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Work distribution functions in polymer stretching experiments
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We compute the distribution of the work done in stretching a Gaussian polymer, madeohomers, at a
finite rate. For a one-dimensional polymer undergoing Rouse dynamics, the work distribution is a Gaussian and
we explicitly compute the mean and width. The two cases where the polymer is stretched, either by constrain-
ing its end or by constraining the force on it, are examined. We discuss connections to Jarzynski’s equality and
the fluctuation theorems.
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I. INTRODUCTION to heat baths, in the limit where the coupling strengt.

Classical thermodynamics does not give us all the detailgglr dgnvl\tiethb;thvi\éeha:ccc%ﬂgggeg Ee%&eg]t)ed that the equality

about a nonequilibrium process. For example consider a non-

eqU|I|br|l|J(m process durm_ghwhlﬁh W% p(:]rform Wdﬂ:;_onda the probability distribution of various nonequilibrium quan-
system kept in contact with a heat bath at some fixed teMgiiag sych as, for example, the entropy production. In this
per_atureT. The system starts from an equilibrium state de-c55e some new fluctuation theorems have been proposed
scribed by the temperatufieand some other parameter, say [6_g]. These theorems were originally derived for determin-
A (e.g., volume. During the process the parameter changesstic systems but have also been proved for stochastic sys-
from its initial value)\i to a final V?.'UE)\f.-At the end Of the tems[2’3'9]_ These theorems look at the ratio of the prob-
process the system need not be in equilibrium but will evenabilities of positive to negative entropy production during a
tually relax to an equilibrium state described Byand \s.  nonequilibrium process and thus give some measure of “sec-
The second law then tells us that ond law violations” which can be significant if one is looking
W= AF (1 either at small systems or at small time intervals. There are
-0 ) two versions of the fluctuation theorem, the steady state fluc-
where AF is the difference of free energy between the twotuation theoreniSSFT and the transient fluctuation theorem
equilibrium states. The equality holds if the process is reverstTFT). In the former case one looks at a system in a non-
ible. For an irreversible process what other information carfquilibrium steady state and the average entropy production
one extract from a measurement of the work done? First notée '|s_e.x§u“nned. In tgg trﬁnsmnlt quc'tlybapon thedorem Ia skys-
that for specified initial and final values of the parameter tiTh'S |n|:|a y pre%are d|r_1t eff.m_f‘ ?qu"& fium ar: c;ne .0? S
and a fixed pati\(t) connecting them, the work done will &!th€ €Ntropy produced in a iinite timeAn important poin
. . to note is that the definition of entropy production in small
not have a unique value. Every time we repeat the proces . P .
X ) L (Snonthermodynambcsystems and in a nonequilibrium situa-
we will get a different work done becausg) the initial N . o
; . ; tion is somewhatd hocand various definitions have been
microscopic state_ we star_t from may b? different @ﬂfp r used. A number of authofd0-15 have looked, both theo-
a given !nltlal microscopic state the time evolution is not retically and in experiments, at fluctuations of quantities such
unique since the system is in contact with a heat bath. Thu

. T NU2s work, power flux, heat absorbed, etc., during a nonequi-
we W'.” getaprobablllty distribution fo_rthe wor_k do_ne_anq I librium process. In an interesting work it was shown by
is of interest to examine the properties of this distribution. . :

" . rooks[2] that the Jarzynski equality and the TFT are con-
Recently there has been a lot of interest on issues related {0
. A . . nected.
properties of such distribution functions. Two very interest-

! . . . . - Finding universal properties of various nonequilibrium
N9 results involving universal properties of these dISmbu'distribution functions is of obvious interest. At the same time
tions have been proposed. :

S e . . . the explicit forms of the distributions for different systems is
The first is a surprisingqualityobtained by JarzynskiL] .
\ clearly of interest too. In fact for systems such as polymers
which states that . ; .
these are experimentally accessifl®] and it seems plau-
(7 Py = g BAF, (2)  sible that they can give information on the dynamics of the
system. There has not been much work in this direction. In a

where the average is over the work distribution function..gcent papef17] Speck and Seifert have shown that in the
This result should be compared with tikequalityin EQ.(1) it of slow driving the work distribution becomes a Gauss-

that one obtains from usual thermodynamics. For systems, They consider systemévhich could be nonlinear
evolving und_er stochastic Markov_lan f:lynamlcs, E). is evolving through Langevin dynamics. Apart from this work,
exact[2,3]. It is also exact for Hamiltonian systems coupled most other explicit calculations of nonequilibrium distribu-
tion functions have considered single particle systems.
In this paper we consider the well-known model of a flex-
*Electronic address: dabhi@rri.res.in ible polymer whose motion is governed by Rouse dynamics.

