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Elasticity of semiflexible polymers
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We present a method for solving the wormlike chain model for semiflexible polymers to any desired
accuracy ovethe entire range of polymer length®ur results are in excellent agreement with recent computer
simulations and reproduce important qualitatively interesting features observed in simulations of polymers of
intermediate lengths. We also make a number of predictions that can be tested in a variety of concrete
experimental realizations. The expected level of finite size fluctuations in force-extension curves is also esti-
mated. This study is relevant to mechanical properties of biological molecules.
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Many biologically important molecules such as DNA and[9] on the statistical mechanics of the WLC model: some
Actin, are semiflexible polymerEl]. In recent years there theoretical studie$l] investigate the flexible limit of very
have been experimenfg] that pull and stretch single mol- long polymers(long compared to the persistence lengdth;
ecules to measure elastic properties. For instance, one canl ). However experimental interesti®t confined to very
study the “equation of state” of a semiflexible polymer by long polymersFor example, experiments on AcfihO] deal
measuring its extension as a function of applied force. Alterwith polymers of lengthL=30 um, which is only about
natively, one can tag the ends with fluorescent dye and dawice the measured persistence length lgf=16.7 um.
termine the distribution of end-to-end distances. Such studieshere is also theoretical worfQ] around the rigid limit
reveal a wealth of information about the mechanical properwhich works well up toL = L,. There is a clear gap in the
ties of semiflexible polymers, which is of clear biological present understanding of the WLC model for polymers of
importance. intermediate length. Our purpose in this paper is to fill this

Till a few years ago, studies of polymer molecules such agap. We present a solution of the WLC model and describe
DNA were limited to samples containing large numbers ofthe equilibrium elastic properties expected from the model.
molecules. This made it hard to probe the elastic propertiegur solution is exact in the sense that the elastic properties
of individual DNA, which are of vital importance to biologi- can be determined to any desired accuracy. The main results
cal processes such as protein-induced DNA benfi8]. It of this paper are contained in the figures which show the
is only quite recently, due to advances in technology thatorce-extension relation and end-to-end distance distributions
studies on single molecules became feasible. In order to copredicted by the WLC model. These predictions agree well
rectly interpret single molecular experiments which are nowwith two independent computer simulatiof®,6] (Figs. 3
being performed, a good theoretical understanding of semignd 4.
flexible polymers is essential. Quite apart from the biological WLC model with pure bend\ ConﬁguratiorC of the po|y-

interest, semiflexible polymers are of interest to physicistsmer is described by a space cuﬁ(es) with sthe arc-length
rTbarameter (&s=L) ranging from 0 td_, the contour length

statistical mechanics of single semiflexible polymers. £ th | The t t vectbe d/ds to th .
Statistical mechanics of a single polymer molecule is®' '€ POYMET. The langent vectbedxds o the curve 1s

dominated by fluctuations because it is a system of finite unit vector E;le) and the curvature of the polymer is
size. It is only in the thermodynamic limit of extremely long given by x=|dt/ds|. We will suppose that one end of the

polymers that these fluctuations about the mean die out. Dugolymer is tethered to the orig[ix(0)= 0] and the other end

to the dominance of fluctuations, the experimentally mea-)z(l_):; is tagged. As the polymer configuration changes

sured mean values for a semiflexible polymer crucially de- . N
pend on the precise choice of the ensemble. For instance, oifdth thermal agitation, the location of its tag%ed end fluc-
gets qualitatively distinct features in force-extension curveduates. The quantity we wish to computeQgr), which is

depending on whether the force or the extension is held corthe probability distribution for the location of the tagged

stant in an experimental set{i§,7]. ~ end[6]. If the tagged end is pulled from to r+dr, Q(r)
The most popular theoretical model for understandingchanges and consequently, the free energy. This implies that
semiflexible polymers is the wormlike chawl.C) [8] a force is needed to stretch the polymer. Tl@(sf) is di-

which ignores self-avmdgnce and models .the polymer as ?éctly related to the force-extension relation of the polymer.
framed space curve of fixed total lengthwith an energy - :
To computeQ(r) we need to sum over all polymer configu-

cost for bending and twisting. In order to interpret the ex- -
perimental data, it would be useful to have a clear and comrations C which end atr, with a Boltzmann weight:Z

plete understanding of the predictions of the WLC model.=2¢exp(—&Cl/kgT), where the energy associated with a
Such an understanding would reveal the strengths and deftonfigurationC is E(C):%AfladSKz and A is the bending
ciencies of the model in describing real polymers and couldnodulus This is a standard counting problem in statistical
be used to improve the model. There do exist partial resultsnechanics and can be naturally addressed in the language of

1063-651X/2002/665)/0508014)/$20.00 66 050801-1 ©2002 The American Physical Society



J. SAMUEL AND S. SINHA

path integratiof11]. However, not much progress has been
made because of the difficulft2] presented by the inexten-
sibility constraint. The key to circumventing this difficulty is
to consider{1,13] Brownian motion in the space ¢éngent
vectors(f) rather than(as is customary for flexible poly-
mers position vectorsx. The tangent vectors form a unit
sphere and the problem reduces to studying Brownian mo-
tion on the unit sphere, which can be handled by standard
operator techniques familiar from quantum mechanics.

