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Photons from quantized electric flux representations
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~Received 17 April 2001; published 28 September 2001!

The quantum theory ofU(1) connections admits a diffeomorphism invariant representation in which the
electric flux through any surface is quantized. This representation is the analog of the representation of
quantumSU(2) theory used in loop quantum gravity. We investigate the relation between this representation,
in which the basic excitations are ‘‘polymerlike,’’ and the Fock representation, in which the basic excitations
are wavelike photons. We show that normalizable states in the Fock space are associated with ‘‘distributional’’
states in the quantized electric flux representation. This work is motivated by the question of how wavelike
gravitons in linearized gravity arise from polymerlike states in nonperturbative loop quantum gravity.
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I. INTRODUCTION

The loop quantum gravity approach@1,2# is based on a
Hamiltonian description of classical general relativity
which the basic configuration variable is a connection@3,4#
and its conjugate is a triad field. The spatial 3-metric on
Cauchy slice is constructed from the triad and the connec
contains information about the extrinsic curvature of t
slice as embedded in the spacetime, thus establishing co
with the usual Arnowitt-Deser-Misner formulation. In th
quantum theory, the basic connection dependent opera
are holonomies of the connection around loops in the Cau
slice @5,6#.

In recent years the approach has been put on a firm m
ematical footing with the following key features. A~quan-
tum! configuration space,A/G, of ~generalized! SU(2) con-
nections modulo gauge and a canonical diffeomorph
invariant measure, dm0 ~also called the Ashtekar
Lewandowski measure@7#!, on A/G have been constructe
@7–11#. The spaceL2(A/G,dm0) provides a kinematical Hil-
bert space on which the~self-adjoint! SU(2) holonomy op-
erators act by multiplication. This kinematical Hilbert spa
is spanned by an orthonormal set of ‘‘spin network’’ stat
each associated with an oriented, closed graph whose e
are labeled by representations ofSU(2) @12–14#.

Every spin network state is an eigenstate of operators
responding to the area of 2-surfaces in the Cauchy slic
roughly speaking, the area of a surface gets a contributio
Aj ( j 11) units of Planck area from each edge labeled
spin j which intersects the surface transversely. Since
area operator is constructed from the triad field@or equiva-
lently theSU(2) electric field#, the edges of the graph ma
be thought of as carrying quanta of non-Abelian electric fl
Since the edges are 1 dimensional, the intuitive picture
states inL2(A/G,dm0) is of ‘‘polymerlike’’ quantum excita-
tions.

As noted earlier,L2(A/G,dm0) is a kinematical structure
The dynamics of general relativity in its canonical descr
tion is encoded in the diffeomorphism and Hamiltonian co
straints. Physical states in the quantum theory are in the

*Email address: madhavan@rri.ernet.in
0556-2821/2001/64~10!/104003~9!/$20.00 64 1040
a
n

act

rs
y

th-

,
ges

r-

of
y
e

.
f

-
-
r-

nel of the corresponding quantum constraint operators.
representation of holonomies, functionals of the triad, as w
as the unitary action of diffeomorphisms onL2(A/G,dm0)
provide a representation of the diffeomorphism constra
@15#, and in a key breakthrough by Thiemann, the Ham
tonian constraint@16#.1 It turns out that elements of the ke
nel of the constraints are ‘‘too distributional’’ to be norma
izable states inL2(A/G,dm0). Rather, they are expressible a
non-normalizable, infinite, sums of spin network states.

Thus, a nonperturbative physical state of the quant
gravitational field is a distributional sum of kinematic state
each of which is associated with 1 dimensional, polymer-l
excitations. Given such quantum states, a key open ques
is: how do classical configurations of the gravitational fie
arise? In particular, how does flat spacetime~and small per-
turbations around it! arise from non-perturbative quantum
states of the gravitational field?

The latter question is particularly interesting for the fo
lowing reason. Small perturbations about flat spacetime
respond to solutions of linearized gravity. Quantum states
linearized gravity lie in the familiar graviton Fock space o
which the conventional perturbative approaches to quan
gravity are based. Such approaches seem to fail due to
renormalizability problems. Thus, an understanding of
relation between the quantum states of linearized gravity
states in full nonperturbative loop quantum gravity wou
shed light on the reasons behind the failure of perturba
methods.