The second set of results are obtained when one looks at
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We look at the work done when the polymer is stretched at & his work is equal to the true mechanical work done by the
finite rate. The work distribution functions in different en- external force which we will calW (thus in this caseV

sembles(constant force and constant extengi@me com-

puted explicitly and the dependence of the distributions on
switching rates and system sizes is examined. We discuss our _
results in the context of Jarzynski’'s equality and the fluctua-

tion theoremgTFT).

II. DISTRIBUTION OF WORK IN THE CONSTANT
EXTENSION ENSEMBLE

WJ) We now plug in the solution fary from Eq.(7) to get

W_

S 02(7) - a2(0)] - f derh{e(f)zm)
0

+f dr'G(7- 7)h(7) +f dr'G(r- T’)f(T')].
0

0

We consider a one-dimensional Gaussian polymer whose (8)

energy is given by
N+1

H=> &

_)?, 3
|12 ), (3

with yo=0 andyn.1=Y(t) which is a specified function of

time. For the moment we take the spring constant® be

SinceW is linear in z(0) and ¢ both of which are Gaussian

variables, it follows that the distribution &V will also be
Gaussian. We then only need to find the mean and the second
moment which we now obtain. We first state a few results on
equilibrium properties of the Gaussian chain. The equilib-
rium free energy of the chain is given by

arbitrary. We assume the following Rouse dynamics for the

chain:
[=1,2,... N,

(4)

} ki K+
Yi=—=(i—y-)+ I—1()/|+1 -+ 7,
Y Y

where 7 is Gaussian noise with correlations given by
(m(1)=0 and(m(t) nu(t'))=2/(By) dmd(t-t'). Let us define

the dimensionless varlable&—\ﬂkyh a= \,BkY and 7

Z(Oé):f dy,dys - -~ dyye ™",

where

N+1

ki 1k
H = A 2__ TA hz+ N+1 2
B 212k(z| 7.1 z-h'z+ 2= Za?. (9)

This leads to the following equilibrium free energy of the

=kt/y wherek is the mean spring constant of the chain. InPolymer (apart frome-independent constants

terms of these the equations of motion take the form

d +
e tama)+ Mg, mgrs, 1212, N,
dr k
(5
which can be written in matrix notation as
d
= -AZ+h(D) + E), ©)
dr
where ZT={Z1,22, N §T={§1,§2, N 8 h'
={0,0, ... kns1a(7)/k} and the noise satisfi€g(7))=0 and

E(DEN(T))=28m8(7— 7). The matrixA is tridiagonal with
elementSAH :(k|/k+ k|+1/k), A|’|+1:_k|+1/k, Al,l—l:_k|/k'
The general solution of this equation is given by

Z(T)=G(T)Z(0)+de’G(T- )h(7) + &), (@)
0

whereG(7)=€""7. Over an interval of timé,, the work done,

as defined by Jarzynski, is then given by

W, = AW, —,BfmﬁHYdt
N N Y

k+
T(lf (a—2zy)adr

_kN+1 2 _ 2 _me T
= [a“ (7)) — a7(0)] . drh'z.

F=8F(a)=In(2) = 1 Kusz a? -

hTA th= —kaz,
2k

(10

where 1k=k/ ki +k/ky+---k/kys1. The mean positions of
the particles and their fluctuations can be easily computed at
any force and are given by

(2y=A"h, (12

(= @)@ =) =A" (12)

Mean and fluctuations of the work dorfe'om Eq.(8) we
get for the mean work done:

k N m .
(W) = “1[ (1) = @2(0)] - f drhT[G(r><z<0)>
0

- medTJTdT,hTG(T— T’)h(T’)].
0 0

We do integration by parts so as to express everything in

terms of the ratef. Using the equilibrium results in Egs.
(10) and(11) we finally get

(13

(W) = F(a(7,)) - F(a(0)) + f der f TdT'hT(T)A-le(T
0 0
- )h(7). (14)

The fluctuations of the work(W—(W))2=a2 is given by
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2= f " dr j " 47 W (9 G(A([2(0) - (ZO)][2(0)
0 0
—(Z0)]") X G()h(7')

Tm 71 Tm 2 .
+f dTlf drif drzf drh'(r) X G(m— 7))
0 0 0 0

X(E(r3) E(T))G (75— Tph(7y).

