PHYSICAL REVIEW E 71, 021104(2005

Inequivalence of statistical ensembles in single molecule measurements
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We study the role of fluctuations in single molecule experimental measurements of force-exténgion
curves. We use the wormlike chaiw/LC) model to bring out the connection between the Helmholtz ensemble
characterized by the free enerffy(¢)] and the Gibbs ensemble characterized by the free en&gy]. We
consider the rigid rod limit of the WLC model as an instructive special case to bring out the issue of ensemble
inequivalence. We point out the need for taking into account the free energy of transition when one goes from
one ensemble to another. We also comment on the “phase transition” noticed in an isometric setup for semi-
flexible polymers and propose a realization of its thermodynamic limit. We present general arguments which
rule out nonmonotonic force-extension curves in some ensembles and note that thesteadply to the
isometric ensemble.
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I. INTRODUCTION the measured quantities. For instance, it turns out, that an
. i experiment in which the ends of a polymer molecule are
In the past, experiments on polymers were confined {Qjxeq (isometrig and the force fluctuates yields a different
studying their bulk properties, which involved probing large regyt from one in which the force between the ends is held
numbers of moleculefl]. The results of these experiments fjyaq (isotensional and the end-to-end distance fluctuates
could pe analyzed by using the traditional tools of thermo-[s,g]' This difference can be traced to large fluctuations
dynamics. In recent years, however, researchers have begaoyt the mean value of the force or the extension, depend-
successful in micromanipulatingingle biological molecules  jng on the experimental setup. These fluctuations vanish only
suc;h as DNA, protelns and RNA to probe their elastic propin ‘the thermodynamic limit of very long polymers.
erties[2]. Such studies serve a twofold role. On one hand, Here we use the wormlike chaflvLC) model[10-17 to
they shed light on mechanical properties of semiflexiblegy,qy the inequivalence of ensembles due to finite size ef-
polymers, which are of clear biological importance in pro-fects. The WLC model has been very successful in achieving
cesses such as gene regulation and transcripefl. On  gyantitative agreement with experimentally measured force-
Fhe other hand, they prowde physicists with a concrete teslyiension curve§?,13). The paper is organized as follows.
ing ground for understanding some of the fundamental ideag, sec. || we discuss the Helmholtz and Gibbs ensembles. In
of statistical mechanics. In statistical mechanics, an isometrigec |11 we consider the rigid rod limit which forcefully
setup would be described by the Helmholtz free energypyings out the main issues dealt with in this paper. In Sec. IV
whereas an isotensional setup would be described by thge graw attention to the importance of taking into account
Gibbs free energj]. In the thermodynamic limit these tWo  (he free energy of transition in going from one ensemble to
descriptions agree, but semiflexible polymetsose with  another. In Sec. V we discuss the thermodynamic limit of a
contour lengths comparable to their persistence lengties “phase transition” recently seen in semiflexible polymers. Fi-

notat the thermodynamic limit. Experimentally, both isomet- nally, we end the paper with a discussion in Sec. VI.
ric and isotensional ensembles are realizable. Typically the

polymer molecule is suspendéith a suitable mediumbe-
tween a translation stage and a force sensor. The force sensor II. HELMHOLTZ AND GIBBS ENSEMBLES
could be realized by using an atomic force microscope ) . ) ) ) )
(AFM) cantilever or by optical or magnetic forces. As noted ~Consider an idealized experiment in which one end of a
by Kreuzer and Paynd], an isometric setup can be realized Mmolecule is held fixed atx,,Yo,0) and the other end is at-
using a stiff trap and an isotensional setup by using a softached to a dielectric bead confined to a harmonic optical
trap. In a more sophisticated version, an electronic feedbackap described by the potential
circuit is used to control the foro@r the extensionand one Y Y _
measures the fluctuations in the extendionthe force [8]. V(X,Y,2) :A[(X %)+ (y=Yo)’] + C(Z Z)
Here we will focus on the role of fluctuations in single mol- 2 2
ecule experiments. In order to correctly interpret such ‘?Xperi\'/vith (X0, Yo, o) defining the center of the trap. Consideto
ments one needs to understand the effect of fluctuations ot small so that the bead is free to move in the plzrE,.
For a polymer of contour length and persistence lengths
it is convenient to introduce the following dimensionless
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at a temperatur@. ConsiderP(¢)d¢, the number of configu- 0 19
rations(counted with Boltzmann weighf11] for a polymer *, F8
of lengthL starting from the origin and ending anywhere on

the x—y plane in an intervatl of . The free energy defined 6 8
by F(£)=-(1/8)In P(¢) is the Helmholtz free energy. The 4 p
partition function[14] for the combined system consisting of

the polymer molecul@ndthe trap is given by : :

