less reli-
completion of their construction phase. On the one handable than others might, by accident, happen to describe a
black hole binaries are by far sources whose dynaffgiady  good approximation to the “real” signal. This is the view-
inspiral and late time quasi-normal mode ringing to a largepoint taken by Buonanno, Chen and Vallisneri in their care-
extent, late inspiral, plunge and merger to a lesser exient ful, and detailed analysis in Rdf2], on the basis of which
better understood than other sources, such as supernovaetioey advocate expanding the net by using a multiparameter
relativistic instabilities in neutron stars, so that it is possibletemplate family able to approximate most of the results of
to construct reasonably good template waveforms to extradhe conceivable analytical methods. However, this “demo-
signals out of noise. On the other hand, astrophysical rateratic” attitude comes at a cost that calls for an alternate
estimates of black hole binary coalescences, though ndattrategy that we explore here. The problem with this method
known accurately, have a range whose upper limit is larges that it leads to a dramatic increase in the total number of
enough to expect a few mergers per year within a distance aémplates from~25 templates te- 10* templates, which has
150 Mpc[1]. the bad consequence that it leads a larger false alarm rate.

The merger phase of binaries consisting of twdM15 (These estimates of the number of templates are those ob-
black holes takes place right in the heart of the Laser Intertained, as if2], by “dividing” the parameter space by the
ferometric Gravitational Wave ObservatdiyyGO)-VIRGO-  local span of the template at the minimal match. This is an
GEO sensitivity band, giving us the best possible picture ofunderestimate because it neglects boundary effects. For in-
this highly nonlinear evolution. Eventually, when detectorsstance, a more realistic estimate of the number of the third
reach good sensitivity levels, one hopes to learn experimerpost-Newtonian effective-one-body templates would be
tally about this strong gravity regime which has been a sub--150 rather than 25.
ject of intense analytical and numerical studies for more than By contrast, we advocate here rainimalist viewpoint
a decade. In the meantime, what is needed is a set of modebnsisting in(i) focussing exclusively on the best available
waveforms or templates that describe the dynamics close tanalytical description, anéii) generalizing this description
the merger phase accurately enough so that only a smélly adding several parameters that describe “new directions”
fraction (<10%) of all events will go undetected. corresponding to physical effects not perfectly modelled by
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this description. The most important of these directions areesults for the “circular energy functionE(w) can be used
the effects due to higher post-Newtoni@PN) effects, not to define templates beyond the adiabatic approximation. As
yet calculated, but known to exist. A thorough study of theRef.[4] has shown the importance of going beyond the adia-
robustness of our preferred description against the inclusiobatic approximation in describing the smooth transition be-
of currently unknown effects should allow an informed andtween the inspiral and the plunge, and[&s7] has shown
judicious covering of the parameter space of interest withouhow significant was the contribution of the plunge to the
overtly expanding the size of the total bank of templates. SNR, we consider that the EOB waveforms are the best,
The best available analytical description at present is, irturrently available, analytical templates for binary black hole
our opinion, the “effective-one-body{EOB) approach pro- coalescences.
posed and constructed for non-spinning bodies at second |n this paper we wish to strain to extremes the flexibility
post-Newtonian(2PN) order by Buonanno and Damour qf the EOB formalism by tugging it in directions where it
[3.4], extended to third post-Newtonia8PN) order by 5 pe theoretically pulled and by locating directions it is
Damour, Jaranowski and Sdka[5] and generalized t0 Spin- o« jikely to yield under deformations by unmodelled ef-
ning bodies by DamoU6]. On the one hand, the EOB maps, (g including higher order PN effedtswe shall introduce
using the Hamilton-Jacobi formalism, the real “conserva-ge\en “flexibility” directions, i.e. seven new flexibility pa-
tive” (in the absence of radiation reactiaynamics of tWo 5 eters. Then we will investigate the “span” of the original
bodl_es with massas; andm, into an EOB problem of a test (3PN) EOB templates in the space of waveforms opened up
particle °f2 massu=M7z (where M=m,+m, and 7 by oyr extension of the EOB waveforms into seven new
=mym,/M?), moving (essentially in an effective back-  «fexibility” directions. By spanof a given bank of tem-
ground metricgy,, which is a deformation of the Schwarzs- plates, we mean the region of signal space which is well
child metric with deformation parametes. Further, by  modelled by some template in the bank, i.e. the set of signals
supplementing the above dynamics by an additionaksych that the maximized overlap 8fvith sometemplateT
radiation-reaction force obtained from a Pagsummation s |arger than 0.965Among our seven flexibility parameters
of the graVitational'WaVe ﬂUX, it allows for the first time the some, such a$5’ represent h|gher Orde[‘fourth post_
possibility to go beyond the adiabatic approximation and toyewtonian(4PN)] corrections in the dynamics, some, such
analytically discuss the transition from inspiral to plunge andas g, the arbitrariness in the best available 3PN gravitational-
the subsequent match to merger and ringing. The implicag;ave flux calculation due to incompleteness of the Had-
tions of the EOB templates for data analysis of binary blackymard partie finie regularization, and others, suchcas
holes were explored ifi7] where it was shown that the genote a parameter used to factor the gravitational-wave flux
signal-to-noise ratigSNR) is significantly enhanced relative [11] and accelerate the convergence of the Pasjgroxi-
to the usual PN templates due to inclusion of the plungenants to the numerical flux in the test-mass case. Further, the
signal. The EOB formalism does also provide initial dynami-crrent development of EOB has made, at several stages,
cal data(position and momenjefor two black holes at the  gpecificchoicesof representation of various physical effects
beginning of the plunge to be used in numerical relativity tognq, as in any analytical construction, the choices were the
construct gravitational data like metric and its time deriva'simplestthat one could apparently make. We then explored
tive and evolve Einstein's full equations through the mergekne effects induced by modificationof these simple choices,
phase. _ o _ _ i.e. the consideration of new versions of EOB, characterized
The analytical prediction of the EOB methduhcluding  py gifferent parameter values reflecting other allowed more
spin for invariant functions was compared to numerical re-complex choices. These comprise the remaining four param-
sults based on the helical Killing vector approd@] for  eters and include,(¢,), a parameter appearing in the effec-
circular orbits of corotating black holes by Damour, Gour-je HamiltonianH ¢ of the EOB; f nonadian, & Parameter to
gouhlon and Grandcfeent[9] and was shown to agree re- modify the simplest treatment of non-adiabatic effects in the
markably \_NeII. The agreement was rob_ust agalnst_chowes Aurrent version of EOB template$ioncic, @ parameter to
resummation of the EOB potential and improved with the PNy iy the simplest treatment of non-circular effects in the
order. Recently, Buonanno, Chen and Vallisri@ii made 2 current version of EOB templates; and finally. siion t0
detailed and exhaustive comparison of all currently availableyjo,y the possibility that the transition between plunge and
waveforms for non-spinning binary black holes resultingjnging may occur at frequencies different from that assumed

from different approximations. This study showémong i, “the simplest EOB model. The seven parameters
other resultsthat EOB models are more reliable and robust

than other non-adiabatic models.

Recently BlanChetlo], h,as ma,de a comparison of the When we do not have a perfect template to capture a signal then
straightforward PN predictions witfB] and shown that at ¢ effective distance up to which a detector could have ideally seen
3PN order they are as close to the numerical results as thg,es down. Suppose, with the use of the correct templates, an an-
resummed approaches. While it is indeed interesting to Notgnna could detect sources at a distabeef the best overlap we
this closeness of the results derived from one particular Nnonean achieve with the true signal fighen that distance drops o
resummed 3PN functiofthe “energy function”E(w) for  and the new rate of events would be proportionalf®)C. In other
circular orbit to the numerical result¢and to the EOB  words, the fractional decrease in the number of events isf¢).
oneg, we still do not see any way yet by which, as the By demanding that (% f3)<0.1(i.e. a loss of no more than 10% of
HamiltonianH(r,p) does in the EOB approach, the bare PNall potential eventswe getf=0.965.
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(bs, 6, Cp, &2, Fnonadiabr FNoncire: fransiion, are referred essary to introduce the corresponding flex parameter as an
to as theflexibility parameters. Varying them and testing the additional parameter in search templates used in the detec-
change of the physical predictions under reasonable variatioon of gravitational waves from black-hole binaries.
of these parameters is a way of probing the overall robust- As in earlier work, our main tool for measuring the span
ness of the EOB framework. What we specifically investi-0f a bank of templates is theverlap of a standard fiducial
gate is whether a bank of standard 3PN EOB templates ig¢mplate with a given flexed signalSee Sec. VI for the
sufficient to represent all plausibly relevant extended familydefinition of the overlap.In this study, we use two measures
of waveforms generated by these new flexibility parametersof “good overlaps™: faithfulnessand effectualnes§11]. A