There are many aspects of this yet-to-be-understood r
tion between perturbative and nonperturbative states and
shall focus on only one of them, namely, the dramatica
different nature of the basic excitations in Fock space and
loop quantum gravity: whereas Fock space gravitons can
thought of aspropagating 3D wave-packets, states in loop

1Note that it is not clear if Thiemann’s quantization has gene
relativity as its classical limit@17#. It has also been realized tha
there are a large family of distinct Thiemann-like regularizations
the Hamiltonian constraint@18#. On the other hand, recent results
Bojowald @19# in the context of minisuperspace quantization m
be taken as evidence that some elements of Thiemann’s proce
could lead to avoidance of singularities in quantum theory.
©2001 The American Physical Society03-1
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quantum gravity are associated with1D polymer-like excita-
tions.

This aspect of the relation between perturbative and n
perturbative states in quantum gravity can be isolated
studied in the simpler yet highly instructive context
source-free Maxwell theory. To this end, consider aU(1)
connection on a spatial slice diffeomorphic toR3. Starting
from the Poisson brackets algebra ofU(1) holonomies
around loops inR3, it can be seen that exact counterparts
the SU(2) constructions of loop quantum gravity exi
@8,7,20,21#. Thus, a canonical diffeomorphism invaria
measure exists on the quantum configuration space of ge
alizedU(1) connections modulo gauge@we shall continue to
denote these bydm0 and A/G—it will be clear from the
context whether these symbols refer toSU(2) or U(1)],
holonomies act as unitary operators by multiplication
L2(A/G,dm0), andL2(A/G,dm0) is spanned by an orthonor
mal basis, each element of which is associated with a clo
oriented graph and a labeling of edges of the graph by
resentations ofU(1). Since such representations are labe
by integers called charges, we refer to these states as ‘‘ch
network’’ states. Each such state is an eigenfunction of e
tric flux operators associated with surfaces inR3 and the
edges of the graph underlying the state may be thought o
carrying quanta of electric flux. We refer to this diffeomo
phism invariant representation, in which the basic excitati
are, once again, 1 dimensional and ‘‘polymer-like’’ as t
quantized electric flux (QEF) representation.

In sharp contrast to this, is the usual Poincare´ invariant
quantum theory of aU(1) connection on a fixed flat space
time with flat spatial slices diffeomorphic toR3. Here, the
connection and its conjugate electric field are represente
operator valued distributions on the Fock space of phot
where the basic quantum excitations are 3D and wave-li

Thus quantumU(1) theory presents an excellent arena
discuss the question raised earlier, namelyhow can the 3D
wave-like excitations of Fock space arise from underly
1D polymer-like excitations?

At first sight, the Fock and the QEF representations
very different. In the Fock representation, the connection
an operator valued distribution which needs to be smeare
3 dimensions to obtain a well defined operator. Holonom
of this operator valued distribution involve smearings on
over the 1 dimension provided by the loop, and arenot well
defined. In contrast, in the QEF representation, holonom
are well defined operators onL2(A/G,dm0). In Sec. II we
review our previous results@22# which point to a way around
this apparently insurmountable obstacle to relating the
representations.

In Sec. III we present our main result, namely that sta
in the Fock representation are associated with distributio
sums of charge network states in the QEF representa
This mirrors the mathematical structure of loop quant
gravity in the sense that, there, physical states are assoc
with distributional sums of spin network states in the kin
matic Hilbert space. Section IV contains a discussion of
results and some concluding remarks.

We shall use units in which\5c51.
10400
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II. THE ISSUE OF SMEARING

Since the Abelian Poisson brackets algebra of holonom
is the primary structure from which the QEF representat
is obtained@21,22#, we would like to relate the Fock repre
sentation to this holonomy algebra. As noted earlier,
usual Fock representation is not a representation of the
lonomy algebra because the connection operators in this
resentation are too singular for their holonomies to be
fined. Instead, it is possible to obtain the usual Fo
representation as the representation of a related algebr
‘‘smeared holonomies.’’ By using the smeared holonomy
gebra as a link between the algebra of holonomies and
Fock representation we shall be able to relate the two.