0.2 04 0.6 0.8 z 0.2 0.4 0.6 0.8

C (7 oro - w2 s
Z({0,B) = Py dze e ot (2 (@) (b)

~ ) o ) ~ FIG. 1. Force-extension curve in the Helmha(lza) and Gibbs
whereC=CL?. By tuning the longitudinal stiffness we can (1b) ensembles fop=0. We have set=1.

realize the two limiting cases.

Helmholtz In the limit of a stiff trap(C— =), the Gauss-  origin of the difference between the two ensembles to the

ian factor pertaining to the trap approaches a delta functiogifference between the Legendre and Laplace transforms.
and one gets

— A~ BF
Z({,p)=¢ AR, 3 [ll. RIGID ROD LIMIT: AN INSTRUCTIVE EXTREME

Here we have switched notation to writein place of {, CASE

Thus a stiff trap realizes the Helmholtz ensemble by con- e noticed in the last section that because of fluctuation
straining fluctuations in th¢ coordinate. To extend the mol- effects the Helmholtz and Gibbs free energies are not related
ecule from { to {+d{ one needs to apply a forcéf)  py a Legendre transform. An important consequence of this
=dF/d¢ in order to compensate for the change of entropyis that the(F,(2)) relation is different from thé(F),z) rela-

Plotting (f) versus{ we find the((f), {) force-extension re- tjon. In other words, the force-extension curves plotted in the

lation. ~ two ensembles ardistinct due to finite size fluctuation ef-
Gibbs In the opposite limit of a soft trapC— 0 and{, fects. Fluctuations dominate at finizand disappear in the
— o such thatC¢,=Af remains finitg, one getd14] thermodynamic limit8— ) of flexible polymers. We bring

out the ensemble dependence of the force-extension relations
Z(f,,B):f dge OB, @) S;(E);c;% S;Smn;?(s;irg)rbatlcally in the limiting case of a
- In this extremely rigid limit[15], the end of the polymer

Thus a soft trap permits fluctuations in tiieoordinate but is uniformly distributed over the sphere of directions. In the
constrains the force fluctuatiorf§] and thus realizes the Helmholtz ensemble we thus hawz)dz=dz/2L for -L
Gibbs ensembleZ(f) is the generating function for the <Z<L andP(2)=0 otherwise. Since the free energy is con-
¢ distribution. Defining the Gibbs free energ(f) stant in the rangel=<z<L an_d diverges othervvlse_, we find
that the average forcg=) vanishes forlz| <L and diverges
for |z| =L [see Fig. 1a)]. In the Gibbs ensemble we find by
standard manipulations that

=—,8In2(f) we can work out the mean extensidd)
=-4G/f and the({¢),f) force-extension relation.

Notice thatz(f) is the Laplace transform dt(¢). In the
thermodynamic limit of long polymer§3— «) the Laplace (2)= (L cothFL — E) (6)
transform integral Eq(4) is dominated by the saddle point
value and thereforé({) andG(f) are related by a Legendre

which differs from the(F)-z relation determined above in
transform:

the Helmholtz ensemblé¢see Fig. 1b)]. The theoretical
F(O) =G(f) + f¢. (5)  analysis of the ensemble dependence of the force-extension