In the context of this investigation our waveforms will be templateis said to befaithful if its overlap with aflexed
parametrized by two sets of parametégs:The first set con-  signalwaveform ofexactly the same intrinsic parameteal-
sists of the usual intrinsic and extrinsic parameters entering€s is larger than 0.96@fter maximization over the extrin-
the construction of standard waveforms, such as the masséi§ parametejs|t is expected that faithful templates are also
of the component objects and their spins, some referenc@ood at estimating source parameters although this is not
phase, etc., denoted collectively py, k=1, ... K. Inthis  guaranteed to be the casetefnplateis said to beeffectualif
work we shall only deal with non-spinning point particles in its overlap with aflexed signawaveform, maximized over
the restricted PN approximatior{12] which requiresk =4 all the intrinsic and extrinsic parameterds larger than
with p; ,=m; , denoting the masses of the two bodies, 0.965. Obviously, every faithful template is necessarily ef-
=t @ reference timere|ated to the instant of Coa|escehce fectual but not all effectual templates are faithful. Note that
andp,=®, the phase of the wave at the reference tithe. the notions of faithfulness and effectualness might depend on
The second set consists of tfiexibility parametersintro- the particular flexibility direction which is explored: While a
duced above. We shall denote these flexibility parameters d§mplate waveform could be faithful with respect to the

ma, a=1,... A, with (A=7) 7,-flexed signal, it might only be effectual with respect to
the mr,-flexed one and neither with respect to theg-flexed
771:b5, Tr= 0, m3=Cp, 774222(é’2)1 one.
Implementing the above analysis we conclude tthet
5= fnonadiabr 6= Fnoncires 7= Frransition- standard 3PN EOB templates are effectual with respect to all

(1. flexibility parametersntroduced in this study, including the
. . _parameterbs characterizing the 4PN dynamical effects. In
For studies of the span of a b_af?k of templatgs of the I(mcgther words, thespanof the bank of 3PN EOB templates is
we propose to do in th'$ paper, itis helpful to mtrodgce theIarge enough to cover the space of signals described by the
notions of a standard diducial templatear!d its associated physically plausible ranges of the seven flexibility param-
variant orflexed signaktonstructed by turning on one of the . - )
flexibility parameters. The terrfiducial templatdis used to eters considered here. No additional extra parameters are re
P : . pia L Huired in the detection templates to model the more complex
represent a waveform constructed in a certain approximatior], . o
and at a qiven PN order with a fixed set of values of thech0|ces possible in the EOB approach at the 3PN level or the
9 : . ‘dominant dynamical effects at the 4PN order. In particular,
unknown parameters introduced above. In this paper, our f'fh . d1oi the total b ft lat
ducial template will be the standard EOB wavefofsee €re 15 no need to increase the total numpoer of templates
. L beyond the level required for the standard 3PN EOB tem-
Sec. Ill) at the 3PN order with the flexibility parameters all

set to zero: plates.

fiducial template- h(t; p,, m,=0Vb)=T(t:py). (1.2 IIl. THIRD POST-NEWTONIAN DYNAMICS
AND ENERGY FLUX

In contrast, the associatdtexed signalwill again be the
EOB waveform at 3PN order withll but oneof the flexibil-
ity parametersr, set to zero:

The conservative dynamics of binary systems in the PN
approach has now been determined to 3PN accuracy. Two
independent calculations, one based on the canonical

m,— flexed signa& h(t;py,m,#0,m,=0V b+a) Arnowitt-Deser-Misner(ADM) approach together with the
standard Hadamard partie finie regularization for the self-
=S(t;px,7a)- (1.3 field effects[13,14] and the second, a direct 3PN iteration of

the equations of motion in harmonic coordinates supple-
mented by an extended Hadamard partie finie regularization
15-17, agree that the 3PN dynamics and consequently con-
served quantities like energy are fully determined except for
bne arbitrary parameter calleg, in the ADM approach and

in the harmonic coordinates related by

In other words, in our test of robustness de not allow all
the seven parameters to vary simultaneouSlych a varia-
tion would lead to a formidably high dimensional paramete
space which is computationally impossible to investigate a
the moment. Rather, our aim is to study the effect of eac
flexibility parameter independently and to gauge the extent
to which our standard fiducial template waveform can mimic 3 1987

the changes brought about by the flexibility parametess A=— 119 3080 2.1

by a mere variation of the intrinsic parametgrs. Such a

systematic study allows us to isolate and identify the mosThe Hadamard regularization of the self-field of point par-
important unknown physical effects, and decide if it is nec-ticles used if13—-1§ has the serious drawback of violating
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the gauge symmetry of perturbative general relativdif- The expression for the 3PN energy functid3-15 and
feomorphism invariangeand thereby of breaking the crucial 3.5PN flux functior 23,24 and the resulting 3PN and 3.5PN
link between Bianchi identities and equations of motion.coefficients in various phasing formulas discussefi7inare
This explains why the Hadamard-based wdrk3—18 were ~ summarized iri25]. Though they are the basis of the present
unable to fix the parametens. Recently, Damour, Jara- analysis, they are not reproduced here for reasons of brevity
nowski and ScHer [19] have proposed to use a better regu-and we refer the reader {@5] for those expressions. .
larization scheme, one which respects the gauge symmetry of N this work we have used the 3PN-accurate flux function
perturbative general relativitydimensional regularization =~ Pecause the standard near-diagonal Rafdene 3.5PN flux
They have implemented this improved regularizationf“nCt'on involves a spurious pole in the physically relevant

scheme, which led them to a unique determinafip®] of  '@N9e of variation ob. We leave to future work an investi-

the parameterw.. namelv w.=0 qcorres ondin i to]\z gation of alternative Padeof the 3.5PN flux free of such

—1927/3080 Tﬁfjs the cgns;rva',[ive dynzfmics ig completeISpurious poles. In view of the numerical smallness of the

determined t'o 3PN order within the ADM aporoach usin % 5PN c_ontrlbutlon_to the flux., we expect no significant
. . g AUV app YS9 change in our physical conclusions.

dimensional regularization. Though it will be interesting to

reconfirm the value ok by other treatments, we believe that |||, TRANSITION FROM INSPIRAL TO MERGER—THE

the result off 19] is trustable especially in view of the obten- 3PN EFFECTIVE-ONE-BODY MODEL

tion there, by the same regularization method, of the unique ) o ]

Poincarfeinvariant momentum-dependent part of the Hamil-  The starting motivation of the EOB approach is to try to

tonian. Thus, for all applications including data analysis,capt.ure.'n a small numbe_r Of. numerical coefficients the es-

there is no arbitrariness in 3PN dynamics, and consiste ential invariant PN contributions from among the plethora
- o ; _ ; _ of terms that exist in the complete PN expansion of the bi-

vi/|t1hgér7n/sgog10thls paper we sebs=0 or equivalently\ = nary’s equations of motion, in the belief that many of these

on the ofher hand, the gravitational-wave energy flu terms are gauge artifacts and hence irrelevant. It is also

. ; I Ixstrongly motivated by the need to look for an analytic route
from binary systems has been computed using the multipolag, 4" heyond the adiabatic approximation which breaks

post-Minkowskian approach20] in harmonic coordinates yoyn pefore the last stable orbit. We recall that the standard
and Hadamard regularization to 3.5PN accuracy. Unlike apy treatments based on invariant functio&( ), F(w))
earlier orderg21] the instantaneous and hereditary contribu-gre |imited by the adiabatic approximati¢and cannot de-
tions do not remain isolated. At 3PN order, in addition to thescribe the transition to plungewhile the treatments based
instantaneous terms, the tails-of-tails and tail-squared termgn the direct use ofnon-resummedPN-expanded equations
also contribute. Fortunately, they have been computed bgyf motion are unreliabl¢2] because of poor convergence of
Blanchet[22] who has also computed the tail contribution atthe straightforward PN-expanded equations of motion.
3.5PN order. The gravitational wave energy flux contains the As shown in[4], at 2PN order the mapping to EOB is
3PN-accurate time derivative of the mass quadrupole moeventually unique(when imposing some general require-
ment leading to a specific dependence which, as explained meny. The waveform, the equations governing the evolution
earlier, is now known sincesg is computed. However, the of the orbital phase and the initial conditions to integrate
incompleteness of the Hadamard regularization introducethem through the plunge are discussed4hand were used
additional arbitrary parameters in the mass quadrupole mdn [7] to construct 2PN EOB templates and investigate their
ment leading to three new undetermined parameters thaterformance. At 3PN order, on the other hand, the situation
combined into the unique quantiy in the circular energy is more involved. When requiring that the relative motion be
flux. Unfortunately, up to now no alternate regularization orequivalent to geodesic motion in some effective metric, there
calculations without regularizations exist that provide theare more constraints than free parameters in the energy map
value of 6. Thus, one has to reckon with this arbitrary pa-and effective metric. This lefb] to an extension of the 2PN
rameter in the templates that one constructs and the best oB®B construction(non-geodesic motigninvolving a larger
can do is estimate its implications for data analysis of in-variety of choices. In Ref5] the following generalized 3PN
spiraling compact binaries as j@] or in the present work. ~ EOB Hamiltonian was introduced:

Her(r.p)= \/Am

A(r)

12| A1 (- p2+ 5 (24(pDP+ 2020 p) P+ 230 p)) . 3.9)
D(r) r?

where the functioné(r) andD(r) are given by the compo- r=|r|, n=r/r; r is dimensionless, being scaled M. The
nents of the effective spherically symmetric metgﬁﬁv: effective position vector is linked[3,5] to the relative po-
A(r)= —ggg(r) and D(r)/A(r) =g‘frﬁ(r) (they also depend sition vectorx; — x, of the two holes in ADM coordinates by
on the parameteis andz,, see below Herer andp denote a post-Newtonian expansion which starts as (x4
the (scaled canonical coordinates of the effective dynamics, —x,)/(GM) + O(c™?).
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The parameters,, z,, andz; are arbitrary, but subject to
the constraint

which forbids the geodesic choiege=z,=2z;=0 of the 2PN
EOB, but allows the minimally non-geodesic choicg,

PHYSICAL REVIEW D 67, 064028 (2003

=2,=0 andz;=2(4—37) 5. [See, however, below our dis-
cussion of non-minimal choices as flexibility directiohs.