In order to define the smeared holonomies we recall
following definitions from @23,28,22#. xW denotes Cartesian
coordinates of a point onR3. A is the space of smoothU(1)
connections,Aa(xW ),2 @on the trivial U(1) bundle onR3]
whose Cartesian components are functions of rapid decr
at infinity. Lx0

is the space of unparametrized, oriente

piecewise analytic loops onR3 with basepointxW0. Composi-
tion of a loopa with a loopb is denoted bya+b. Given a
loop aPLx0

, the holonomy ofAa(x) arounda is Ha(A)

ªexp(iraAadxa). The holonomy can equivalently be define
as

Ha~A!5expi E
R3

Xg
a~xW !Aa~xW !d3x, ~1!

with

Xg
a~xW !ª R

g
dsd3

„gW ~s!,xW…ġa, ~2!

wheres is a parametrization of the loopg, sP@0,2p#. Xg
a(xW )

is called the form factor ofg. The Gaussian smeared form
factor @23# is defined as

Xg(r )

a ~xW !ªE
R3

d3y fr~yW2xW !Xg
a~yW !5 R

g
ds fr@gW ~s!2xW #ġa

~3!

where

f r~xW !5
1

~2p!3/2r 3
e2x2/2r 2

xªuxW u ~4!

approximates the Dirac delta function for smallr.
Then, the smeared holonomy is defined as

Hg(r )
~A!5expi E

R3
Xg(r )

a ~xW !Aa~xW !d3x. ~5!

2As noted in@20#, to get an object with the dimensions of aU(1)
connection, we need to divide the usual magnetic potential b
parameter,q0, which has dimensions of electric charge. This refle
in the Poisson brackets~7! and the definition~31!.
3-2
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PHOTONS FROM QUANTIZED ELECTRIC FLUX . . . PHYSICAL REVIEW D64 104003
As shown in@22#, the Fock representation is a represe
tation of the Poisson brackets algebra generated by
smeared holonomies,Hg(r )

(A) and the electric fieldEa(xW ):

$Hg(r )
,Ha(r )

%5$Ea~xW !,Eb~yW !%50,

$Hg(r )
,Ea~xW !%5

i

q0
Xg(r )

a ~xW !Hg(r )
. ~6!

These Poisson brackets are generated from the eleme
Poisson brackets

$Aa~xW !,Eb~yW !%5
1

q0
da

bd~xW ,yW !. ~7!

Here,q0 is a parameter with the units of electric charge@20#.
In the Fock representation, the smeared holonomies,Ĥg(r )

,

are unitary operators and the electric field,Êa(xW ), is an op-
erator valued distribution.

How is the above algebra involving smeared holonom
and the electric field related to the holonomy algebra? To
end we define the classical Gaussian smeared electric
Er

a(xW ) by

Er
a~xW !ªE d3y fr~yW2xW !Ea~yW !. ~8!

The Poisson brackets algebra generated by the~unsmeared!
holonomies and the Gaussian smeared electric field is

$Hg ,Ha%5$Er
a~xW !,Er

b~yW !%50,
~9!

$Hg ,Er
a~xW !%5

i

q0
Xg(r )

a ~xW !Hg .

Then, as is hinted by Eqs.~6! and~9! and proved in detail
in @22#, the abstract algebraic structures underlying the P
son brackets algebras generated by„Hg(r )

(A),Ea(xW )… and

„Hg(A),Er
a(xW )… are identical. In other words,Ea(xW ) and

Er
a(xW ), andHg(r )

(A) andHg(A) may be identified with the
same abstract objects as far as the algebraic structure o
two Poisson brackets algebras is concerned. Therefore,
representation of the Poisson brackets algebra generate
„Hg(r )

(A),Ea(xW )… defines a representation of the Poiss

brackets algebra generated by„Hg(A),Er
a(xW )…. In particular,

the Fock representation of the„Hg(r )
(A),Ea(xW )… algebra de-

fines a representation of the„Hg(A),Er
a(xW )… algebra. We

shall call this representation, the ‘‘r -Fock representation’’ of
the „Hg(A),Er

a(xW )… Poisson brackets algebra. Thus, in t

r-Fock representation the holonomies,Ĥg are well defined
operators.

We can see this explicitly as follows. The Fock repres
tation, or for that matter, any representation with a cyc
‘‘vacuum’’ state, can be reconstructed from the vacuum
pectation values of the algebra of operators. Thus, we m
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specify ther-Fock representation via the vacuum expectat
values of the Fock representation as follows. The Fock r
resentation is a cyclic representation generated from the F
vacuum,u0& with vacuum expectation values3

^0uĤg(r )
u0&5expS 2E d3k

4q0
2k

uXg(r )

a ~kW !u2D , ~10!

