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Triple Minima in the Free Energy of Semiflexible Polymers
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We study the free energy of the worm-like-chain model, in the constant-extension ensemble, as a
function of the stiffness � for finite chains of length L. We find that the polymer properties obtained in this
ensemble are qualitatively different from those obtained using constant-force ensembles. In particular, we
find that as we change the stiffness parameter, t � L=�, the polymer makes a transition from the flexible
to the rigid phase and there is an intermediate regime of parameter values where the free energy has three
minima and both phases are stable. This leads to interesting features in the force-extension curves.
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(magnetic, optical, mechanical, etc.). In such experiments
either one can fix the force on the bead and measure the

where in the numerator only paths �xx�s�, satisfying
�xx�0� � �xx0, �xx�L� � �xx, ûu�0� � ûu0, and ûu�L� � ûu, are
The simplest model for describing semiflexible poly-
mers without self-avoidance is the so-called worm-like-
chain (WLC) model [1–3]. In this model the polymer is
modeled as a continuous curve that can be specified by a
d-dimensional (d > 1) vector �xx�s�, s being the distance,
measured along the length of the curve, from one fixed end.
The energy of the WLC model is just the energy due to
curvature and is given by
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where ûu�s� � @ �xx=@s is the tangent vector and satisfies
ûu2 � 1. The parameter 
 specifies the stiffness of the
chain and is related to the persistence length � defined
through hûu�s� � ûu�s0�i � e�js�s0j=�. It can be shown that

 � �d� 1��=2.

The thermodynamic properties of such a chain can be
obtained from the free energy which can be either the
Helmholtz’s �F� free energy or the Gibb’s �G� energy. In
the former case one considers a polymer whose ends are
kept at a fixed distance r [one end fixed at the origin and the
other end at �rr � �0; . . . 0; r�] by an average force h fi �
@F�r; L�=@r, while in the latter case one fixes the force and
the average extension is given by hri � �@G� f; L�=@f. It
can be shown that in the thermodynamic limit L! 1 the
two ensembles are equivalent and related by the usual
Legendre transform G � F� fr. For a system with finite
L=�, the equivalence of the two ensembles is not guaran-
teed, especially when fluctuations become large. We note
that real polymers come with a wide range of values of the
parameter t � L=� [e.g., � � 0:1 �m for DNA while � �
1 �m for actin and their lengths can be varied] and fluc-
tuations in r (or f) can be very large. Then the choice of the
ensemble depends on the experimental conditions.
Experiments on stretching polymers are usually performed
by fixing one end of the polymer and attaching the other
end to a bead which is then pulled by various means
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average polymer extension or one can constrain the bead’s
position and look at the average force on the polymer. In
the former case, the Gibb’s free energy is relevant, while it
is the Helmholtz in the second case. This point has been
carefully analyzed by Kreuzer and Payne in the context of
atomic force microscope experiments [4]. Theoretically,
the constant-force ensemble is easier to treat, and, in fact,
an exact numerical solution has been obtained [5] (though
only for t
 1�. Data on force-extension experiments on
DNA [6] have been explained using this ensemble [5]. The
case of the constant-extension ensemble turns out to be
much harder and no exact solution is available. The t! 0
and t! 1 cases correspond to the solvable limits of the
hard rod and the Gaussian chain. The small and large t
cases have been treated analytically by perturbation theory
about these two limits [7–9]. Numerical simulations for
different values of t have been reported by Wilhelm and
Frey [10], who have also obtained series expansions valid
in the small t limit. A mean-field treatment has also
recently been reported [11].

In this Letter we probe the nature of the transition from
the Gaussian to the rigid rod with a change of stiffness as
shown by the form of the Helmholtz free energy of the
WLC model (or equivalently the distribution of end-to-end
distance). Extensive simulations are performed in two and
three dimensions using the equivalence of the WLC
model to a random walk with one-step memory. We
find that, over a range of values of t, the free energy has
three minima. This is verified in a one-dimensional version
of the model which is exactly solvable.

We first note that the WLC model describes a particle in
d dimensions moving with a constant speed (set to unity)
and with a random acceleration. It is thus described by the
propagator

Z� �xx; ûu; Lj �xx0; ûu0; 0� �

R� �xx;ûu�
� �xx 0;ûu 0�D� �xx�s��e�H=kBTR

D� �xx�s��e�H=kBT
; (2)
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FIG. 1. Monte Carlo data for p�v; t� for the two-
dimensional WLC for values of t � 10���; 5; 3:33; 2, and 1�r�.
The inset is a blowup of curves in the transition region (t �
4; 3:33; 2:86) and clearly shows the presence of the two maxima.
Note that because of �v symmetry, we have plotted data for
positive v values only. For the fits at large and small t see text.
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considered. It can be shown that the corresponding proba-
bility distribution W� �xx; ûu; L� satisfies the following
Fokker-Planck equation [7,8]:

@W
@L

� ûu � rxW �
1

2

r2
ûuW � 0 ; (3)

where r2
ûu is the diffusion operator on the surface of the unit

sphere in d dimensions. The discretized version of this
model is the freely rotating chain (FRC) model of semi-
flexible polymers [1]. In the FRC one considers a polymer
with N segments, each of length b � L=N. Successive
segments are constrained to be at a fixed angle, �, with
each other. The WLC model is obtained, in the limit �;
b! 0, N ! 1 keeping � � 2b=�2 and L � Nb finite.