In spherical coordinates (6, ¢), restricting the motion to
the equatorial plan®= #/2, the Hamiltonian Eq(3.1) can
be written as

Heit(rPr Py 321,22,23) = \/A(r;zl)

where

2 2

p2+ = 4z

| E 2, Py
Z(r,pr,pd),zl,zz,zg)zr pr +_ pr

+25 pfl. (3.9
The functionsA(r;z;) andD(r;z;,2,) ! depend org; and
Z,:

2n  ay(zy)

r3 4

A(r;zl)=1—§+ (3.59

r

677+ 2(26—3n)n—72,—

r? r3

D(r;zy,2,) =1+

(3.5b
where

94 41

AL

2 (3.6)

2) n—2Z1.
The (scaled 3PN EOB-improved reaHamiltonian is the
following function of the EOB Hamiltonian Eq3.3):

N 1 =
HreaI:;V1+277(Heff—1)- (3.7

_ p
1+A(r;z)D(r;2y,25) " p2+ r—f+Z(r,pr Pyi21,22,23)

2
(3.3

The equations of motion have the form of the usual Hamilton
equations:

%z a?;a', (3.89
Z—T= ai)’r', (3.8H
d dpt¢ Fy, (3.8d

Whereﬁf¢ is the ¢ component of the damping force.

A. Pade approximants of A

The straightforward PN expansion of the functidnin
terms of the variablei=1/r, reads

A(u)=1-2u+27ul+au(p)ut+as(7)ud+ O(ub).
(3.9

To improve the convergence of the PN expangidi®) we
introduce the following sequence of Paajgproximants ofA

[5]:

1
1- ( 2— 57]) u
AgpN W)= —7— (3.10h
1+ -nu+ 17u2
2
AgonfU) = 2(4—mn)+(as(n)—16+8n)u (3.100

2(4—n)+ (ag(n) +4n)u+2(as(n) +4n)u?+4a(as(n) + p?)u’
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(16—8n—au(n))—(32—24n—4a,(n)—as(n))u
dspn(U;as) '

Aspn(U;as)= (3.100

where
dapn(U;a5) =(16— 87— ay( 7)) + (8 7-+2a,( )+ as( 7)) (U+2U2) + 2(8 72+ (4+ 7)ay( )+ 285( 7)) U+ (167%+ ay( 7)?
+8nay(n)+(8—2n)as(n))u’. (3.11)

Referencq9] has studied some variants of the specific Pade 1

choices made in Eq€3.10 and found that they had very A(u) + EuA’(u)=0. (3.19
little effect on physical quantities down to the last stable
orbit. Therefore, we shall not include below, among our flex-
ibility directions, the ones corresponding to different choice
of definition of A function. We shall always define it using
the P,l]—type Padeused above. While the 3PN-level coeffi-
cienta,(7n)=b,» is known when usingv,=0 [19] [see Eq.

(4.2b below], the 4PN-level coefficienas(#) introduced
here is unknown. Its possible values will be discussed below!V- ESTIMATING THE EFFECT OF UNKNOWN PHYSICS

See Ref[4] for a discussion of the physics associated with
Sthe light ring within the EOB frameworK.See alsd26] for
alternative views based on the non-resummed 3PN energy
function E(w).]

Our main goal is to vary the flexibility parameters within
B. 3PN EOB adiabatic initial data a certain range motivated by physical arguments to be dis-
o ) ) - cussed in Secs. IV A—IV G and to determine the degradation
The initial dimensionless frequenay, depends on the caysed by such a variation on tbeerlap of flexed wave-
initial frequencyfg,y, of the gravitational wave and the total forms with fiducial waveforms. If the degradation is small
massM of the binary system: then we further explore the maximum extent to which the
parameters can be meaningfully varied so that the effectual-
ness(see Sec. VI A for a definitionstill remains more than
96.5%. We limit the range of variation of each parameter so
that the effective potential, binding energy and energy flux
remain regular and meaningful for values of the parameter in
that range. The natural range over which the parameters are
expected to vary is summarized in the first row of Table IV.

. GMmfl,
wo=—5 (3.12

In the following equation®\ and D are treated as functions
of u, A’=dA/du. The initial value ofry=1/uy one obtains
solving numerically equation:

A. Higher order PN dynamics parameter bs

R 2 In terms of the inverse=1/r of the radial effective co-
wo=ud? ordinater the PN expansior{3.9) of the functionA(u)=
142y L—l —g8M(u) can be written as
1
\ A+ EUA' A(u)=1-2u+bypud+byput+bsy[1+O(7)]u®
3.13 +0O(u), (4.0
The initial momenta are then obtained from equations: where
. A 5148 by=2, (4.2a
Pe= N\~ o - , .
U(2A+UA) u=ug b — 94 41 ) 495
4= 3 T (4.2b
o u(2A+uA’)A'D Fylwo)
P U A 24 AA — UAA ——— (3.14b  We have included in Eq4.1) the information that for the
[2u(AD)"+AAT—UANT] | _, @0 2PN (<u®) and 3PN ¢u?) levels there has been rather mi-

raculous cancellations to leave only terms lineapinMore-
over, we also know that to all ordefstarting from 2PN the
termsx 5° vanish. We expect that the terms linearjiin the

The light ring coordinatelignt ring= 1/ jignt ring IS the solu-  higher PN coefficients dominate over the nonlinear ones. In
tion of equation particular, we expect that in the 4PN coefficieat(7)

C. 3PN EOB light ring
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TABLE I. Numerical values of the coefficients, .

n bn bnO bnl bn2 bn3 bn4
2 0 0.25 —-0.25

3 2 —0.75 1.875 0.875

4 18.6879 1.125 20.3281 —17.125 14.3598

5 ? —1.05469 244.523 —324.82 194.214 ?

=bs7+O(7?), the termO(7?) can be neglected. Finally, we 1. E=E(j) for circular orbits

shall work under the simple assumptieg(»)=bs7, i.e.

. We work here with the Hamiltonian describing the real
wit

relative motion of the two bodies in their center-of-mass ref-
erence frame (the superscript NR denotes a “non-
relativistic” Hamiltonian, i.e. the Hamiltonian without the
rest-mass contributignlt reads

The main aim of this subsection will be to estimate the plau-
sible order of magnitude of the 4PN coefficidn

A(u)=1-2u+bzyud+b,7yut+bspus+ O(u®).
(4.3

We can start to guess a plausible range of valuds; dfy

the following reasoning. It is plausible to expect that the

function A(u) be a meromorphic function af (or, at least,
be close to a meromorphic functiprhe growth withn of

HNR(r,p)=H )+i|3| )+iﬂ )
(r.p n(r,p 2 1l P 4 2pNT,P

1. 1.
+EH3PN(rap)+ §H4P|\U,P), (4.9

the Taylor coefficientd,, of a meromorphic function is de-
termined by the location of the nearest singularity in thewhere
complex plane of the functioA(u). If the nearest singular-
ity is located atu=1/b, the Taylor coefficientd,, of A(u)
behave, whem increases, roughly proportionally t'. We
can always parametrize this behaviaithout loss of gener-
ality) as

NR
X1— % Pi_ Pz e

oM PTu w

4.9

Let us note that in this subsectigand only hergr andp
denote the canonical coordinates of the rgalative two-
body dynamics.

Circular motion is defined through the condition

b,=kb""3. (4.4)

Using Eq.(4.4) we can deducé andk from b; andby,:

n-p=0, (4.10
k=bs=2, (4.59
wheren=r/r andr=|r|. Under the condition Eq4.10 the
b=b,/bs=9.3. (4.5H  HamiltoniansHy throughH py have the structure
. . ~ 2 1
This yields the guess A= % -2 (4.113
bs=170. (4.9
- 2 e (P
Note that the values df andk from Egs.(4.5) give also a Aip= >, h¥ , (4.11B
“prediction” for b, which is =
b,=k/b=0.2. 4.7 R 3 2)k
Haopn= > h;(z_)k ; (4.119
This type of value is small enough not to make a physical k=0 T
difference from the exact value,=0 and, moreover, it is 4 ok
compatible with the fact that the detailed calculationbgf A= S hkﬂ (4.119
gives a cancellation of the tyg®=0.25—-0.25(see the text SPNT & T8 Ak '
below and Table)l each term being indeed of order 0.2. This
is consistent with a power-law growth of the typical contri- A 5 (p?)k
butions enterind,, . Haipn= > h¥ e (4.11¢

Afirst guess is therefore thht is positive(because this is
true forbs; andb,) and smaller than 200n round numberns
To go beyond this guess we studied in detail the various P
contributions to the successibg, with the aim of detecting 2
a pattern. We explain in detail our study in the remainder of p?=(n-p)2+(nxp)?=p?+ l_'
the subsection. r?

N The momentum squargef can always be decomposed as
(4.12
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wherep,=n-p and

i=lil, J=MG—M=T><D-

(4.13

Here J is the conserved total angular momentum of the bi-

nary system in the center-of-mass reference frame.

The Hamiltonian(4.8), after replacingp? by j?/r?, be-
comes a function of andr only. This function has to fulfill,
by virtue of the equations of motioffor circular motionp,
=0), the condition

(?FINR(j,r):

ar 0.

(4.19

Equation(4.14) gives the link between andj along circular
orbits. We have iteratively solved E.14 for r as a func-
tion of j, and have substituted this into the Hamilton{@rB).

PHYSICAL REVIEW D 67, 064028 (2003

We have iteratively solved Ed4.19 for u as a function of
the small parameter j¥ and have substituted this relation
into the right-hand side of formulé.16. Next we have
again expanded the right-hand side of E416) in 1/j°. In
such a way we have obtained the relatbr E(j) predicted
by the general EOB functio®.18 in which the coefficients
at different powers of 17 depend on the numbess, enter-
ing the functionA(u). By comparing these coefficients with
the respective coefficients of the expansi@nlb we are
able to(iteratively) expressa, in terms of the coefficientbﬁ

of the Hamiltonian(4.8).

