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Elasticity of semiflexible polymers
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We present a method for solving the wormlike chain model for semiflexible polymers to any desired
accuracy overthe entire range of polymer lengths. Our results are in excellent agreement with recent computer
simulations and reproduce important qualitatively interesting features observed in simulations of polymers of
intermediate lengths. We also make a number of predictions that can be tested in a variety of concrete
experimental realizations. The expected level of finite size fluctuations in force-extension curves is also esti-
mated. This study is relevant to mechanical properties of biological molecules.
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Many biologically important molecules such as DNA a
Actin, are semiflexible polymers@1#. In recent years there
have been experiments@2# that pull and stretch single mol
ecules to measure elastic properties. For instance, one
study the ‘‘equation of state’’ of a semiflexible polymer b
measuring its extension as a function of applied force. Al
natively, one can tag the ends with fluorescent dye and
termine the distribution of end-to-end distances. Such stu
reveal a wealth of information about the mechanical prop
ties of semiflexible polymers, which is of clear biologic
importance.

Till a few years ago, studies of polymer molecules such
DNA were limited to samples containing large numbers
molecules. This made it hard to probe the elastic proper
of individual DNA, which are of vital importance to biologi
cal processes such as protein-induced DNA bending@2,3#. It
is only quite recently, due to advances in technology t
studies on single molecules became feasible. In order to
rectly interpret single molecular experiments which are n
being performed, a good theoretical understanding of se
flexible polymers is essential. Quite apart from the biologi
interest, semiflexible polymers are of interest to physic
@4,5#. This paper is devoted to understanding the equilibri
statistical mechanics of single semiflexible polymers.

Statistical mechanics of a single polymer molecule
dominated by fluctuations because it is a system of fin
size. It is only in the thermodynamic limit of extremely lon
polymers that these fluctuations about the mean die out.
to the dominance of fluctuations, the experimentally m
sured mean values for a semiflexible polymer crucially
pend on the precise choice of the ensemble. For instance
gets qualitatively distinct features in force-extension cur
depending on whether the force or the extension is held c
stant in an experimental setup@6,7#.

The most popular theoretical model for understand
semiflexible polymers is the wormlike chain~WLC! @8#,
which ignores self-avoidance and models the polymer a
framed space curve of fixed total lengthL with an energy
cost for bending and twisting. In order to interpret the e
perimental data, it would be useful to have a clear and co
plete understanding of the predictions of the WLC mod
Such an understanding would reveal the strengths and
ciencies of the model in describing real polymers and co
be used to improve the model. There do exist partial res
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@9# on the statistical mechanics of the WLC model: som
theoretical studies@1# investigate the flexible limit of very
long polymers~long compared to the persistence length;L
@Lp). However experimental interest isnot confined to very
long polymers. For example, experiments on Actin@10# deal
with polymers of lengthL530 mm, which is only about
twice the measured persistence length ofLp516.7mm.
There is also theoretical work@9# around the rigid limit
which works well up toL5Lp . There is a clear gap in the
present understanding of the WLC model for polymers
intermediate length. Our purpose in this paper is to fill th
gap. We present a solution of the WLC model and descr
the equilibrium elastic properties expected from the mod
Our solution is exact in the sense that the elastic proper
can be determined to any desired accuracy. The main re
of this paper are contained in the figures which show
force-extension relation and end-to-end distance distributi
predicted by the WLC model. These predictions agree w
with two independent computer simulations@9,6# ~Figs. 3
and 4!.

WLC model with pure bend. A configurationC of the poly-
mer is described by a space curvexW (s), with s the arc-length
parameter (0<s<L) ranging from 0 toL, the contour length
of the polymer. The tangent vectort̂5dxW /ds to the curve is
a unit vector (t̂• t̂51) and the curvature of the polymer
given by k5ud t̂/dsu. We will suppose that one end of th
polymer is tethered to the origin@xW (0)50# and the other end
xW (L)5rW is tagged. As the polymer configuration chang
with thermal agitation, the locationrW of its tagged end fluc-
tuates. The quantity we wish to compute isQ(rW), which is
the probability distribution for the locationrW of the tagged
end @6#. If the tagged end is pulled fromrW to rW1drW, Q(rW)
changes and consequently, the free energy. This implies
a force is needed to stretch the polymer. ThusQ(rW) is di-
rectly related to the force-extension relation of the polym
To computeQ(rW) we need to sum over all polymer configu
rations C which end at rW, with a Boltzmann weight:Z
5SC exp(2E@C#/kBT), where the energyE associated with a
configurationC is E(C)5 1

2 A*0
Ldsk2 and A is the bending

modulus. This is a standard counting problem in statistic
mechanics and can be naturally addressed in the langua
©2002 The American Physical Society01-1
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path integration@11#. However, not much progress has be
made because of the difficulty@12# presented by the inexten
sibility constraint. The key to circumventing this difficulty i
to consider@1,13# Brownian motion in the space oftangent

vectors ( t̂ ) rather than~as is customary for flexible poly
mers! position vectorsxW . The tangent vectors form a un
sphere and the problem reduces to studying Brownian
tion on the unit sphere, which can be handled by stand
operator techniques familiar from quantum mechanics.