^0uĤa(r )
Êa~xW !Ĥb(r )

u0&5
Xb(r )

a ~xW !2Xa(r )

a ~xW !

2q0

3expS 2E d3k

4q0
2k

uXa+b(r )

a ~kW !u2D ,

~11!

where Xg(r )

a (kW ) denotes the Fourier transform ofXg(r )

a (xW ).

This defines ther-Fock representation as the cyclic represe
tation generated from ther-Fock ‘‘vacuum’’ u0r& with
vacuum expectation values

^0r uĤgu0r&5exp2S E d3k

4q0
2k

uXg(r )

a ~kW !u2D . ~12!

^0r uĤaÊr
a~xW !Ĥbu0r&5

@Xb(r )

a ~xW !2Xa(r )

a ~xW !#

2q0

3expS 2E d3k

4q0
2k

uXa+b(r )

a ~kW !u2D . ~13!

The fact that the holonomies are well defined operators in
r-Fock representation allows us to relate ther-Fock represen-
tation and the QEF representation in a fairly direct mann
as we show in the next section.

To summarize, although it is not possible to relate t
QEF representation with the usual Fock representation
rectly, it is possible to relate the QEF representation with
r-Fock representation, since both provide representation
the Poisson bracket algebra generated by„Hg(A),Er

a(xW )….
The only remaining question is of the relation between

Fock and ther-Fock representations. The mathematical re
tion between the two, in terms of representations of two d
ferent realizations of the same algebraic structure, is c
and is true forany r.0. So the only question is of the
physical relation betweenr-Fock and Fock representation
We argue below that for certain measurements which ar
physical relevance in the context of our motivations fro
quantum gravity, the two representations are physically
distinguishable for sufficiently smallr.

Since we shall phrase our argument in terms of meas
ments of Fourier modes, we first discuss the behavior
Fourier modes under Gaussian smearing. Given any func
h(xW ), its Fourier transform is

3Our conventions for the Fock space representation are displa
in Sec. III B.
3-3
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h~kW !5
1

~2p!3/2ER3
d3xh~xW !e2 ikW•xW ~14!

and its Gaussian smeared version is

hr~xW !5E
R3

d3y fr~yW2xW !h~yW !. ~15!

It follows that

hr~kW !5e2k2r 2/2h~kW !. ~16!

In particular we have

Xg(r )

a ~kW !5e2k2r 2/2Xg
a~kW ! ~17!

and

Er
a~kW !5e2k2r 2/2Ea~kW !. ~18!

From Eqs.~17! and ~5! it follows, in obvious notation, that

Hg„A~kW !…5Hg(r )
„ek2r 2/2A~kW !…. ~19!

Consider measurements of quantities at or above a le
scaleL. More precisely, let the measurements be of Fou
modes,Ea(kW ),Aa(kW ) of the electric and connection fields~in,
say, the Coulomb gauge! for k<1/L. Further, let the accu
racy of the measurement process be characterized by
~small! positive numberd. If DEa(kW ),DAa(kW ) are the accu-
racies to whichEa(kW ),Aa(kW ) are measured, thend is defined
throughDEa(kW )5Ea(kW )d andDAa(kW )5Aa(kW )d. Then if r is
chosen small enough that the conditionr 2/2L2,d holds, it
follows that the measurements cannot distinguish betw
the modes Ea(kW ) and e2k2r 2/2Ea(kW ), and Aa(kW ) and
ek2r 2/2Aa(kW ). Thus, the measurements cannot distinguish
tween unsmeared fields and their ‘‘r -counterparts’’ for suffi-
ciently smallr. Since the primary operators in the Fock a
r-Fock representations are related by Eqs.~18! and~19!, it is
straightforward to see that for any state in the Fock sp
there exists a state in ther-Fock space such that the abo
type of measurement can never distinguish between the t4

We loosely interpret this statement to mean that, giv
measurements at some length scale performed to some
accuracy, there is always a sufficiently smallr such that the
r-Fock representation is experimentally indistinguisha
from the usual Fock representation. Although for Maxw
theory the introduction of a length scale seems arbitrary
the context of linearized gravity it is necessary to rest
attention to length scales much larger than the Planck s
or else the linearized approximation will not be physica
valid.