After this matching between the generic Hamiltonian
(4.8 and the guessed EOB expressi@nld, each of the
numbersa,, can be represented as a sum of terms which
depend on the coefficients of the different PN Hamiltonians.
E.g.,a,=ayyta,;, Wherea,y, depends only on the coeffi-

cients of the Newtonian Hamiltoniat, anda,; depends on

We thus have obtained the relation, valid along circular orthe coefficients of the Newtonial%lN and the 1PN I:Ile

bits, between the center-of-mass eneffgy HNR(r,p) of the
system and the system’s angular momeniurio simplify
displaying this relation we show it with the coefficiemﬁ%of
the 1PN Hamiltonian:lle replaced by their explicit general
relativistic values. Then the formula reads

) 1

j4
3 4

152—247—8>, (k+3)hk—2> hk
k=0 k=0

3

E 16-2>, h
k=0

1119 1
5}5 +’Z( +’ﬂ)IE+

. 1700

1+
j6
3

—5847+367°+4 >, (k+3)(3 n—27-4 k)hk
k=0

4 5

1
-8, (k+4)h§—2> h'fl}@] :
k=0 k=0 ]

(4.15

3 2
+1 > (k+3)h§)
k=0

2. EOB potential Alu) calculated from E=E(j)

In the effective-one-body approach the real “non-
relativistic” energy E is the following function of the
effective-one-body radial potenti&V;(u):

1
E=;{\/1+277(VW1(U)—1)—1}, (4.16
where
Wi(u)=A(u)(1+j2u?). (4.17

The functionA(u) has a perturbative expansionun
A(u)=1+a,u+a,u’+azud+a,ut+asu®.

(4.18

Along circular orbits the effective radial potentil;(u)
attains its minimal value,

J
S Wj(w)=0. (4.19

Hamiltonians. More generally, we have

(4.20

n—1
an= E Anks
k=0

where a,, depends only orHy, a,; depends oAy and

H1pn, @y, depends oy, HipyandH,py, etc. The values
of the different coefficienta,, are as followghere again, to
simplify formulas, the coeﬁicientsh'{ of the 1PN Hamil-

tonianﬂle have been replaced by their general relativistic
values:

0= —2, (4.213
1
1
an=— Z(9+ 7), (4.219
1 2
a50= 1¢(~ 27~ 127+ 7?), (4.21d
1 2
a5:= 7(~ 67+30n+ 7?), (4.219
3
1 2 3
A40= 5(54+ 7271177+ 27, (4.219
1 2 3
ag1= g7 (— 1973+ 1301y~ 557"~ 77°), (4.21h
3
a:= 2, (3= n+8k)hg, (4.21)
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4 do this we replace in Eq$4.21)—(4.219 the 2PN and 3PN
a;=2>, h, (4.21)  coefficientsh§ andh¥ by their general relativistic values. Out
k=0 of the 4PN coefficients the leading kinetic terrh; is fully
known (as it is given by the expansion of the free Hamil-
243—1080p+ 2107%— 1047°+ 217%), tonian ,\/pZ+ m2); for the rest of the terms only their parts

a50 1024( . L
x 59 are known(they describe the test-mass limit of the two-

(4.21K body dynamick We parametrize our ignorance of the parts
O(7) by introducing some quantitiexsﬁ, k=0,...,4.Thus
as1= 7g5,( — 201017 250392~ 46630p°+ 5367° we can write
4 1
+ 157] ), (421[) hg: _ 1_6+ 7 Xg, (4243
1 3
ago= = 207+ 384+ 128> — (213+ 12& 105
2§ 2 ( ) hi= 5 +7 X, (4.24D
3 3
+77%)hs— E kh 2 6+k)h, (4.21m 105
= h3= 337 X3, (4.240
4
ass= >, (5—n+8k)hf, 4.21 13
s &, (57 7+ 8k (4240 hi=5+7 x5 (4.249
: 45
_ k
Asy= 220 hk. (4.210 hi=—+n X, (4.248

Because the Hamiltonians from Newtonian through 3PN are
completely known, the coefficients, througha, are fully h3=
known. They read

;
3
556(1- 37 (1-67+97°=37°).  (4.24f

a,=—2, (4.223 Collecting all this partial information together one gets
571 197 41 188 27 35
a,=0, (4.22b B i St IS S
%= 6™ |7 6™ o6 )7 167 " 6a”
=2, (4.229 2
+2 , 4.25
94 41 ) 7];0 X4 ( a
a,= §_3_27T (4.22(:)

=112.370%— 13.312%7°— 1.6875;°+ 0.546%*
Let us note that; anda, are both proportional tey. Many
remarkable cancellations occurred to cancel the terms pro- K
portional to »? and 7°. As for the 4PN-level coefficierds +27’k20 Xa-
=Xas, its first three partial contributionas;, as,, as; are
known, but its last coefficierds, is unknown.as is a poly-  Note that the expression confirms that the termg?, 7°
nomial of order at most 4 im with a vanishing term<2°  and »* are sub-dominant.
(this can beexplicitly checked as the two-body Hamiltonian ~ Based on the above results we guess the range of plau-
in the test-mass limiy=0 is known up to all ordej)sAs we  sible values for the parametég to be[0,250. However,
said above, we expect, as it is the case at lower orders, that imhile exploring robustness we would like to vdy beyond

(4.25h

as the termo 5! will dominate. Let us denote this reasonable range subject to the condition that the poten-
, tial remains regular. This condition implies tHai= — 50 as
ank=bnk7+O(7%), n=2. (423 smaller values obs introduce poles in the Padepproxi-

. . . mated version ofA(u). Note, however, that all the known
The numerical values of the parametdrs are given in

successive PN approximations suggest thatltfie are all
I:gli); _'?‘;t;re Sltuveg'ndgeg]deega{éol;scﬂgs(s)'r:)ltehga;[;i:nfh:tx%bep05|tlve so that the consideration of negative value®pHf
. o test robustness against extreme behavior of the potential.

columnb,,; of Table | seems to give a good approximation of
the final, total value ob,. This would suggedbs=250 as a
possible value.

Let us now display a morexplicit form (for the parts In Ref. [11] it was argued that we should expect a
which are knowi of the 4PN coefficiena5=2f<‘:0a5k. To  (simple pole in the flux function as a function of

B. Location of the pole in energy fluxcp

064028-9
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v=(Mw)'? (4.26) combinationd= £+ 2« + { of the three coefficients, « and
{ associated with three different kinds of terms. From Eq.

wherew is the orbital frequency, at the location of the light (10.6 of Ref.[24] and more explicitly from work in progress
ring. It was further shown that factoring out the pole from[27] (which uses the generalized Hadamard regularization of
the post-Newtonian expansion of the flux before constructingref. [16]) it follows that the value o contains a logarith-
its Padeapproximation accelerates convergence to the fits tenic term in addition to a term of approximate valuel.
the numerical flux. What happens when we “flex” the posi- This motivates us to suggest that a variation range by a factor
tion of this pole away from its known test-mass value, or itsof order 10(with both positive and negative sigris a very
conjecturedn-dependent 2PN location? In the test-mass apgenerous range fo#, which is expected to be “of order
proximation, that isy— 0, the location of the pole in the flux unity.”

function is atvgo,ez 1/\/3. When 7 is different from zero How large can the magnitude éfbe without introducing
Ref.[11] argued that a good approximation to the location ofany spurious poles in the P approximant of the flux? The
the pole is given by answer is that the variation af is bounded from below at

0= —5 because foW<—5 there is a spurious pole. How-
ever, for value®>0, even as large as 30there seems to be
, 1 0 no irregular behavior of the P-approximant flux. Thus, in our
Upole:ﬁ —35 | “Vpod 17016 (47)]. test of robustness we take the minimal rangegofo be
1- 367 [ —5,10 and we also explore the values @f 10.

1 1/2
1+ §7]

(4.27

The location of the pole can significantly change the value of
the Padeapproximant of the flux function in the physically tro

relevant region of the variable (see belowy. For this reason ing a non-zero value o, goes against the spirit of the EOB

it is important to move the pole away from its predicted {esummation, because it takes away a part of the basic EOB
value and assess how such a shift would affect the detect-

- . : . . radial potentialA(u) to replace it by a modification of the
ability of the signal. In this work we modify the location of . ) .
the p)gle by intr%ducing the parametss: fy centrifugal part” of the potential.[See Eqs(3.3)—(3.6).]