Using Eq.(12) and the relatiof&(7)&7(7))=28(7— 7)1 this
simplifies to

o?= fmdffrm drhT(7)G(DAIG(7)h(r') + 4
0 0

m Ty .
X J drlf drzf dTéhT(Tl)G(Tl— 75)G(7
0 0 0
— h(ry).
Finally using the relation [d7,G(7—75)G(7—75)
=(A"Y2)[G(7,— 1) -G(1)G(7)] we get

2= 2me dTJTdT'hT(T)A-le(T— ). (1)
0 0

The distribution of work done is then

~ 1 (a2
PW) = o W) 1207, (16)
As expected for a Gaussian process we find that
(W) - AF = 0%/2. (17)

Note that in the original variables, both the equilibrium free
energy(AF) and the average workW) are independent of
temperature while the width of the distributi¢n?/ %) de-
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FIG. 1. Distributions of the work done in pulling a short poly-
mer (N=1) at different rates =g/ 7,

2a? 1
o?=—| A2+ —A¥ehm-1)

Tm Tm

(19

NN

where[---]yn denotes a matrix element. The average work
can be obtained from E@17). In the two limits of very slow
(17— ) and very fasf7,,— 0) processes, we get

2a°A3,  4aN
=~ —— (slow) (20)
Tm T Tm
a’N
= N+ 1) (fast). (21

For an instantaneous pulling process the work done is simply
W={[a(7) —zy]2—[a(0)—2zyJ?}/2 and the result in Eq21)
can be directly obtained.

It is instructive to plot the work distributions for different
pulling rates. To see the effect of the polymer length on the

pends linearly on temperature. It is easily verified that thedistribution we consider two case$) A short polymer with

work distribution satisfies the Jarzynski equalitg™")

=e2F, On the other hand, with the present definition of
work, the fluctuation theorem is not satisfied. However if we

define the “dissipated Worl<\7vdi35:\7V—AﬁlE then the distribu-
tion of Wyiss P(Wyis9 Satisfies the fluctuation theorem:

(18)

SinceWj;ss gives some measure of deviation from a qua-
sistatic and adiabatic process it seems reasonable to think

it as an entropy production term which is what usually ap-

pears in the fluctuation theorems.

Some special casetet us consider the case where all
spring constants are equigkk and let us assume that the
polymer is pulled at a constant rate so thét)=ar/ r,,,, The
effective spring constant is/(N+1) and so the free energy
of the polymer isF=a?/2(N+1). From Eq.(15) we get the
spread in the work done:

03612

N=1, a=1 and(ii) a long polymer withN=100,a=10. In

each case the parameter values are chosen so that the change

in equilibrium free energy given bpaF=a?/2(N+1) is of
order 1. The pulling rate has to be compared with the relax-
ation time of the polymer which is given byg=1/\g,,Wwhere
Aem=4 sirt(mr/2(N+1)) is the smallest eigenvalue &f. For
large N we getz=N?/72. For the case$) and (ii) we nu-
merically evaluate EQq.(19) for pulling rates r=7g/ 7,
=0.1,1,10100. The resulting distributions are plotted in
Fig. 1 and Fig. 2. For the long polymer the probability of
negative work realizations is quite small. We can increase
tfeir probability by increasing the temperature which broad-
ens the distributions while keeping the mean unchanged.

lIl. DISTRIBUTION OF WORK IN THE
CONSTANT-FORCE ENSEMBLE

Next we compute the work distribution in the constant-
force ensemble. Instead of constraining the end of the poly-
mer we apply a time-dependent forég) on it. The time-