Here we will consider the situation where the ends are
kept at a fixed separation r [with x0 at the origin and �xx �
�rr � �0; . . . 0; r�], but there is no constraint on ûu and ûu0 and
they are taken as uniformly distributed. Thus we will be
interested in the distribution P�r; L� � h�� �xx � �rr�i �R
dûuW��rr; ûu; L�: this gives the Helmholtz free energy

F�r; L� � � log�P�r; L��. For the spherically symmetric
situation we are considering, P�r; L� is simply related to
the radial probability distribution S�r; L� through S�r; L� �
Crd�1P�r; L�, C being a constant equal to the area of the
d-dimensional unit sphere. It may be noted that the WLC
Hamiltonian is equivalent to spin O�d� models in one
dimension in the limit of the exchange constant J ! 1
(with Jb � 
 finite) and all results can be translated into
spin language. However, for spin systems, the present free
energy is not very relevant since it corresponds to putting
unnatural constraints on the magnetization vector.

Numerical simulations.—The simulations were per-
formed by generating random configurations of the FRC
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model and computing the distribution of end-to-end dis-
tances. To obtain equivalence with the WLC model the
appropriate limits were taken. We note that, because these
simulations do not require equilibration, they are much
faster than simulations on equivalent spin models and
give better statistics. The number of configurations genera-
ted was around 108 for chains of size N � 103. Increasing
N did not change the data significantly. As a check on our
numerics we evaluated hr2i and hr4i. Using Eq. (3) and
following [12] we can compute these (in all dimensions):
hr2i �
4
L
d� 1

�
8
2�1� e�

�d�1�L
2
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�d� 1�2

hr4i �
64
4�d� 1�
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e�

dL
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16
2L2�d3 � 3d� 2�

d�d� 1�4
:

(4)
In fact, it is straightforward to compute all even moments,
though it becomes increasingly tedious to get the higher
moments. Our numerics agrees with the exact results to
around 0:1% for hr2i and 0:5% for hr4i.

The function P has the scaling form P�r; L� �
1
Ld
p�r=L; L=�� and we will focus on determining the

function p�v; t� [13]. In Figs. 1 and 2, we show the results
of our simulations in two and three dimensions. At large
values of t there is a single maximum at v � r=L � 0
corresponding to a Gaussian distribution, while at small t
the maximum is close to the fully extended value of v �
�1. The transition is first-order-like: as we decrease t,
at some critical value, p develops two additional maxima
at nonzero values of v. Further decreasing t weakens
the maximum at v � 0 until it finally disappears and
there are just two maxima which correspond to the
rigid chain.

For the limiting cases of small and large values of t there
are analytic results for the distribution function, and, as can
be seen in Figs. 1 and 2, our data agree with them. For large
t we find that Daniels’ approximation [7], which is a
perturbation about the Gaussian, fits the data quite well.
In the other limit of small t the series solutions provided in
[10] fit our data. For intermediate values of t neither of the
two forms are able to capture, even qualitatively, the fea-
tures of the free energy. Specifically, we note that all the
analytic theories (perturbative, series expansions, and
065502-2
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FIG. 3. The exact distribution p�v; t� of the one-dimensional
WLC [Eq. (6)] for different values of t (10; 5; 3:33; 2; 1). Even
for the stiffest chain considered here (t � 1), the distribution has
a peak at the center (in addition to the �-function peaks at ends)
though it looks flat.
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FIG. 2. Monte Carlo data for p�v; t� for the three-
dimensional WLC for values of t � 10���; 5; 3:33; 2, and 1�r�.
The inset is a blowup of curves in the transition region
(t � 4; 3:85; 3:7) and shows the presence of the two maxima.
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mean-field) predict a second-order-like transition and do
not give the triple minima for any parameter value.

It is instructive to study a one-dimensional version of the
WLC which shows the same qualitative features (the
equivalent spin problem is the Ising model). Consider a
N step random walk, with step-size b which, with proba-
bility %, reverses its direction of motion and, with 1� %,
continues to move in the same direction. The appropriate
065502-3
scaling limit is b! 0, %! 0, N ! 1 keeping L � Nb,
t � L=� � 2N% finite. Defining Z��x; L� as the probabil-
ity of the walker to be at x with either positive or negative
velocity, we have the following Fokker-Planck equation:
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� �

@Z�
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�

1

2�
�Z� � Z�� : (5)

This can be solved for P�x; L� � Z� � Z� �
1
L p�x=L; L=��. We get
p�v; t� �
te�t=2
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where I0 and I1 are modified Bessel functions. In Fig. 3 we
have plotted p�v; t� for different values of stiffness. We
find that it always has three peaks. Unlike in two and three
dimensions, the �-function peaks at v � �1 (which cor-
responds to fully extended chains) persist at all values of
stiffness though their weight decays exponentially.
Similarly, the peak at v � 0 is always present.