Distributing the 3PN effects betweéx(u) and the centrifu-

gal potential is undesirable because it goes against “resum-
(4.28 ming” all effects in one object: namelg(u). Therefore we
continue, as if5], to fix z;=0 and this choice simplifies the
constraint Eq(3.2) to

D. Modification of the two-body Hamiltonian: z, or &,

The 3PN extension of EOB opened the possibility of in-
ducing two free parameters andz,. It is clear that tak-

7
cp _ Upole
Upole” T4 cp

Based on the fact that differs, when»=1/4, from the
test mass valuegole by =16%, ana priori plausible range 3
of variation ofcp is =0.2. We also explored larger variations 47,4+ 3z3= 24( 1- 2 7;) 7. (4.29
of cp, namely in the rangg—0.5,+0.5], which in the com-

parable mass case amounts to varying the original 2PN polghjs leaves us with only one 3PN flexibility parameter linked

from 0.6907 in the rangg0.4605,1.381% Actually, values o this possibility and it is convenient to parametrize it by
of cp smaller than—0.2 seems to have little effect on the jntroducing az, such that

overlaps.[Note that whencp tends to—1 this pushes the
pole tovpoe— +.] If Cp is taken to be greater than about

0.5 then the location of the pole in the flux will be at 2= {225, (4.309
<50 SO that we will not be able to compute the phasing of
the waves. This is why we restrict the valuesf to be 23:(1_472)2;, (4.30b
smaller than about 0.5.
where
C. Unknown third post-Newtonian energy flux 2252(4_37]). (4.3)

To estimate the possible range for the unknown parameter
0, let us go back to Refl24] where this arbitrariness is Making use ofz;=0, and the above parametrization, the
pointed out and discussed. The parameteis the linear Hamiltonian Eq.(3.3) reads

- T I B O
Her(rPr Py :2) =\ A(r)| 1+A(r)D(r;{p) Pt 2t 2 APt TR (4.32
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where G. Transition between plunge and coalescendg,ansition

In the EOB approach the equations representing inspiral
Ar)=1- E+ 2—77+ ay z(%_ 4_1772) are continued through the plunge and eventually matched to
ro 3 4 13 32 . the quasi-normal modes of the final black hole near the light
(4.333 ring. The exact frequency where this happens cannot be de-
cided by the formalism and hence one would like to examine

B B . the effect on the waveform by changing the frequency of
D(r;{,) t=1+ 6_7’+4(26 3m)n—3(4 37;)(2. transition between plunge and coalescence and subsequent
r2 2r3 ringing or, equivalently, stopping the plunge at a point dif-

(4.330  ferent from the point where the EOB waveform is naturally
terminated. In the EOB approach the waveform is naturally
The values off, equal to 0 and 1 correspond to the simpleterminated when the radial coordinate gets close to the value
choicesz,=0 andz;=0, respectively. Its variation is of or- Mightring JiVEN by a solution to Eq(3.15. In the current
der unity to cover this interval and we take its natural rangepaper we alter the radial location of the light ring by intro-
to be[—2,2]. ducing the parametef,ansiion given by

E. Flexibility parameter for non-adiabaticity fyonadian Fightring ight ring( 1 + Turansition - (4.39

The current version of EOB templates chooses the sim- Negative values of the paramefgy,siionare rather mean-
plest treatment of non-adiabatic effects. In the present studyngless since the EOB approximation is expected to break
we would like to look at a modification of this choice and to down for values of the radial coordinate less thag; ring-
this end we introduce the paramefgjynagian in the expres-  We therefore allow only positive values and vy sition in
sion for the angular damping forcé'¢ appearing in Eq. the range[0,1]. Note, however, that the variation in this
(3.8d. More precisely, we modify the current “minimal” parameter is going to seriously affect those systems which
radiation reaction using merge in a detector’s sensitivity band since a positive value

for this parameter means that we will in effect be discarding
. - (Au?)’ 5 power in the final phase of the signal. Indeed, in this work,
Fo—Fp| 1= Frnonadiag 1+ X Py | |-

(4349 we do not match the plunge waveform to the quasi-normal
mode expected to ensue soon after. This is because our ear-
lier work in Ref.[7] has shown that these modes do not
contribute significantly to the SNR for those systems whose
plunge occurs in the detector’s sensitivity band.

The combination of factors factored Ity agian Vanishes in
the adiabatic approximatiofsee Eq.(3.143]. The assump-
tion of adiabaticity is valid for most of the inspiral regime
and deviates from it only close to the last stable orbit. The
modification(4.34) is a simple way of parametrizing the ef-

fect of different choices in the definition dﬁ, for orbital
motions which start deviating from adiabaticity. One gener- In this section we discuss the robustness of EOB wave-
ally expectsf yonadiap t0 b€ a parameter of order unity and it forms by comparing the standard fiducial 3PN EOB tem-
sufficesa priori to vary it in the rangg¢ — 1,+1]. While this  plates with flexed waveforms constructed by turning on the
is the primary goal, we explore a larger rangef Qfagiapin~~ flEXibility parameters discussed in the previous sections. We
our study of robustness. make two different types of comparisons to gauge the extent
to which various unknown flexibility parameters at third and
fourth post-Newtonian orders might affect the dynamics of
the two bodies and the radiation they emit. Our first compari-
The current version of EOB templates also uses a simplesfon consists of a visual inspection of the behavior of the
treatment of non-circular effeCtS, which we would like to relevant physica| quantity when a particu|ar f|ex|b|||ty pa-
reexamine here. This is accomplished via another flexibilityyameter is varied. This gives us an idea of the nature and the
parameteif yoncirc in the angular damping force. We modify extent of the variation involved while testing robustness. Our
the force in a manner similar to the previous case; that is W&econd Comparison goes beyond qua“ta[ive tests of robust-

V. HOW ROBUST ARE EOB TEMPLATES?
VISUAL COMPARISON

F. Non-circular orbits fyoncirc

use ness by quantitatively measuring tsiganof EOB templates.
5 More precisely, it consists of the computation of faghful-
F et . Pr (4.39 nessandeffectualnessf the fiducial EOB template with the
o0 N"”C”Cpiuz : ' flexed waveform and is explored in the subsequent section.
As in the previous case, varyinfgncirc in the range —1, A. Fourth post-Newtonian dynamics

+1] is expected to be a plausible way of mimicking non- |n Sec. IV A we introduced the parameteg which en-
minimal choices of the definition aof, for orbital motions  capsulates the unknown physical effects in the dynamics of
which start deviating from circularity. However, we do ex- the two bodies at orders higher than the 3PN order. The most
plore a larger range dfyoncirc IN OUr study of robustness.  relevant quantity that it affects is the potentia(u;bs)
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which occurs in the effective one-body Hamiltonian and the 1
effective metric. Among other thing&(u) governs the rate
of inspiral of the bodies and therefore the phase of the wave
form. 0.8 |
We begin our visual comparison by plotting the effective
potential A(u) at various PN orders including the 4PN order
for two extreme values dbs (bs=—50 andb;=500). Re- 0.6 f
call thatu=1/r=GM/|x;—X,| and thereforas—0 denotes =
the region when the two bodies are infinitely separated an<t
u=0.5 denotes the region when the two black holes ar¢ 04r
“touching” each other. The sensitivity of ground-based inter-
ferometers is best in the frequency range 40—400 Hz. For
candidate system of total mad$=20M this frequency 0.2

. 4
yy

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
L

range corresponds to a range for the frequency-related vat e
ablev, Eq.(4.26, that begins ab=0.2313 and terminates \}\
be_y()_ndz{iEN= 0.4457 [11] or f,,=286 Hz. Equivalently, 955 o =L = = =
this implies a range for the radius-related variablgusing u=1/r

Egs. (3.12—(3.13 to connectv and u], starting atu ) _ _

=0.05335 orr =1/u=18.7. The gray-shaded region corre- FIG. 1. The potentialA(u) is plotted as a functioru=1/r
sponds, when the total massé=20M,, to the frequency =GM/|x,—X,| at various PN orders. By varying the 4PN param-
band[65,239 Hz, centered at 150 Hz, in which the SNR et_er bs we more than cover the behawpr of both the second and
accumulated for inspirals is more than 80% of the total SNRthlrd post-Newtonian orders. In_aII the figures, for a total mislss

in the entire LIGO band. For the system (40,10M o) the =20My, the gray-shaded region corresponds to the frequency

band[ 65,235 H tered at 150 Hz, in which the si |-to-noi
above frequency band corresponds to 0.271280.4174, and[ 65,239 Hz, centered a Z, 1N WINEH Ie SIgna-tooise

. ratio accumulated for inspirals is more than 80% of the total SNR in
equivalently 0.07372u=<0.1777(or 13.56=r=5.63). The the entire LIGO band. The corresponding rangeuiis 0.07372

dashed vertical line afs,=0.2065 near the shaded region < ;< 1777 andr is 13.56=r=5.63. The dashed vertical line at

corresponds to the radial coordinatg,=4.84 at which the , _—0.2065 near the shaded region corresponds to the radial coor-

system reaches the last stable circular orbit. dinater ;,=4.84 at which the system reaches the last stable circular
It is important to note that th@lashed vertical line atuis,  orbit.

is invariant for systems of different masses but the shaded
region will change with the total mass, moving to the rightin yeality ¢ is different from zero? Obviously, the answer
with increasing mass. The sensitivity of the instrument isdepends on the extent by whichis different from zero. We
best for thosg systems for which the LSO is.close Ko ( vary 6 from —5 to +10 and plot the Newton-normalized
~20Mg) or within (M~30M) the shaded region. _ flux as a function of the invariant velocity parameterAs in

From Fig. 1 we draw three important conclusio(®@:The i 1 here too the shaded region corresponds to a frequency
potentials predicted by the two extreme valuedgtised in  hang[65,235 Hz around 150 Hz corresponding to the range
our study encompass the variations implied by the secong 71g9<;,<0.4174 when the total masd —20M, (as as-
and third post-Newtonian order) In the region where the g med in Fig. L The dashed vertical line is of course the
detector is most sensitive to binary black holes the agreemem@,emcityu at the last stable orbiv = 0.446 corresponding

between the different models is pretty godd. Even con- 4 v systems of equal magsdependently of the value of
sideration of extremely large positive values of the 4PN paspe total mass

rameterbs has little effect on the functioA(u). [This is due Figure 2 indicates the extent of variation caused by
to the fact that, after Padgy, the functionA(u) has a limit changing the value of. Clearly, negative values @ have a
whenbs—c.] Even variations beyond reasonable values ajarger impact on the flux than positive values. Indegé,
bs=—50 andbs=500 lead to an effective potential that is _ g |eads to much greater variation in the flux than even

within the range of variation caused by different post-— 4 10 The main message from Fig. 2 is that by varying
Newtonian orders. These observations already indicate thaf,qr the range- 5= #=<10 in our study of faithfulness and

we should expect the fiducial EOB template to mimic flexedggfectuainess we would in effect take into account the possi-

waveforms reasonably well. bility that the real gravitational wave flux be rather different
_ _ from that assumed in the effective one-body approximation.
B. Unknown third post-Newtonian energy flux @ (Note, however, that the differences within the most relevant