4In the language and notation of@22#, the state in ther-Fock space
is the image of the state in the Fock space via the mapI r .
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Hence, for the remainder of the paper we may alter
original question to:how can the 3D wave-like excitations o
r-Fock space arise from underlying 1D polymer-like exci
tions?

III. r-FOCK STATES AS DISTRIBUTIONS IN THE QEF
REPRESENTATION

In this section ther-Fock space representation is deriv
from the QEF representation by identifying ther-Fock
vacuum as a distributional state in the QEF representat
We show that ther-Fock vacuum can be written as a form
non-normalizable sum of charge network states and tha
resides in the algebraic dual to the space of finite linear co
binations of charge network states.

In Sec. III A we briefly review the properties of charg
network states as well as the definition of the algebraic d
representation. In Sec. III B 1 we encode the Poincare´ invari-
ance of the Fock vacuum in a relation between smeared
lonomy and electric field operators. In Sec. III B 2 we sho
how this relation implies the identification of ther-Fock
vacuum with a distributional sum of charge network state

A. Charge network states

Straightforward repetitions of constructions for theSU(2)
case of loop quantum gravity@12,11,10,13# lead to the fol-
lowing results forU(1) charge networks.

~i! The charge network states constitute an~uncountable!
orthonormal spanning set inL2(A/G,dm0). Each such state
is labeled by a closed, oriented graph whose edges c
non-trivial representations ofU(1). Representations ofU(1)
are labeled by integers called ‘‘charges’’@20#, hence the
name ‘‘charge network states.’’U(1) gauge invariance im-
plies that the sum of charges at each vertex vanishes.
denote the normalized state labeled by the graph ‘‘g,’’ with N
edges carrying the charges (p1 . . . pN) asug,$p%&. Orthonor-
mality implies

^a,$q%ug,$p%&5d (a,$q%),(g,$p%) , ~20!

i.e., the inner product vanishes unlessa5g and qi5pi , i
51 . . .N.

~ii ! The electric field operator acts as

Êa~xW !ug,$p%&5
Xg,$p%

a ~xW !

q0
ug,$p%&. ~21!

Here

Xg,$p%
a ~xW !ª(

i 51

N

piE
ei

dsid
3
„eW i~si !,xW…ėi

a. ~22!

In this equationei denotes thei th edge ofg and is param-
etrized by the parametersi so thateW i(si) is the coordinate of
the point on the edgeei at parameter valuesi .

The electric flux operator associated with a surfaceSwith
surface normalna acts as
3-4
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E
S
Êanad2sug,$p%&5

(
i S

pi S
k i S

q0
ug,$p%&. ~23!

Here the indexi S ranges only over the edges ofg which
intersect the surfaceS. k i S

51 iff ei S
• ana.0, k i S

521 iff

ei S
• ana,0 andk i S

50 iff ei S
• ana50. This action may be de

rived rigorously via a regularization along the lines of@24#.
From Eq.~23!, every charge network stateug,$p%& is an

eigenstate of the electric flux operator and the edges og
may be pictured as carrying quanta of electric flux in m
tiples of q0

21. Although physical intuition for~and, indeed,
the naming of! the QEF representation arises from this pro
erty of the electric flux, the electric flux operator itself w
not play a role in the considerations of this work. Instead
is the Gaussian smeared electric field operator which
play a key role and we now exhibit its action on char
network states.

In the notation of Eq.~3!, it follows that Eq.~21! implies

Êr
a~xW !ug,$p%&5

Xg,$p%(r )

a ~xW !

q0
ug,$p%&. ~24!

In addition to ~i! and ~ii !, the Abelian nature ofU(1)
implies the following.

~iii ! Every charge network stateug,$p%& can be obtained
from the ‘‘vacuum’’ stateuV& @i.e. the stateV(A)51, V
PL2(A/G,dm0)] via the action of the holonomy operato
around a suitably defined loop,b, so that

ug,$p%&5ĤbuV&. ~25!

Hereb5b1
p1+b2

p2•••+bN
pN andb i

pi denotes the loop obtaine
by traversingpi times aroundb i . b i , i 51 . . .N are de-
fined by the construction~3.2! of @7# as

b i5Q~v i
1!+ei+Q~v i

2! ~26!

wherev i
6 are the vertices ofg which constitute the begin

ning and end points ofei andQ(v) is a path from the base
point xW0 to the pointv such thatQ(v) intesectsg at most at
a finite number of isolated points. It can be verified that

Xg,$p%
a ~xW !5Xb

a~xW ! ~27!

and that Eq.~25! holds. For this reason we denoteĤb by
Ĥg,$p% .