relation based on the rigid rod limit is a new result of this
For finite B, i.e., for a polymer of finite extent, the saddle paper.
point approximation no longer holds true and fluctuations Thus an experimenter making force-extension measure-
about the saddle point value of the free energy become imments on, for instance, Actin filamert6], would find that
portant. Thus one finds th&({) and G(f) arenot Legendre  a measurement in which the force is controlled and the end-
transforms of each other. We notice that this difference beto-end distance is measured leads to a different force-
tween the Legendre transforfitg. (5)] and the Laplace extension curve from a measurement in which the end-to-end
transform[Eq. (4)] is the mathematical origin of the finite separation is controlled and the force is measured. A theorist
size fluctuation effects described in this paper. These fluctudnterpreting the curves also needs to keep in mind whether
tions are of thermal origin and can ultimately be traced tothe curves are obtained in a constant-force setup or a
collisions of the polymer molecule with the molecules of theconstant-extension setup since a proper interpretation of the
suspending medium. In this section we have recovered theurves requires a knowledge of the ensemble used in the
results of[7]. We have also gone beyoid] and traced the measurement.
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IV. INEQUIVALENCE OF ENSEMBLES AND THE FREE
ENERGY OF TRANSITION
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In order to understand this issue more explicitly we con-
sider corrections to the saddle point approximation which is

In an isotensional setup one controls the force and ongalld in the long polymer limit. Le_t us expan¢(§)=}‘(§)_
—=f¢, the argument of the exponential appearing on the right-

measures the mean extension and plots it as a function of ; .
force. In an isometric setup the roles of extension and forc an_d side Qf Eq(4) ground the saddle point vall_1§=_§*
hich dominates the integral in the long polymer lijand

are interchanged. In both setups zero force corresponds retain terms upto second order in the fluctuations about the
zero extensiori{=0) and a large force corresponds to maxi- ns up i
saddle point value:

mal extensiorii.e., {=1). Imagine going from zero force to a
large force via the isotensional setup and returning from

maximal extension to zero extension via the isometric setup.
Since the “equation of state” depends on the chosen en-
semble, in general there will be two distinct curves describif we plug in this expansion in Eq4) and identifyz(f,,B)
ing the extension in one ensemble followed by contraction inyith e25(") we arrive at the following equation:

the other[17]. In such a situation there could be a net area

enclosed in the force-extension plane. This poses a puzzle
because it appears that a cyclic process can extract work

f h . Thi lei il Ived. | let- . .
rom the system Is puzzle is easily resolved. In comp etThe free energy due to fluctuations around the saddle point

1
B = D)+ S DL~ ).

1
G(f) =[F(&) — f& ]+ Zgln F'(&). (10

ing the cycle and returning to the initial state one is in fact
changing ensembles twice at the two end points. These cof-
respond tdinite free energy changes which need to be take

into account.

Let (¢,f1) and({,,f,) be two points which lie on both
isometric and isotensional force-extension curves. In our ex-
ample(¢;,f1)=(0,0) and({,,f,)=(1,%). Let us suppose that
we go from({y,f;) to (£,,f,) in the isotensional ensemble

and return via the isometric ensemble. We find that

2 5G fa
G(fy - G(fy) = ﬁdf: - | ({df. (7)
fa fa
Similarly,
2 gF &
F({) —F(g) = a—gdé“: (fHdg. (8)
0 &

The area enclosed between the two curves is given by

193 &
W= [ fd( -] (Hdd,
0 &

which can be rewritten as

193 fa &
W= | d(f(Q) - | (Qdf-| (fHHdf
& fi &

=10, — 14+ G(fy) — G(fy) - F(Z) + F({y)
=[f{+G(f) -F(OR

=[F() -F(R

=AF"(Q)[3, (9)

where we defineAF"({) as the free energy of transition.

AFY(¢) is the difference betweeﬁ(g)zfﬁG(f), the Leg-
endre transform of(f) and the Helmholtz free enerdy({).
Since these are not equ@xcept in the limit of long poly-

alue is (1/2B)In F'({+). Notice that in the long polymer
imit of B—oe, this term vanishes. For finitg, this nonzero
contribution to the free energy accounts for the transition
between the constant extension ensemble and the constant
force ensemble. In going from a soft trap to a stiff trap work
is done on the bead by the trap. Similarly in going from a
stiff trap to a soft trap work is extracted from the bead by the
trap. The net work done is the difference between the work
done at the two ends of the force-extension curves in switch-
ing ensembles. This net work exactly cancels out the nonzero
area enclosed in the force-extension plane.