Let us suppose to begin with that the initial (t̂ A

5dxW /dsus50) and final (t̂ B5dxW /dsus5L) tangent vectors are
held fixed.Q(rW) has the path integral representation

NE D@ t̂~s!#expH 21YkBTFA/2E
0

L

~d t̂/ds!2dsG J
3d3S rW2E

0

L

t̂dsD , ~1!

where N is a normalization constant. Instead ofQ(rW) we
focus on the quantityP(z)5*drWQ(rW)d(r 32z), which is
Q(rW) integrated over a plane of constantz. Note thatP(z)
and Q(rW) vanish when the modulus of their arguments e
ceedsL. The generating function ofP(z) is defined as
P̃( f )5*2L

L dzef z/LpP(z), whereLp5A/kBT. Performing the
elementary integrations involvingd functions we find that
P̃( f ) can be expressed asZ( f )/Z(0), where Z( f ) has the
path integral representation

Z~ f !5NE D@ t̂~s!#expH 2LpY 2F E
0

L

~d t̂/ds!2dsG J
3expF f /LpE

0

L

t̂ zdsG . ~2!

Making the change of variablet5s/Lp , we arrive at the
expression

Z~ f !5NE D@ t̂~t!#expH 2E
0

b

dt@1/2~d t̂/dt!22 f t̂ z#J ,

~3!

whereb5L/Lp . Equation~3! can be interpreted as the pa
integral representation for the kernel of aquantumparticle
on the surface of a sphere at inverse temperatureb. Thus we
can expressZ( f ) as the quantum amplitude to go from a
initial tangent vectort̂ A to a final tangent vectort̂ B in imagi-
nary time b in the presence of an external potentia
2 f cosu:

Z~ f !5(
n

e2[bEn]cn* ~ t̂ A!cn~ t̂ B!. ~4!

Here$cn( t̂ )%, is a complete set of normalized eigenstates
the HamiltonianĤ52(¹2/2)2 f cosu andEn are the corre-
sponding eigenvalues.
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In this paper, we focus on the situation where the bou
ary tangent vectors are unconstrained, i.e., they are integr
over with uniform weight. For free boundary conditions th
situation is spherically symmetric andQ depends only onr
5ur u and not onrW and we can writeQ(r ). The probability
distribution for the end to end distancer is given byS(r )
54pr 2Q(r ), as can be seen by integratingQ(rW) over a
sphere of radiusr. As we did above, we can integrateQ(rW)
over a plane of fixedz:P(z)5*drWQ(rW)d(r 32z). P(z) is the
probability distribution for thez coordinate of the tagged
end. BothS(r ) andP(z) are experimentally accessible qua
tities and they are integrals of the spherically symme
function Q(rW) over two dimensional surfaces. Using tomo
raphic techniques~reconstruction of a function from a
knowledge of its integral over two dimensional slices! one
can deduce@14# the relationS(r )522rdP(r )/dr, where
P(r ) is P(z) with its argument replaced byr.

For free boundary conditions~4! can be written as a
‘‘vacuum persistence amplitude’’

Z~ f !5^0uexp2bH f u0&, ~5!

where H f52 1
2 ¹22 f cosu is the Hamiltonian of the rigid

rotor @1# in a potential andu0& is the ground state of the fre
HamiltonianH052 1

2 ¹2. The matrixH f is an infinite ma-
trix. The key to a numerically efficient evaluation of Eq.~5!
is a convenient choice of basis. We choose a basis in wh
H0 is diagonal and find thatH f is a symmetric tridiagona
matrix with diagonal elementsHll 5 l ( l 11)/2 and superdi-
agonal elementsHll 115 f ( l 11)A1/@(2l 11)(2l 13)#. Upto
this point the treatment is completely analytical. To evalu
Eq. ~5! we need to use numerical methods. We truncate
infinite matrix H f to NXN size and numerically evaluate Eq
~5! using the MatrixExp function in Mathematica@15#. Equa-
tion ~5! then emerges as the first diagonal element of e
@2bHf#. We adjust the cutoffN until the answer stabilizes to
desired accuracy.

From Z( f ) we deduce all the properties of the model,
an accuracy limited only by computational power. The fo
of G( f )521/b ln Z(f) is shown in Fig. 1 along with physi-
cally motivated approximate analytical forms valid in th
small @G( f )5C1(b) f 2# and large @G( f )52 f 1Af

FIG. 1. G( f ) as a function off for b5L/Lp51. Also plotted
are approximate analytic forms valid in the small~open circles! and
large ~filled circles! force regimes.
1-2
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2 ln f/(2b)1C2(b)# force regimes. More terms can be com
puted, but this already gives a fair fit.