As mentioned in Sec. Il the gravitational energy flux atshaded region are only-=10%.) The variation in6¢ we
third post-Newtonian order has one undetermined parameté@nsider is far greater than the variation-o2 in the param-
0. We also argued in Sec. IV C that the magnitudefof eterd considered in Ref.2]. Note thaté is related to ou
should be of order 1. Since the flux plays a crucial role in thevia
phasing of the waves it is important to measure the effect of
this parameter. In other words what fraction of the signal-to- 5 1987 (5.1)

noise ratio will be lost by setting=0 in our templates while 1320
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n=0.25 shown by plotting the energy flux for four values of the
parametecy . We note that the curves change monotonically

as the value otp is changed, moving to the right for nega-

1.2 . ‘ —
gf'S . tive values ofcp and to the left for positive values. We have
. Lo changed the location of the pole by rougly 50% on either
L | —— 6=0 ;o ; ; ; . :
11 o3 R side of its nominal value. As mentioned before this amounts
Shsi Bl i/ to varying the light ring value ob in the range 0.4605
E / <Ujigntring< 1.3814. No calculation we are aware of suggests
' a larger variation in the location of the pole than considered
v

here. The curves do show a rather large variety indicating
that the location of the pole ia priori as important as the
other two parameters discussed before.

Foe/Fn

VI. THE SPAN OF THE 3PN EOB BANK: OVERLAP OF
FIDUCIAL TEMPLATE WITH FLEXED WAVEFORM

A. Faithfulness and effectualness
The ultimate tool for testing the robustness is of course
the overlap of template waveforms with flexed waveforms.
Given a fiducial templateT(t;p,) and a flexed signal

FIG. 2. Variation in theNewton-normalizefenergy flux emit- - ¢ -
ted by the system due to the 3PN parametéeing different from  S(t;py,75) their overlapO is defined as

zero. Clearly, negative values af have a greater effect on the
behavior of the flux as compared to the positive values. O(T,S)= (T.S) 6.1)
i (T TXS,S)
Indeed our range corresponds+®3.49< <11.5.
C. Flexibility parameter cp where the scalar product is defined as usual by the Wiener
. . f I
In Fig. 3 we plot the standard P-approximant flux at 3PN ormuta
order in the equal mass ca@e., n=0.25, solid ling. In the df
notation introduced in Sec. IV B this curve corresponds to _ J'w X6\ S £\
XY)=2 | —[X(HY*(F)+X*(f)Y(f)]. (6.2

(X.Y) oSh(f)[()() (HY(H)]. (6.2

cp=0. The effect of changing the location of the pole is

=0.25 ~ . ,
1 Herea denotes the Fourier transform of functiaft), that

1.2 H ] ~
| I is, a(f)=/"_a(t)exp(—2mnift)dt, a*(f) denotes complex
"""""""""" Cp=0.5 | L conjugation ofa(f) andS;(f) is the (one-sided noise spec-
=02 . |/ tral density of the detector. In computing overlaps we use the
14 °p=0-(;)2 - e initial LIGO noise spectral density of Reff7] given by
=== Cp=-0. | I
=0y - 4.64F\ 756 [ |42
= / 1 Sy(f)=1.44x 10—46[ ) +| = +3.25
W / A/ fi fi
Thy ] f\2
+2(—| [Hz %, (6.3
% fi
N - ~_- ‘If_, -
SS—====T ! wheref, =150 Hz. Since the noise curve rises very steeply
[ at low frequencies the lower limit of the integral in E§.2)
] does not have to be zero. It suffices to choose a lower limit of
o o1 05 03 oz ' o5 4_0 le S0 as not to lose more than 1% of the overlap for
binaries with total masM=50M, .

\"
. . _ FaithfulnessF is defined as the overlap maximized only
FIG. 3. The(Newton-normalizefienergy flux is plotted for dif-  gyer the extrinsic parameters of the template, which in our
case are simply a reference timg at which the template

ferent locations of the pole parametrized dyy. We vary the loca-
tion of the pole by about 50% on either side of its nominal Valuewaveform reaches a certain frequer(spy 40 Hz and the

predicted by the second post-Newtonian binding energy. The rang . -

of cp is perhaps far greater than what one could expect on physicashased)'“Ef of the signal at that time:

grounds and causes a great variation in the flux function. Note that

for cp=0.5 the pole is moved to = 0.4605 which is near but F= max|O(T,S)|.
tref Pref

still beyond the LSO.

(6.9
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Effectualness is defined as the overlap maximized over duced the concept of “useful cycles” as a measure of the
not only the extrinsic parameters but all the intrinsic param-effective number of cycles which dominate the overlap inte-
eters as well, which in our case are the two massesnd  gral. For instance, in the case of a 19,10M ;) system the

m, of the binary: number of useful cycles is:7.6. This means that it is crucial
to model the phasing of the signal during theB cycles
E= max |O(T,9)|. (6.5 around the peak of the SNR logarithmic frequency distribu-
trefs drefM1.My tion, i.e. aroundfp=165 Hz, but that a less accurate model

of phasing for the other cycles may be acceptable.

B. Matched filtering and signal-to-noise ratio

In searching for signals of known shape, such as chirping C. Span of a template bank

radiation from black hole binaries, one employs the method Stringent as it may sound, matched filtering is not totally
of matched filtering. For signals of known pattern, matchedrestrictive when dealing with a template bank rather than a
filtering is, in Gaussian noise background, a statistically opsingle template. To explain how a template bank is not as
timum strategy in which a data analyst computes the crosgestrictive as a single template we introduce the notion of
correlation of the template waveforii(t) with the detector span of a template banka the geometrical language of sig-
outputX(t). The analyst will not know before hand when the nal analysi§28] templates can be thought of as vectors—one
signal arrives or what its parameters are. Therefore, it is neosector for every set of values of the parametpgs If the
essary to take several copies of the template corresponding signal depends ol parameters then the set of all vectors run
different parameter valugs, and compute the correlation of over aK-dimensional manifold. Equatiof6.2) serves as a
each of those templates with the detector output at differengcalar product between different vectors and induces a natu-
time stepsty,ty, ... tx, ... . If detector output contains a ral metricgy, on the template manifold with the parameters
sufficiently strong signal resembling one of the templateserving as natural coordinates:
waveforms then the cross-correlation will exceed the rms
value of the correlation by a large amount, thereby generat- Or=(Te,To)y T Eﬂ 6.7
ing a trigger for the analyst. It is well known that the signal- km ko tm K opy '
to-noise ratiop of a templateTl with the detector output that
contains a signab of known shape is given by Though each template is itself a vector in the vector space of
all detector outputs, the set of all templates does not form a
(T,S)| 12 vector space. Therefore, when dealing with the problem of
=|O0(T,9)[(S,5)*~ (6.6 constructing a bank of templates one is really working with
only a subspace of the vector space. Moreover, one does not
work with the full template space either but, like in quantum
mechanics, with the set odys i.e. the set of vectors modulo
&heir lengths, which can be realized as the setainalized

T

Here (S,S)2 is the signal-to-noise ratio which would be
achievable by matched filtering if the detector output wer
correlated with the exact replica_ of _the_z signal hidden in the, 65 1 other words, we work on the unit sphere in the
n0|se.m0dulo the amplitude which is irrelevant. The abo\’qnitial vector space. When considering a submanifold on this
equation tells us that when we do not know the exact shapg here which isiotthe intersection of a linear space with the
of the signal, the signal-to-noise ratio gets degraded and onl nit sphere the metrig, ., gives only a local approximation

a fraction_ equal to the qverlap of the template used ‘T‘ thefo the vector product of the larger space, but it does not
search with the exact signal expected to be present in t:g '

. ! ) ndow the finite-dimensional submanifold with the correct
Qete_ctor_ output is what is re;over@ble. Thgs, W.h'le matche rojection of the metric structure of the larger space.
f||ter||_'1g IS an exqellent technique in deteptmg S|gnal_s burie In our search for gravitational-wave signals we choose a
N NOISe, dephasing of the template relative to the signal Caid of templates on the template manifold. If the templates
quickly degrade the quality of the putput: This can be readil are an exact replica of the expected signal then the density of
seen from Eq(6_.2) where the I_:o_urleamphtudea)f the em- - ihe grid points is so chosen that no signal vector on the
plate and the signal are multiplied together before being in

i ted the f Th litud h f manifold has an overlap with the “nearest” grid point
egrated over the frequency. 1hese amplitudes conerently aQG, 4 o1 than a certain fraction called tivenimal matchMM

up only when the phase of the template coincides with that o 9,30, typically chosen to be either MM0.965 or possibly
the signal at all points in the frequency space. Even a sma M=0 95

initial difference in phase can accumulate and kill the inte-

gral since the signals last for a large number of cycles—more >

than 60 cycles for (18 ,10M ) black hole binaries and up Temrglla?zbanLO(T,Sﬂ MM. ©8

to 1000 for NS-NS binaries in the sensitivity band of the

LIGO interferometers. This is the motivation for building  The above inequality will be satisfied not only for signal
template waveforms that are as close to the true general relaectors on the template manifold but also vectors thabére
tivistic signal as possible. Note, however, that the weightinghe manifold but close to it. In other words, the template
of the overlap integral Eq6.2) by the inverse of the noise bank obtains a minimal match for all signals located in an
spectral density means that not all cycles in the signal anéhfinite dimensional “slab” around th&-dimensional tem-
the template are equally important. Referen@d] intro-  plate manifold but sufficiently close to it. This slab defines
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TABLE Il. Robustness of the 3PN EOB model with respect to paramétgr®, {, andcp. We give thefaithfulnessF, effectualness
£, the total mas$1’ and the symmetric-mass ratig that maximize the overlap while finding effectualness. We vary each parameter in the
nominal range but also quote extreme values of the parameters up to which an overlap of 95% or greater is obtained. Some parameters, for
examplebg, will be bounded either from below or above since the physical quantity it participates in may be irregular for such values,
thereby affecting gravitational-wave phasing.