Let us suppose to begin with that the initiak(
=dx/ds|s_o) and final fg=dx/ds|s_) tangent vectors are
held fixed.Q(F) has the path integral representation
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FIG. 1. G(f) as a function off for 3=L/L,=1. Also plotted

are approximate analytic forms valid in the smalben circlesand

L ~
Alzf (dt/ds)?ds
0

NJ D[f(s)]exp[ —1/kBT
> L,\
r—JOtds

x 88

} large (filled circles force regimes.

In this paper, we focus on the situation where the bound-
ary tangent vectors are unconstrained, i.e., they are integrated
' @ over with uniform weight. For free boundary conditions the
situation is spherically symmetric art@ depends only om

where A is a normalization constant. Instead @{r) we  =|r| and not onr and we can writeQ(r). The probability

focus on the quantityP(z)=/drQ(r)s(rz—z), which is
Q(F) integrated over a plane of constantNote thatP(z)
and Q(F) vanish when the modulus of their arguments ex-

distribution for the end to end distanceis given by S(r)
=47r?Q(r), as can be seen by integratir@(F) over a
sphere of radius. As we did above, we can integra(r)

ceedsL. The generating function oP(z) is defined as Overaplane of fixed: P(z) = fdrQ(r) 8(r3—2). P(2) is the
B(f)=f1,dzd?"sP(2), whereL ,= A/kgT. Performing the probability distribution for thez coordinate of the tagged
= —L y p_ B .

elementary integrations involving functions we find that

P(f) can be expressed &f)/Z(0), whereZ(f) has the
path integral representation

~ L ~
Z(f)=NJ' D[t(s)]exp(—Lp/ Z[L(dt/ds)zds

end. BothS(r) andP(z) are experimentally accessible quan-
tities and they are integrals of the spherically symmetric

function Q(F) over two dimensional surfaces. Using tomog-
raphic techniques(reconstruction of a function from a
knowledge of its integral over two dimensional slicesme
} can deducd14] the relationS(r)=—2rdP(r)/dr, where
P(r) is P(2) with its argument replaced hy
For free boundary condition$4) can be written as a

LA
Xexp{f/Lpf t,ds|. (2)  “vacuum persistence amplitude”

0

Making the change of variable=s/L,, we arrive at the
expression

Z(f)=(0|exp— BH+/0), ®

whereH;=—1V?—f cos@ is the Hamiltonian of the rigid

R B R R rotor [1] in a potential and0) is the ground state of the free
Z(f)=J\ff D[t(r)]exp[ —f dr[l/2(dt/dr)2—ftz]], HamiltonianHy= — 2V?. The matrixH; is an infinite ma-
0 trix. The key to a numerically efficient evaluation of H§)
3 is a convenient choice of basis. We choose a basis in which

where=L/L,. Equation(3) can be interpreted as the path
integral representation for the kernel ofqgaantumparticle
on the surface of a sphere at inverse temperg8uréhus we
can expresZ(f) as the quantum amplitude to go from an
initial tangent vectot , to a final tangent vectdrs in imagi-
nary time 8 in the presence of an external potential
—f cosé:

Hy is diagonal and find thatl; is a symmetric tridiagonal
matrix with diagonal elementsl;;=I1(I+1)/2 and superdi-
agonal elementsl;, . ;=f(1+1)y1[ (21 +1)(21+3)]. Upto

this point the treatment is completely analytical. To evaluate
Eqg. (5) we need to use numerical methods. We truncate the
infinite matrix H; to NXN size and numerically evaluate Eq.
(5) using the MatrixExp function in Mathemati¢a5]. Equa-
tion (5) then emerges as the first diagonal element of exp

[—BH¢]. We adjust the cutofiN until the answer stabilizes to
Z(f):}n: e [AEnl y* (1) yn(ts). (4)  desired accuracy.