From P̃( f ) @which is equal toZ( f ) sinceZ(0)51], it is
possible to computeP(z) by performing the inverse Laplac
transform.~Numerically it is more convenient to use the i
verse Fourier transform by going to imaginaryf ). The re-
sults are shown in Fig. 2. For convenience, we setLp51 so
that b5L and plot all figures in terms of scaled variable
z5z/b, r5r /b. From the relation S(r)5
22r(d/dr)P(r) we compute the distribution of end-to-en
distance. These are displayed in Fig. 3. We have checked
these graphs quantitatively agree~to within the errors of the
simulation data! with the published plots of Ref.@9#. Notice
that P(z) and S(r) both have a single maximum and th
corresponding free energies have a single minimum. H
ever, for a range ofb near 3.8,Q(r) develops a double
humped form, reflecting the existence of two stable free
ergy minima resulting in a ‘‘first order transition,’’ where th
quotes signify that this is not a true phase transition due
finite size effects. This feature was first noticed@6# in com-
puter simulations of the WLC model. Our theoretical wo
confirms the results of simulations presented in Ref.@6#. The
form of Q(r) is plotted in Fig. 4 along with the results o
computer simulations from Ref.@6#. A property of direct ex-
perimental interest is the force-extension relation~FER!. We
work in the constantf ensemble and in Fig. 5 plot the scale
mean extensionz̄( f ) @defined byz̄52]G( f )/] f ].

Since we are dealing with a system of finite size,
expect that the extensionz will fluctuate about its mean

FIG. 2. The distributionP(z) of scaled extensionz5z/b for
b5L/Lp equal to 1, 3.85, and 10.

FIG. 3. The distributionS(r) of scaled end-to-end distancesr
5r /b for b5L/Lp equal to 1, 3.85, and 10. Dots show simulati
data taken from Ref.@9#.
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value z̄. The theoretically expected root mean square va

of these fluctuationsDz5A1/b]z̄/] f of z is shown in Fig.
5. These fluctuations clearly vanish in the limit of infinite
long polymers@1#.

Our work provides predictions of force-extension curv
for all lengths which can be tested against experiments.
the quantities computed here@(Q(r),P(z),S(r), P̃( f ),
G( f ), and FER# are experimentally measurable. Here w
briefly go over the pertinent experimental realizations
some of these quantities.

~a! Measurement ofQ(r): One can measureQ(r) by
attaching a bead to one end of the molecule and confining
bead in a stiff optical trap and by recording the distributi
of location of the other end~tagged with dye! by means of a
CCD camera. Using the techniques outlined in this paper
could work out the predictions of the WLC model to an
desired accuracy, for example, experimental accuracy.~b!
Measurement ofP(z): P(z) can be measured by recordin
the location of the free end of the molecule on a givenz
plane and focussing all the light from the particularz plane
by using a confocal microscope.

In this paper we have used free boundary conditions
the tangent vectors. Other boundary conditions can also
handled as explained in Ref.@16#. The boundary conditions
depend on the particular experimental setup. For exampl
the tangent vectors at the ends are held fixed one needs t
d function weights rather than uniform ones. Choice of th

FIG. 4. The functionQ(r) for b5L/Lp51, 3.85, and 5. Results
of a simulation from Ref.@10# are also plotted on the curve forb
53.85.

FIG. 5. The mean extensionz̄ as a function off ~thick line! for
b5L/Lp510. Also shown on either side are the root mean squ
fluctuations~thin lines! of the extension about its mean value.
1-3
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oretical weights consistent with experimental boundary c
ditions is particularly crucial in the context of short pol
mers.

The FERs predicted by the model depend on the ensem
in which the calculation is done. Depending on the expe
mental situation one should use an ensemble in which on
z,r ,rW or their conjugate forcesf , f r , fW is held constant. As an
example we display in Fig. 5 the FER in the constantf en-
semble.

The force extension relations in this ensemble are mo
tonic forall values ofb. @In contrast, the FER in the consta
r ensemble is nonmonotonic@6# in the b range where the
function Q(r) is double humped.# As mentioned earlier,
since we are dealing with a finite system, which is not n
the thermodynamic limit, equivalence between conjugate
sembles is not assured@7#. This is due to fluctuations aroun
mean values which are not negligible for short polyme
Our analysis, being exact, correctly takes into account s
finite size effects. The pure bend WLC model has a sin
ys
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parameterb5L/Lp and predicts not only a force extensio
relation but also the amount of theoretically expected no
on this curve. In an experiment one can expect to see
noise over and above any instrumental noise that may
present in the system.

Self-avoidance that is present in real polymers is diffic
to handle analytically and is one of the important directio
for future work. Another important direction is the inclusio
of twist @17#. We hope that the results of this paper w
stimulate a detailed and quantitative comparison between
predictions of the WLC model and experiments, and lead
an improved understanding of the elasticity of semiflexib
polymers.

Note added:Recently we learned of closely related wo
by Stepanow and Schu¨tz @18#.

It is a pleasure to thank Abhishek Dhar and V.A. Ragh
nathan for their critical comments and Y. Hatwalne, M. Ra
T. Roopa, and G.V. Shivashankar for discussions.
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