System (10M o,10M o) (15M 5,15M )

Parameter F & M',7") F & M',7")

bs=—50 0.9754 0.9944 (20.25, 0.2479) 0.9728 0.9953 (30.41, 0.2494)
bs=+50 0.9431 0.9850 (19.76, 0.2499) 0.9448 0.9943 (29.25, 0.2499)
bs=+190 0.8566 0.9663 (19.61, 0.2500) 0.8855 0.9829 (28.92, 0.2500)
bs=+250 0.8359 0.9633 (19.63, 0.2485) 0.8476 0.9766 (28.54, 0.2500)
bs=+300 0.8014 0.9558 (19.48, 0.2500) 0.8363 0.9753 (28.46, 0.2500)
bs=+500 0.7849 0.9498 (19.46, 0.2499) 0.8181 0.9694 (28.46, 0.2499)
cp=—02 0.9988 0.9999 (19.97, 0.2500) 0.9993 0.9998 (29.96, 0.2500)
cp=+102 0.9941 0.9989 (20.17, 0.2469) 0.9975 0.9999 (30.31, 0.2469)
g=-5 0.9358 0.9949 (20.27, 0.2500) 0.9642 0.9971 (30.77, 0.2497)
0=+10 0.9946 0.9982 (19.97, 0.2500) 0.9964 0.9999 (29.86, 0.2498)
{=—2 0.9999 1.0000 (20.01, 0.2497) 0.9998 0.9998 (30.02, 0.2493)
{H==+2 0.9999 1.0000 (20.01, 0.2500) 0.9998 0.9999 (30.08, 0.2490)

the span of the considered template bank, s&/T,MM]. 0.96%=0.93. So the actual loss in the event rate might be
Here, for simplicity we introduce one flexibility parameter at[1—(0.965)%]=20%.
a time and explore successively the slab along the directions
defined by each extra parameter. It therefore suffices to con-
sider only those signals that live in & (-1)-dimensional
space around the template manifold, which particufar The main conclusion of this study is that the standard 3PN
+1, depending on the flexibility parameter in question. TheEOB template bank, without any additional parameters,
spanS[T,MM] of a template bank along a given flexibility Spansthe extensions separately implied by Seven flexibil-
direction is then defined as the maximum domain in the cority parameterghat account for theinmodelled effects in the
responding K + 1)-dimensional space within which the tem- EOB formalism, affecting both the dynamics and radiation
plate bankT obtains a given minimal match MM. In this flux This is demonstrated in Tables Il and Il where we have
work we estimate this domain by computing the range of theconsidered two archetypal binaries expected to be observed
flexibility parameters within which the minimal match is by initial interferometers—the first consisting of a pair of
achieved between the fiducial template and flexed wavelOM¢ black holes and the second consisting of twd/15
forms. black holes. In Table Il we have explored the faithfulness and
When the template is not a true representation of the sigeffectualness of the 3PN EOB template bgokir fiducial
nal, the signal vectors run over a manifold that does notemplatg with respect to the four important flexibility pa-
exactly coincide with the template manifold. What is re-rameterds, cp, 6, and{, and in Table Il the same, but for
quired for signal detection is that the span of the templatéhe less important flexibility parametefgonagian: fnoncirc:
bank includes the signal manifold. Of course, if the minimaland f yansition-
match is sufficiently small then any template bank would First, we discuss the results obtained by varying the pa-
span the signal manifold. Successful signal detection, withrameters over the range in which they are expected to lie.
out undue loss of signals, requires the signal manifold to bé&learly, the 4PN parametdas has the strongest influence
a submanifold ofS[T,0.95 (i.e., 95% minimal matchor, followed by the parametersy,# and {,. Indeed, the faith-
better, ofS[T,0.965 (i.e., 96.5% minimal matgh fulness is not always larger than the fiducial minimal match
Finally, let us note that while the span is defined withof 0.965 when these parameters take values over the range in
respect to a continuum of template bank, in reality we willwhich they are expected to vary. However, for
have to be content with a finite lattice of templates. There{15M,15My) systems theeffectualnessioes easily meet
fore, it is not guaranteed that tiimaximum of th¢ overlap  the usual requiremer&>0.965 forall valuesof bs [includ-
of a finite template bank with an arbitrary flexed signaling bs>500, in view of the fact, visible on Fig. 1, that
within the spanS[T,0.965 will be greater than 0.965. If the A(u;bs) monotonically reaches a smooth limit ds—
template lattice is chosen such that the minimal match is at-o]. In the case of (1P ,10M ) systems the situation is
least 0.965 then the maximum overlap reached within the bit more involved:(1) when bs<200, the usual require-
spanS[T, 0.9695 of the template bank might be reduced to ment on effectualness is met, b( when bs>200, the

D. Span of third post-Newtonian EOB template bank
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TABLE Ill. Robustness of the 3PN EOB model with respect to paramét@fsian: fnoncire:» @NAT yansition- We give thefaithfulnessF,
effectualness, the total masdM’ and symmetric-mass ratig’ that maximize the overlap while finding effectualness. We vary each
parameter in the nominal range but also quote extreme values of the parameters up to which an overlap of 95% or greater is obtained.

System (10M ,10M &) (15M 5,15M )

Parameter F £ (M',n") F £ (M',n")
Frionadias=—1.0 0.9976 1.0000 (20.04, 0.2491) 0.9967 1.0000 (30.11, 0.2486)
Frionadian =+ 1.0 0.9979 0.9999 (20.00, 0.2500) 0.9964 0.9999 (30.01, 0.2496)
JFroncie=— 1.0 0.9998 0.9998 (20.09, 0.2473) 0.9997 0.9999 (30.02, 0.2500)
FNoncire= 1 1.0 0.9998 0.9999 (20.10, 0.2472) 0.9996 1.0000 (30.04, 0.2500)
Frnition=0.5 1.0000 1.0000 (20.00, 0.2500) 0.9967 0.9994 (30.03, 0.2498)

anciion=1.0 0.9877 0.9878 (20.01, 0.2500) 0.9531 0.9606 (30.26, 0.2498)

effectualness drops slightly below 0.965. However, for the E. How could the match be good when the flux functions look
“plausible” value bs=250 (see Sec. IYthe overlap is still so very different?

larger than 0.963, and even fbg=500 (and probably for In Sec. V we noted that the behavior of the energy flux

any largerbs for the reason mentioned abouwee overlap is Fpn(U)/FN(U) could be significantly different from their

still as large as 0.95. Note also that, in many cases, faithful- . .

I o usual behavior when the flexibility parameters are set to ex-
ness is itself larger than the minimal match and effectualness . . )
is close to 1 freme values in their expected range. When the flux is so

) . . o . different how is it still possible to achieve good effectual-
In view of this special sensitivity tds, we explored in ness?

detail thebs dependence of overlaps and found a simple 1o answer lies in several aspects of the problem: First,
modification of the standard 3PN EOB templates that allowgyne should note that, after factorization of the crucial “qua-
for meeting the desired requiremefit-0.965 forall values drupolar flux” <%, the changes in the Newton-normalized
of bs. If one constructs a fiducial template bank by using asijux are less than 10%. Second, one should remember that
EOB potential the bs-flexed” function Agi(u)  for the massive binaries considered here, the number of
=A,p(U;bs=50) [instead ofAzp\(U)], we have found that “useful” gravitational-wave cycles [31] corresponding
it leads to effectualness larger than 0.965 in all cdaed in  roughly to shaded regions in Figs. 2 and 3 is quite moderate
particular for the (1M,10Mg) system and-—50<bg (=8). Third, one should note that one of the crucial things
=250]. Furthermore, as illustrated in Table 1V, the span ofaffected by the flux is the total chirp time, or the duration, of
this new fiducial template bank now extends over all thethe waveform. For instance, if the flux increases more rap-
values ofb;: —50<b;=<2000. In the case of the less impor- idly when one of the flexibility parameters is nonzero, as in
tant parameter§yonadiab: fnoncires @NA T gansiions WE Observe  the case o= —5, then the system loses energy more rap-
that the faithfulness is itself larger than our minimal matchidly and therefore the waveform lasts shorter. However, this
except wherf ;. nsitior= 1 for the (1M ,15M o) system. shortening of the waveform can also be achieved by making
As mentioned in Sec. IV we have also explored robustthe binary heaviefor lengthened by making asymmetric bi-
ness beyond the range in which the flexibility parameters arearies of the same total mass or simply lighter binaries
expected to lie and yet achieve the required effectualness. IRecall that the effectualness is obtained by maximizing the
Table IV we summarize the range over which the differentoverlap over both the extrinsic and intrinsic parameters.
parameters are expected to vary together with the range ovéihus, in the process of maximization one can absorb a
which they can be varied yet maintain an effectualness othange in time scale by choosing a binary of different total
0.965. This table shows that the span of the 3PN EOB bankiass and mass ratio. This explanation is borne out by a
of templateq(or for that matter, thds=50-flexed 3PN one  comparison of the trend of the curves in Figs. 1, 2 and 3 with
in the other flexibility directions extend well beyond the ex- the corresponding rows in Table Il. For instance, effectual-
pected plausible ranges. ness for>0 (smaller flux at a giverv than when6=0)

TABLE IV. The natural range for the flexibility parameters expected on physical grounds is shown together with the actual span for
which the effectualness is greater than 0.965 for equal mass binaries of total nvissad 3M ¢, . As discussed in the text the span in
the by direction refers to a bank of templates constructed with slightly modified EOB potefiigli).