From Z(f) we deduce all the properties of the model, to

. an accuracy limited only by computational power. The form
Here{yn(t)}, is a complete set of normalized eigenstates ofof G(f) = —1/8 In Z(f) is shown in Fig. 1 along with physi-
the HamiltonianA = — (V2/2)— f cos6 andE,, are the corre-  cally motivated approximate analytical forms valid in the
sponding eigenvalues. small [G(f)=C,(B)f?] and large [G(f)=—f+f
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FIG. 2. The distributionP({) of scaled extensiod=2z/8 for

B=LIL, equal to 1, 3.85, and 10, FIG. 4. The functiorQ(p) for 8=L/L,=1, 3.85, and 5. Results

of a simulation from Ref[10] are also plotted on the curve f@

—In f/(2B)+C,(B)] force regimes. More terms can be com- =385,

puted, but this already gives a fair fit. _

From P(f) [which is equal taZ(f) sincez(0)=1], it is value . The theoretically expeﬁted root mean square value
possible to comput®(z) by performing the inverse Laplace of these fluctuationa (= \1/8d¢/df of { is shown in Fig.
transform.(Numerically it is more convenient to use the in- 5. These fluctuations clearly vanish in the limit of infinitely
verse Fourier transform by going to imaginafy. The re- long polymerdg1].
sults are shown in Fig. 2. For convenience, welsgt 1 so Our work provides predictions of force-extension curves
that =L and plot all figures in terms of scaled variables, for all lengths which can be tested against experiments. All
{=zIB, p=r/B. From the relation S(p)= the quantities computed hergQ(p),P(¢),S(p), P(f),
—2p(d/dp)P(p) we compute the distribution of end-to-end G(f), and FER are experimentally measurable. Here we
distance. These are displayed in Fig. 3. We have checked thbtiefly go over the pertinent experimental realizations of
these graphs quantitatively agrée within the errors of the some of these quantities.
simulation datawith the published plots of Ref9]. Notice (@) Measurement ofQ(p): One can measur®(p) by
that P({) and S(p) both have a single maximum and the attaching a bead to one end of the molecule and confining the
corresponding free energies have a single minimum. Howbead in a stiff optical trap and by recording the distribution
ever, for a range of3 near 3.8,Q(p) develops a double of location of the other entagged with dygby means of a
humped form, reflecting the existence of two stable free en€CD camera. Using the techniques outlined in this paper one
ergy minima resulting in a “first order transition,” where the could work out the predictions of the WLC model to any
quotes signify that this is not a true phase transition due telesired accuracy, for example, experimental accurémy.
finite size effects. This feature was first notid&d in com-  Measurement oP(¢): P({) can be measured by recording
puter simulations of the WLC model. Our theoretical work the location of the free end of the molecule on a given
confirms the results of simulations presented in R&f. The  plane and focussing all the light from the particutaplane
form of Q(p) is plotted in Fig. 4 along with the results of by using a confocal microscope.
computer simulations from Reff6]. A property of direct ex- In this paper we have used free boundary conditions for
perimental interest is the force-extension relatiBER). We  the tangent vectors. Other boundary conditions can also be
work in the constant ensemble and in Fig. 5 plot the scaled handled as explained in R4fL6]. The boundary conditions
mean extensiod(f) [defined by, = —dG(f)/af]. depend on the particular experimental setup. For example, if

Since we are dealing with a system of finite size, wethe tangent vectors at the ends are held fixed one needs to use
expect that the extensiofi will fluctuate about its mean & function weights rather than uniform ones. Choice of the-

¢
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FIG. 3. The distributiorS(p) of scaled end-to-end distancgs FIG. 5. The mean extensianas a function of (thick line) for
=r/p for B=L/L, equal to 1, 3.85, and 10. Dots show simulation §=L/L,=10. Also shown on either side are the root mean square
data taken from Ref9]. fluctuations(thin lineg of the extension about its mean value.
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oretical weights consistent with experimental boundary conparameter3=L/L, and predicts not only a force extension

ditions is particularly crucial in the context of short poly- relation but also the amount of theoretically expected noise

mers. on this curve. In an experiment one can expect to see this
The FERSs predicted by the model depend on the ensemblgvise over and above any instrumental noise that may be

in which the calculation is done. Depending on the experi-present in the system.

mental situation one should use an ensemble in which one of gglf-avoidance that is present in real polymers is difficult

z,r,r or their conjugate forces, f, ,f is held constant. As an to handle analytically and is one of the important directions

example we display in Fig. 5 the FER in the constheh-  for future work. Another important direction is the inclusion

semble. of twist [17]. We hope that the results of this paper will
The force extension relations in this ensemble are monostimulate a detailed and quantitative comparison between the

tonic forall values ofg. [In contrast, the FER in the constant predictions of the WLC model and experiments, and lead to

p ensemble is nonmonoton|6] in the B range where the  an improved understanding of the elasticity of semiflexible

function Q(p) is double humped.As mentioned earlier, polymers.

since we are dealing with a finite system, which is not near pqte addedRecently we learned of closely related work

the thermodynamic limit, equivalence between conjugate €My Stepanow and SEH[18].

sembles is not assur¢d]. This is due to fluctuations around

mean values which are not negligible for short polymers. It is a pleasure to thank Abhishek Dhar and V.A. Raghu-

Our analysis, being exact, correctly takes into account suchathan for their critical comments and Y. Hatwalne, M. Rao,

finite size effects. The pure bend WLC model has a singlel. Roopa, and G.V. Shivashankar for discussions.
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