V. “FIRST-ORDER PHASE TRANSITION” AND THE
THERMODYNAMIC LIMIT IN SEMIFLEXIBLE
POLYMERS

In Sec. Il we considered the bead to be in a potential
which was soft in thec andy directions. Let us now consider
what happens when the trap is stiff in all three directiphs
as well asC in Eq. (1) are largé and the vector position of
the bead is constrained to be @&,Yy,2). Let Q(F) be the
number of polymer configurations which start at the origin
and end in the volume elemedii centered af [11,18. Q(r)
is related toP(2) via the equation

P(Z)=deQ(F)5(r3-Z), (11)
which, in words, means th&(z) is obtained by integrating
Q(r) over a plane of constant [11]. The distribution
Q() was studied in[18] where it was noticed that in an
intermediate rangéaround 3.8 of 3 the free energyA(r)
=(-1/p8)In Q(r) had multiple minima. For a fixed contour
length as one varieg by tuning the persistence length

one finds a competition between flexible and rigid phases of
the polymer for intermediate values gf Thus the polymer
undergoes a flexible to rigid “first-order phase transition” via
a two peaked profile o(r). This leads to a curious force-
extension relation. As one pulls the bead, the restoring force

merg the free energy of transition between ensembles musit first increases, then decreases to zero and then goes nega-
be considered in order that the total free energy change in tive and becomes a destabilizing force. The molecule is un-

cyclic process vanishes.

stable and goes to a new extended state.
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The nonmonotonic behavior @(r) is an intriguing fea-
F ture of molecular elasticity. It was noticed in recent simula-
tions [18] and subsequently in a semianalytical treatment
[11]. It was also commented on in a recent padeX. This
double humped form of(r) has gained renewed interest in
the context of cyclization of polymers and its significance to

FIG. 2. Schematic experimental design for replica thermody-gene regulatiorf20,21].
namic limit, shown above foN=4 We note that this remarkable qualitatively distinctive fea-

ture is special to the isometric ensemlffixed vector end-

The words “first-order phase transition” above were into-end separationand is not shared by other ensembles. In
quotes as a finite system does not show phase transitions. dther ensembles one can argue generally that such nonmono-
one takes the thermodynamic limit by taking the length oftonic behavior cannot occur. For example, the conjugate dis-
the polymer to infinity (8—c) one loses the multiple tripution P(F)=Q(F)eF 7dF is monotonic. This follows from
minima structure which is present only in a small rang@of qticing that the % 3 matrix
around 3.8. Is it possible for this phase transition to survive
the thermodynamic limit? As we will see below, this is in- JInP
deed possible provided one takes the replica thermodynamic JF. IF.
limit. We takeN replicas of the molecule with fixed and let e
N tend toe. ConsiderN identical polymers with3=L/Lp  is positive definite. Such arguments do not applyQe)
fixed, their two ends anchored to flat surfa&sandS, (see  since there is no analogous formula to E4). in the conju-
Fig. 2). One could realize the above arrangement by uéing gate distribution. Indeed, if there were, a double humped
two planar arrays of optical traps @) by introducing suit-  form could not appear ifQ(f), for one could express the
ably Synthesized Supl’amolecular lamellar structures. The a@'econd derivative OQ(F) as the Variance Of the force_ Can

choring is such that the tangent vectors to the molecule at thg(z) show nonmonotonic behavior? The answer is no, for it
fixed ends are free to swivel. If one applies a foFce pull 1,55 peen shown ifL1] that