Range/span bS Cp 0 §2 fNonAdiab fNonCirc ftra\nsition
Expected range [0,25Q [-0.2,0.2 [—=5,10] [—2,2] [—1,1] [—1,1 [0,0.5]
Spans(T,0.965) [ -50,200Q [-0.5,0.5 [—5,>1000] [ 5,100 [—20,15 [—50,50 [0,1]
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requires a system of total mass lighter than the original syslarge statistical errors in the determination of the individual
tem while forcp>0 (greater flux at a givew than when masses. Only the combination = %*°M might be reason-
cp=0) one requires a heavier system than the original oneably free of statistical errors. A more detailed analysis is
A final comment: The insensitivity of the effectualness toneeded to assess the total errors combining systematic and
the location of the pole can be interpreted to mean that thetatistical effects.
factorization by the pole is not as crucial an element of the We note in passing that a useful consequence of the
gravitational-wave flux resummation as perceived[1i].  highly elongated structure of the overlap contours is to allow
This suggests that it would be interesting to study the perfora fast first-cut data analysis based on the lower-dimensional
mance of templates which do not use such a factorization demplate bank defined by fixing, e.g. to 1/4, and varying
the flux function. We leave this study to future work. only M=m;+m,. The choicen=1/4 would be sufficient to
cover systems in a large domain of mass space around the
F. Systematic versus statistical errors in the estimation of  diagonalm;=m,. It can then be complemented by consid-
parameters ering a few other simple values af. Each such lower-

Together with the value of the effectualness, the table§imensional(approximatg template bankcorresponding to
also show the template parameters that obtain the maximize®?me value o) finally depends on only one universal func-
overlaps. A quick inspection reveals that the symmetric mastion of one variable, the scaled phasing functipi(t), ob-
ratio » of the template that obtained the maximum match istained by integrating, once and for all, the EOB equations of
either equal to the actual value of 1/4 or when different frommotion expressed in terms of scaled Variab’fest/M, r
1/4 the fl’aCtiona| diﬁerence iS |eSS than 0.1%. Th|S iS prOb-z|X1_X2|/G|\/|' for a particu|ar7’, extending to EOB the
ably explained by the following: We study templates as funcidea ofmother templatefor the post-Newtonian modés3].
tions of m; andm,. But the functionT(my,m) is invariant  The bank of templates is then built from the shifted and
under the permutatiom,—mj, and therefore the overlap scaled functione,[(t—to)/M]. This fact should simplify
O(my,my)=(T(my,my),S) always reaches an extremum fyrther the filter bank construction similar to the case of
(along the linesm;+m,=const) atm;=m,, i.e. at 7  Newtonian signals which were expressible in terms of the
=1/4. If these extrema are all maxingas a function of the universal function¢N(f)fx—(—f)5’8. Indeed, the fact that

ratio my /my, for a fixed value ofm, +my), the real maxi- s myst be so is implicit in the nature of the template bank
mum of the overlap must lie somewhere along the “ridge” .onsiructed by several authdisf. second reference if80]

m;=mj,. Note, however, that there might as well be domains, 4 Ref[34]) who find that a small range of is needed for
of parameter space where the overl@fm,,m,) reaches a 4 large range of the total mass.

minimum along the ridge am;=m, (at fixed mass scale
m, +my=const). The total mass is different from the true
total mass at worst by about 1.5%. These percentages, of
course, do not give us a measure of the accuracy of estima- In this study we have explored the robustness of 3PN
tion of the parameters, rather they tell us the exterbbiab  EOB templates. We introduced seven flexibility parameters
induced in the estimation. Since our template bank containthat affect the two-body dynamics and radiation emission
waveforms that are not exactly the same as the “true” sig-and varied each of them separately over a range that can be
nals, the parameters that maximize the overlap are differemeasonably considered to be large enough to encompass un-
from the real values, meaning there is a systematic error iknown and unmodelled PN effects. The parameters intro-
the estimation of parameters and the percentages we hadeced are as followsa) a 4PN parametens that alters the
quoted are upper limits on treystematics two-body effective metric and the EOB potenti(u). We

The statisticalerrors in the estimation of the intrinsic pa- conducted a special study of the structure of 4PN contribu-
rametersmy,m, are determined by the shape of the leveltions to the Hamiltonian to estimate the plausible range of
contours of the overlap function between the templatehe parametebs measuring them-50<bs<250). (b) The
T(my,my) and the signal, which we assume here to be partinknown 3PN parameter affecting the nature of the energy
of the template bankS=T(m{,mY). For a high signal-to- flux emitted by the system«{5=< 6=<10). (c) A parametet,
noise ratio this shape is an ellip&te error ellipsewhich is  that changes)(p?p?) terms in the two-body Hamiltonian
determined by the information matrix, i.e. the metric Eq.(—2<¢,<+2). (d) The location of the pole in the energy
(6.7). We have confirmed that even for the massive binanflux controlled by a parametetp. (e) Three parameters
systems that we consider, these error contours are qualitéz, . qian, frnoncire» @Nd T yansiionthat are varied so as to inflict
tively well described by the analytical results [82], i.e.  atleast a factor two change in the modelling of non-adiabatic
that, when represented in the\(,#) plane, whereM  effects, non-circular effects and the transition from inspiral to
= 7°™M is thechirp mass, they are highly elongated ellipsesplunge, respectively.
with a major axis roughly along the direction and a minor We then compared the faithfulness and effectualness of
axis along the M direction. When represented in the standard fiducial EOB templatéthat is, EOB templates in
(my,m,) plane these error contours have the shape of thinvhich all the above parameters are set equal to)zeith the
crescents orthogonal to the diagomaj=m,. A bad conse- flexed signals obtained by switching on the flexibility param-
quence of this fact is that there can be a large statistical erraters one at a time. Based on the study conducted in this
in the determination o [32], and therefore correspondingly work we find that the third post-Newtonian EOB templates

VII. CONCLUSIONS
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lead to effectualness larger than 96.3% in all casesen the various non-zero flexibility parameters might be in dif-
bs<250). For the (1M,10My) systems, ands larger ferent “directions.” An attempt to define a rather phenom-
than 190 the effectualness drops below the usual requiremeanological signal was the main focus of RE2]. In this
£>0.965, though it remains very close to it, being largerpaper, we have focussed on a differéntnimalistic) attitude
than 0.96.(Even whenbg gets very large the effectualness and have not looked into these matters. We intend to address
never drops below 0.9b. this issue in a future work.

There are two ways of improving this situation linked to  To conclude: the 3PN EOB templatgsossibly suitably
the special sensitivity tdbs. One way is to augument the bs flexed are good models to use for black hole binary
standard 3PN bank of templat¢based onAsp\(u)] by  searches in the interferometer gravitational-wave data be-
(when it is neededa second bank of templates, based oncause their “span” in signal space seems large enough to
Ajou)=A,p(U;bs=100). We have checked that this encompass most of the plausible modifications one can think
“doubled” bank of templates allows one to span all values ofof making in the current EOB framework. Moreover, as we
bs with overlaps better than 0.985. A second wayhich ~ emphasized, the highly elongated shape of overlap contours
minimizes the total number of templates needsdo work in the (M,%) plane suggests the interesting possibility to
in all cases with only one specifios-flexed bank of tem- drastically reduce the number of EOB templates by using a
plates[namely the one based on the “intermediate” EOB small number of universal phasing functiomi(f) with a
potential Aso(u) =Asp(U;bs=50)]. The remarkable agree- gmq)| giscrete set of values of prominently, includings
ment between numerical and analytical descriptions of circu= 1,4
lar orbits near the LS(9,10], suggests that it might be pos-
sible soon to use numerical simulations to map in detail the
EOB potentialA(u) near the LSO. Hopefully this might lead
to a numerical estimate of the valuelnf thereby sharpening We are grateful to Luc Blanchet and Alessandra Buon-
the preferred choice of bank of templates. anno for a critical reading of the manuscript and comments.

There is a caveat in the current evaluation which we musB.S.S. thanks the Max-Planck Institutr fGravitationsphysik
bear in mind, namely that we vary the flexibility parameterswhere most of the work reported here was done while the
only one at a time. It is possible that the actual physicakuthor was on a sabbatical. B.R.l., P.J. and B.S.S. thank the
signal has more than one of the flexibility parameters noninstitut des Hautes Etudes Scientifiques for hospitality during
zero. In that case our fiducial templates might not be able téhe course of this work. This research was in part funded by
achieve the desired span. This is because the “shifts” in th€PARC grant PPA/G/0O/1999/0021tb B.S.S) and by the
fiducial template parameters needed to separately correct fétolish KBN Grant No. 5 PO3B 034 2@o P.J).
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