6-3



ABHISHEK DHAR PHYSICAL REVIEW E 71, 036126(2005

T T T T - l
—e=01) 7 (W) = E[hT(Tm)A_lh(Tm) -h"(0)A™'h(0)]
=10 |
= 1=100] ] m .
- hT(Tm)J drA" G (7, — Dh(7)
- 0
7 +J de dT'hT(T)A_lG(T— T’)h(r’).
] 0 0
B T R T R | R—T) _ .
w Hence for an adiabatic process we ¢éf)=—AG(f) where
FIG. 2. Distributions of the work done in pulling a long polymer G(f)=BG(f)=-hTA™h/2 is the polymer ]“ree energy in the
(N=100 at different rates = g/ 7. constant force ensemble. Thus in this c4&& is not zerofor
an adiabatic process and so it is not an obvious measure of
dependent Hamiltonian of the system is now given by entropy productioreven though it does satisfy the fluctuation
theorem
- Interestingly, sincer?=2(W), thus even for an adiabatic
pH= 21 5((& 207~ T(V)zy (22)  process, the work-distributiodoes not tendo a & function

as one might naively expect. However in the thermodynamic
- — . _ limit N—co the width approaches zero as~1/N*2 so in
wheref=yg/kf and the equations of motion are this limit the usual expectation is indeed satisfied.

d
= Az + (1),
T IV. CONCLUSIONS

with h(7)=[0,0,. T)] In this case we note that the > 98N conclusion, in this paper we have computed explicitly
eralized WOkaJ, as defined by Jarzynski, is given B, the distribution of work done when a polymer is stretched at
==[3 derf(T) and is not equal to the true mechanical work a finite rate. We examine different ensembles and look at
done on the system which W—fgmdrf Dzy. It is straight- different deﬂmtlons of V\_/o_rl_< As has been noted by earlier
e =~ ~ , authors, for different definitions of the work, the correspond-
fqrvvard to compyte the distributions °f_bd.'"‘af‘dWJ butin ing distributions can have quite different properties. In the
this paper we Wlﬂ only compute the distribution of the true . Jo<i-nt extension ensemble the generalized Weyls the
mechanical workV since it relates more closely to the fluc- same as the true mechanical watkand Jarzynski's identity
tuation theorems. We again find that has a Gaussian dis- is satisfied. In this case, the fluctuation theorem is satisfied
tribution with the following mean and variance: by a different quantityW;ss which does seem like a quantity
which gives some measure of entropy production. In the con-
_ m . 7 stant force ensembl&); is different from the true workV
<V\D=f drhT(r)h(r)—J er dr'h'(7) which does not satisfy the Jarzynski identity. On the other
0 0 0 hand the distribution oV satisfies a fluctuation-theorem like
m relation. However in this case we find that it is not possible
XG(1- 7-’)Ah(7-’)—f d7h"(nG(Dh(0), to identify the work as a measure of entropy production.
0 Another point that should be noted is that the usual version
of the fluctuation theorem, that has been proved for stochas-
tic systemgqsee[2] for example, relates probabilities of en-
o™ T _ m T T tropy production in the forward and time-reversed processes.
o*= ZJ dr(nh(r) Zf dTL dr'h’(z) However for linear systemdike the Gaussian polymgone
can show that the forward and time-reversed distributions are

XG(r=7")Ah(7). identical[3] and so the fluctuation theorem can be stated in
terms of the forward process only.
For f(0)=0, we get(W)=c2/2 which means thaP(W) sat- As a practical use, the Jarzynski identity has been pro-

isfies the fluctuation theorem. It is then natural to again ask jPeSed as an efficient method for computing equilibrium free

Wis some measure of entro roduction. If this was so the energy profiles from nonequilibrium measurements, both in
Py P Yimulations and experiment$8,19. For the specific case of

W should vanish for an adiabatic process. To check this W®olymers, we expect that a combination of simulations and
first expresi\/\/} in terms of the rateh(r) We get our exact results on the work distribution, should lead to
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better estimates on efficiency and of errf#6—-22 (and how s likely to be non-Gaussian. For slow pulling rates one again
they depend on rates and system sizegolved while using expects a Gaussian distribution. It will be interesting to com-
the nonequilibrium methods in free energy computations. pute such distributions explicitly and study their depen-

For non-Gaussian models of polymers such as, for exdences on rates, system sizes and other parameters such as
ample, semiflexible polymers, the work distribution function the rigidity of the polymer.
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