Discussion.—The most interesting result of this paper is
the triple minima in the Helmholtz free energy of the
WLC. Physically, this results from the competing effects
of entropy, which tries to pull in the polymer, and the
bending energy, which tries to extend it. This form of the
free energy leads to a highly counterintuitive force-exten-
sion curve, very different from what one obtains from the
constant-force ensemble or from approximate theories.
In Fig. 4 we show the force-extension curve for a two-
dimensional chain with t � 3:33. We see that there are two
stable positions for which the force is zero. In the constant-
force ensemble, it is easy to show that @hri=@f � hr2i �
hri2 and so the force extension is always monotonic. In
the constant-extension ensemble, there is no analogous
result (for finite systems), and monotonicity is not
guaranteed.

Most recent experiments on stretching DNA have t *

100. The distribution is then sharply peaked at zero, and
one expects the equivalence of different ensembles.
Experimentally the value of t can be tuned by various
means, for example, by changing the length of the polymer
or the temperature. Polymer-stretching experiments can
thus be performed for intermediate t values. Since we
consider the tangent vectors at the polymer ends to be
unconstrained, an accurate experimental realization of
our setup would be one in which both ends are attached
to beads (see Fig. 5). The beads are put in optical traps and
so are free to rotate (this setup is identical to the one used in
Ref. [14]). Making the traps stiff corresponds to working
in the constant-extension ensemble [4], and one can meas-
ure the average force. Our predictions can then be
experimentally verified. We make some estimates on the
experimental requirements (for a 3D polymer with stiffness
t � 3:85). Assume that at one end, the origin, the trap is so
065502-3
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FIG. 5. A schematic of the experimental setup required to
realize the constant-extension ensemble discussed in the paper
(see Ref. [14]). For a stiff trap the average displacement of the
bead h�zi from the trap center is small, and the average force on
the polymer is h fi � �kh�zi.
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FIG. 4. The free energy (dotted line) and the corresponding
force-extension curve (solid line) for a two-dimensional chain
with t � 3:33.
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stiff that the bead can only rotate. We make measurements
at the other end. The trap center is placed at �rr0 � �0; 0; z0�
and the mean bead displacement �z � h�z� z0�i gives the
mean force h fi on the polymer. We then consider the
problem of the polymer in the presence of a trap potential
V � �kt�x

2 � y2� � k�z� z0�
2�=2. Assume kt 
 k so we

can neglect transverse fluctuations. The distribution of the
bead’s position in the presence of the potential is given by
Q��rr� � e�+�F��rr��V��rr��=

R
d3 �rre�+�F��rr��V��rr��. For a stiff trap,

we can expand F about �rr � �rr0 and find that the average
displacement of the bead is given by �z �

R
d3 �rr�z�

z0�Q��rr� � �h fi=k0, where k0 � k� F00�z0� � k (valid
except when z0 � L) and h fi � F0�z0�. The rms fluctua-
tion of the bead about the trap center is given by z2rms �
kBT=k. Hence we get �z � �h fiz2rms=�kBT� �
��h fiL=kBT��z2rms=L�. The scaled force h fiL=�kBT� is
of order 0:1. The different minima are separated by dis-
tances � 0:2L; hence, to see the effect we need to have
zrms=L & 0:1. Thus, finally we find that the typical dis-
placement of the bead �z is about 0:01zrms. This is quite
small and means that it is necessary to collect data on the
bead position over long periods of time.

As suggested in [10], a more direct way of measuring the
Helmholtz free energy would be to attach marker mole-
cules at the ends of the polymer and determine the distri-
bution of end-to-end distances. Fluorescence microscopy
as in [15] could be another possible method. It is to be
remembered, of course, that real polymers are well
modeled by the WLC model, provided we can neglect
monomer-monomer interactions (steric, electrolytic, etc.).
Thus the experiments would really test the relevance of the
WLC model in describing real semiflexible polymers in
different stiffness regimes.

In conclusion, we have presented some new and inter-
esting properties of the WLC model and have pointed out
that polymer properties are ensemble dependent. We have
given one example of qualitative differences in force-
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extension measurements in different ensembles. Other
quantitative differences will occur even in more flexible
chains and should be easier to observe experimentally. We
hope this work will motivate further experimental and
theoretical work on this simplest model for semiflexible
polymers.

We thank O. Narayan and J. Samuel for discussions. One
of us (D. C.) thanks CSIR, India, for support.

Note added.—After submission of this paper, an exact
numerical solution of the WLC model has been obtained
and has reproduced our results [16].
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