Conversely, it can be checked that for any loopbPLx0
,

Xb
a(xW )5Xg,$q%

a (xW ), where the closed, oriented graphg is the
union of the edges which compriseb with the orientations of
the edges ing chosen arbitrarily and the labeling$q%, given
such a choice of orientation is as follows. Let the number
times an edgeei is traversed inb, in the same direction as it
orientation ing, beq1i . Let the number of times the edgeei
is traversed inb, in the opposite direction to its orientation i
g, be q2i . Thenei is labeled byqi5q1i2q2i . Henceforth,
10400
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we shall use the labeling of holonomies by their associa
charge networks~i.e. Hg,$q%) interchangeably with their la-
beling by loops~i.e. Hb). Thus, if there is no charge labelin
in the subscript toH, the label is to be understood as a loo
else as an associated charge network.

~iv! Consider the holonomy operator associated w
charge network label (a,$q%).5 ThenĤa,$q% mapsug,$p%& to
a new charge network state based on the graphgøa con-
sisting of the union of the sets of edges belonging tog and
a.6 The edges ofgøa are oriented and labeled with charg
as follows. Edges which are not shared byg and a retain
their orientations and charge labels. Any shared edge lab
by the chargep in g retains its orientation fromg and has
chargep1q if it has the same orientation ina and charge
p2q if it has opposite orientation ina. We denote this new
state byugøa,$pøq%&. Thus

Ĥa,$q%ug,$p%&5ugøa,$pøq%&. ~28!

It can be checked that Eqs.~20!, ~24! and ~28! define a rep-
resentation of the Poisson bracket algebra of Eq.~9! such
that Ĥg is unitary andÊr

a(xW ) is self-adjoint.
Next, we review the construction of the ‘‘dual’’ represe

tation on the space of algebraic duals. LetD,L2(A/G,dm0)
be the ~dense! set of finite linear combinations of charg
network states. LetD* be the space of algebraic duals toD
i.e. everyFPD* is a complex linear map onD. Define the
action of Êr

a(xW ),Ĥa on D* through

@Êr
a~xW !F#~ ug,$p%&)ªF„Êr

a~xW !†ug,$p%&…

5F„Êr
a~xW !ug,$p%&…, ~29!

~ĤaF!~ ug,$p%&)ªF~Ĥa
† ug,$p%&)

5F~Ĥa21ug,$p%&). ~30!

Equations~29! and ~30! provide an~anti-!representation of
the Poisson bracket algebra~9!. Note thatD* merely pro-
vides a linear representation space for the dual represent
—it does not inherit any natural inner product fromD.

In Sec. III B we shall see that the natural arena to disc
the relation between ther-Fock representation and the QE
representation is the space of algebraic duals,D* .

5Strictly speaking the discussion should and can be framed
terms of holonomically equivalent labels@i.e. (a,$p%) is equivalent
to (b,$q%) iff Xa,$p%

a 5Xb,$q%
a ]. We gloss over this subtlety in the

interest of pedagogy.
6It is assumed that the edges ofa,g overlap only if they are

identical and that intersections ofa,g occur only at vertices of
a,g. This entails no loss of generality, since we can always fi
graphs which are holonomically equivalent toa,g and for which
the assumption holds.
3-5
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B. The condition of Poincaréinvariance

Even in linear quantum field theory there is no analog
the Stone–von Neuman uniqueness theorem for quan
mechanics on a vector space. Hence there are infinitely m
inequivalent representations of the Poisson brackets alg
of smeared holonomies@see Eq.~6!#. The Fock space repre
sentation is singled out by the additional requirement
Poincare´ invariance, which in turn, is encoded in the speci
choice of complex structure~i.e. the positive-negative fre
quency decomposition! for the Fock representation. Thi
choice is equivalent to the requirement that the Fock vacu
be a zero eigenstate of the Fock space annihilation opera
In Sec. III B 1 we shall express this requirement as a rela
between the action of the smeared holonomy and elec
field operators on the Fock vacuum@see Eq.~37!#.