S, and S, apart theN molecules are also stretched. We con-
sider the molecules to be well separated so that they can be -2dP _
regarded as independent. One could now look at the mean 7 dz Q(2).
force F needed to maintain the separatiorit is easily seen
that the force is proportional thi and also the mean square Since Q(f) is a probability density and therefore non-
fluctuation{(AF)?) in the force is proportional tt\. This is  negative, it follows thatlP/dz=0 for z>0, thus ruling out
because the mean force and its variance are, respectively, tRiltiple peaks inP(z). This argument which rules out mul-
first and second derivatives of the free energy, which beingiple peaks inP(z) is a new observation. Note thatR(z)
an extensive quantity is proportional kb It follows that as  measurement differs fro@(r) only in the transverse stiff-
N goes to infinity, the fluctuationfAF/F) in F die out as nessA of the trap. By tuningA we can permit fluctuations in
1/VN. We can now regard the mean forEeas a control the transverse direction and therefore destroy the phase tran-
parametefi.e., consider a constaftensembleand observe sition present in the stifA limit. One would expect to see a
that if we tune the applied forcE, there is a discontinuous critical stiffnessA=A; below which the phase transition is
change in the separatianbetween the two sets of optical destroyed. Alternately, one could tune the mean force and
traps signalling a first-order phase transition with the inter-expect to see the phase transition vanishing below a critical
trap separatiom as the order parameter. Thus, in the replicamean forceF=F for a fixed value ofg in the intermediate
way of taking the thermodynamic limit the double humpedrange of3. We emphasize that the non-monotonic features of
form of the distribution functiorQ(r) results in a true first- Q(r) in the semiflexible rang@~ 3.8 are predictions of the
order phase transition. WLC model which can be tested against experiments. A
single molecule with its ends confined in optical traps is
expected to show this flexible to rigid transition. The effect
VI. DISCUSSION can be dramatic however, if a large number of molecules
cooperatively show such a transition. One could attach the
In this paper we point out the importance of consideringends of a collection of semiflexible polymers to supramo-
the free energy of transition in going between the Helmholtdecular layerd22] and detect the flexible to rigid transition
and the Gibbs ensembles in the context of single moleculsignaled by a change in the interlayer separation via a suit-
force-extension measurements. We also study two distincble probe. It may be possible to exploit this dramatic tran-
ways of taking the thermodynamic lim{i) by letting the sition from flexible to rigid behavior in technological appli-
length of the polymer tend to infinit§i.e., 3— ) and(ii) by  cations.
considering replicas. In particular we notice that the flexible If one considers the replica thermodynamic limit of a
to rigid transition mentioned in Sec. V for a single semiflex- semiflexible polymer one sees that force-extension curves
ible polymer survives the replica thermodynamic limit. In continue to remain distinct in the Helmholtz and the Gibbs
contrast, this feature disappears in the usual thermodynamansembles. So while interpreting a force-extension curve ob-
limit of B— oo, tained for a collection of semiflexible polymers suspended

={(ri=ri)(rj=<rp)) (12
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between two arrays of traps, one needs to know if the curvéaking the thermodynamic limit given if24], where they

is obtained using the soft trap setup or a stiff trap setuprecover the thermodynamic notion of pressure from an un-
However, for 3— o, which is the usual thermodynamic li- derlying microscopic definition when they let the scale factor
mit,the two ensembles give rise to thkameforce-extension  go to infinity in the macroscopic limit. The results of this
curve. This observation is consistent with the fact that in-paper are therefore, consistent with the general treatment in
equivalence of ensembles can survive at the thermodynamjeg].

limit for systems with long-range interactiofi,8,23. In the The fluctuation effects mentioned here also have some
context of semiflexible polymers, the persistence lergth  piqagical significance. In particular, the process of gene

plays the role of the range of interactions. There has beepyy ation involves interaction between parts of a DNA mol-
some work[24] on the thermodynamics of particle systems

in th f ext | ic fields in classi cule which are about less than one persistence length apart
N e presence of external macroscopic NIelds In ClassICql_z4 nm [21]. Over such short segments of the DNA fluc-
and quantal contexts. In these papers the authors have de

uIE':ltion effects would be significant. The replica thermody-
with the macroscopic limit of the definition of pressure S . . .
which is analogous to the thermodynamic limit of the defi-1amic limit would also play a r(_)Ie in the concrete biological
. ; . context of a network of actin filaments forming the cytosk-
nition of force in our work. In particular the authors of Ref. eletal structure
[24] discuss the connection between the values of the pres- '
sure defined by two different thermodynamic limit proce-
dures: in the first, the system is confined successively in a
sequence of boxes which grows to fill up the whole space. In
the second, the system is in an external potential similar to We thank Dipanjan Bhattacharya for drawing attention to
the present context. In the case of a semiflexible polymer th&ef. [8] and Abhishek Dhar, Deepak Dhar, Erwin Frey, and
force corresponding to a given extension is the same in th&ichard Neumann for discussions. We thank Harish-Chandra
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