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Hidden symmetries in deformed microwave resonators
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We explain the “hidden symmetries” observed in wave functions of deformed microwave resonators in
recent experiments. We also predict that other such symmetries can be seen in microwave resonators.
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Lauber et al. [1] experimentally studied the pattern of =\(njn}mv[m)=\;&;(mv|m). From PouP,=(b—v), it
Berry phases that emerges when a microwave cavity is cyfollows that  (mj|v|m;)={(m;|P,vP,|m;)=Db{m;|m;)
clically deformed around a rectangular shape. Standing elec= (m;|v|m;). So we conclude thdm;|v|m;)=b/2 and so, in
tromagnetic waves in the cavity can be mapped and thé&t,, vX=DbX/2 and similarlyuX=aX/2. The form of the
“wave functions” followed through the cyclic deformation perturbations is thué=bX/2+uY, g=—aX/2+vY.
to measure the Berry phase. Apart from the Berry phases, The “mirror symmetry” observed by Laubet al.in their
which were primarily of interest in Refl], those authors €xperimentis related to the way the unperturbed levels trans-
also noticed a curious symmetry: the standing wave patterrf®m under parity. We consider all possible cases and thus
at different deformations are related. Subsequent theoreticHnd the necessary and sufficient conditions for this symme-
work [2,3] has clarified the pattern of Berry phases seen irffy 10 be observed. Let us introdues; as theP, parity of
the experiment. However, the “hidden symmetry” has nottheith state P4]i)=o;|i)) and similarlyo; as theP, par-
been explained so far. The purpose of this Brief Report is tdy Of the ith state. The different cases are listed below with
provide an understanding of the “hidden symmetry” and@n examplgfor n=3) |Ilustrat|ng each nontrivial case.
thus a complete and correct interpretation of the experiment (1) o1i=0 andoy=o’ foralli=1.2,... n whereo,o’

described if1]. can take values-1 [ Example:a=3, b=1, and levels
Consider a rectangular cavityee Fig. 1with sides @,b) ~ (2,6), (8,4), (10,2)].  In  this  case (iluY|j)
havingn degenerate modes: the scalar LaplaciaW? hasn ~ =(i|P2(P2uY Po)Py[j)=—(i[uY]j)=0 and  similarly

degenerate eigenfunctions. If the cavity is deformed, the deti|vY|j)=(i|P1(PwYPy)P4|j)=—(ilvY|j)=0. Thus f
generacy will in general be broken. Let us suppose that the bX/2 andg= —aX/2 and this is an uninteresting case be-
deformation consist$as in the experiment of Refl]) of  cause the perturbations do not span a two-dimensional space.
moving the corner around its undeformed position so that the (2) The productoyjo,=o for all i, but oy; and o
rectangle is deformed to a quadrilateral. This deformatiorare not the same for ail [Example: a=+3, b=1, and
can be effected in the formalism by performing a coordinatdevels  (1,3,(4,2),(5,1)]. In this case (i|uY]j)
transformationx=u(1+ av),y=v(1+Bu) [where (,B) =(i|P,P1(P1PouY P,P,)P.P,|j)=(i|(a—u)Y]|j), which
are the deformation parametgmshich maps the deformed implies uY=av/2. Also (ilvYlj)
rectangle in the X,y) plane to an undeformed rectangle in =(i|P,P1(P1P,vY P,P;)P1P,|j)=(i|(b—v)Y]) and this
the (u,v) plane. Transforming the Laplacian to curvilinear givesvY=DbY/2. Thus in this casd =bX/2+aY/2 andg
(u,v) coordinates, we find H=—V2=(—1//g)(d/ =—aX/2+bY/2. Defining new coordinatesa=ba’
ax*)\lgg¥alax’. Matrix elements of H have the +aB’, B=—aa’+bp’, we have H;=af+pBg=a’(bf
form (| H|,) = — [d2x\gu? V2= — [d2xy? (alox#) ~ —ag)+B'(af+bg)=(a’+b?)(a’'X/2+B'Y[2).  Since
JOg*"(919x") i, Expanding to first order imr, 3, we then ~PXP=X, PYP=—Y for P=P;,P5; hence we see that
getH=Hy+H,, whereHy=—(d,d,+d,d,) and H,=af

+ Bg, with f=vX+uY and g=—uX+vY, expressed in yh
terms of the differential operator¥=d,d,—d,d, and Y :
=20,0, .

The unperturbed Hamiltoniad, has the discrete symme-
tries P;:u—a—u, P,:v—b—wv, the mirror planes of the
rectangular box. We now restrict attention to the b
n-dimensional degenerate subspddg of Hy and choose
eigenstates ofl; to have definite parity with respect to both
these reflections. In fact, we choose these in the flirm
=|nimi>=(2/\/%)sin(niUW/a)sin(n}vw/b), wheren;,m; are
positive integers. Since the states are all degenerate eigen- a
states ofHo, we h"’“’enizl"’lz“LmizlbzzniZ/"’IZ“LmiZ/b2 for all FIG. 1. A deformation of a rectangle into a quadrilateral. The
I,j. In particular nj=n;=m;=m;. These states are also yeriex v=(a,b) is moved to the pointP=V-+(6x,dy)=V
eigenstates  of X with eigenvalues \;=(n’m?/a? +ab(a,B). We consider an experiment whelPeis moved around
—m?m?/b?). It follows that (ilvX|j)=\(ilv]j) the elliptic path shown in the figure.
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wave functions at pointp(a’,8’) andp’(a’,—B') can be  haven?/a?+m¢/b?=n’/a?+m:/b? only if b?/a? is rational.
related by eitheP; or P,. Proof: LetH | ¢,)=ely,). Then  Letb?/a?=p/q, wherep andq are relatively prime. We find
PiH1,P1Pyfyp)=ePilip)  or  HypPofyp)=ePifdy),  thatn?p+miq=np+miq=N for all i,j. Thus we need to
which implies, assuming all degeneracies have been liftecconsider the following cases classified according to the par-
that |4,,)==P4|¢p). This is the case studied by Lauber ity (odd or evehof (p,q): (a) (0,0), (b) (0,e), (c) (e,0),
et al.[1]. Note that the3” axis is along the long diagonal of whereo ande denote odd and even parities, respectively. For
the rectangular cavity. case (a), if N is even then the states can have parities
(3) o4j=0 for all i, but o5 is not the same for all (P1,P,) either (—,—) or (+,+). If Nis odd then they can
[Example:a=2,b=1, and levels (2,18(12,1%,(20,15)].  have parity ¢,—) or (—,+). Thus the only combinations
In this casef=bX/2+uY and g=—aX/2. The coordinate we can get belong to type 1 or 2. For cdbg if N is even
transformationa=apg’, B=a' +bp’' gives H;=af+ Bg then the states can have parity (+) or (+,—). If Nis odd
=a'g+pB'(af+bg)=—a’aX/2+p'auY. Since P,XP, then they can have parity{,+) or (—,—). In this case the
=X andP,uY P,=—uY, it follows that wave functions at possible combinations belong to type 3. The casdeads to

pointsp(a’,B') andp’(a’,—B’) can be related by,. type (3).
(4) oy=o0 for all i, but oy; is not the same for all This Thus there are no examples of type 5.
case is similar td3). In summary, we have explained the mirror symmetry of

(5) Neither ofo4j,05i,01j05; is the same for all. It can  [1] in the framework of first-order perturbation thedisee
be proved that this case cannot be realized for any choice ¢8,4] for the limitations of this theoryand noticed other
a,b,n;,m;. Proof: We enumerate all the possibilities. We cansituations where such symmetry may be observed.
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