The image of this relation in ther-Fock representation
@see Eq.~38!# may be thought of as a condition which pick
out ther-Fock vacuum. In other words, ther-Fock vacuum
may be thought of as a solution to the condition~38!. Since
this condition relates the action of the holonomy and
smeared electric field operators, it is well defined inany
representation of the Poisson brackets algebra of Eq.~9!. In
Sec. III B 2 we impose the condition~38! in the ~dual-! QEF
representation and show that it has aunique~up to a multi-
plicative constant! solution. Since this condition is deduce
from the requirement of Poincare´ invariance, we may inter-
pret the solution of Eq.~38! as ther-Fock vacuum expresse
as a state in the~dual-! QEF representation.

1. Poincaréinvariance in terms of smeared holonomies

Our conventions for the Fock space representation ar
follows. The expansions of the field operators in the Co
lomb gauge are

Âa~xW !5
1

q0~2p!3/2E d3k

Ak
S eikW•xW

âa~kW !

A2

1Hermitian conjugateD , ~31!

Êa~xW !5
1

~2p!3/2E d3kAkS 2 ieikW•xW
âa~kW !

A2

1Hermitian conjugateD ~32!

⇒Ĥa,$q%(r )
5expS i

q0
E d3k

A2k
Xa,$q%(r )

a ~kW !

3@ âa~kW !1âa
†~kW !# D . ~33!

The commutation relation between the annihilation and c
ation operators is

@ âa~kW !,âb
†~ lW !#5S dab2

kakb

k2 D d~kW , lW !. ~34!
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Using these equations, the vacuum expectation value of
smeared holonomy operator@also called, in the language o
@22#, ‘‘the Fock positive linear functional’’~PLF! and de-
noted byGF] evaluates to7

GF~@a,$q%#!ª^0uHa,$q%(r )
u0&

5expS 2
1

4q0
2E d3k

k
uXa,$q%(r )

a ~kW !u2D . ~35!

With Eq. ~34!, Eqs.~32! and~33! provide a representation o
the Poisson brackets algebra~6!. As discussed above, th
condition of Poincare´ invariance implies

âa~kW !u0&50. ~36!

This, in turn, implies the following relation between th
smeared holonomy and the electric field operators:

@GF~@a,$q%#!#2

3expF2E d3x

q0
S 1

A2~]c]c!
Xa,$q%(r )

a ~xW !D Êa~xW !G u0&

5Ĥa,$q%(r )

† u0&. ~37!

This equation holds foreveryclosed oriented grapha and
encodes the condition of Poincare´ invariance in terms of el-
ements of the algebra of smeared holonomies and the ele
field.

2. Poincaréinvariance in terms of holonomies

The image of condition~37! in the r-Fock representation
is

@GF~@a,$q%#!#2 expF2E d3x

q0
S 1

A2~]c]c!
Xa,$q%(r )

a ~xW !D
3Êra~xW !G u0r&5Ĥa,$q%

† u0r&. ~38!

We impose this condition in the QEF representation
the spaceD* of algebraic duals defined in Sec. III A. Thu
the following equation is to be solved for someF0PD* :

@GF~@a#!#2 expF2E d3x

q0
S 1

A2~]c]c!
Xa,$q%(r )

a ~xW !D
3Êra~xW !GF05Ĥa,$q%

† F0 . ~39!

7Note that the expression forGF in @22# is incorrect. The correct
expression is Eq.~35! above and differs from the expression in@22#
by a factor in its exponent. Also, in@22# the parameterq0

21 was
written ase, but factors ofe appeared in@22# often in the wrong
places. We have corrected the erroneous expressions of@22# in this
work. With appropriate corrections regarding these factors ofq0, all
the results of@22# continue to hold.
3-6
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Any element ofD* can be written as a formal sum over a
charge network states as follows. IfF0(ug,$p%&)5cg,$p%
wherecg,$p% is a complex number, it follows thatF0 can be
written as

F05 (
g,$p%

cg,$p%^g,$p%u. ~40!

Substitution of this in Eq.~39! and projection of the resulting
equation onto the ketub,$t%& yields

@GF~@a,$q%#!#2 (
g,$p%

cg,$p%^g,$p%u expF2E d3x

q0

3S 1

A2~]c]c!
Xa,$q%(r )

a ~xW !D Êra~xW !G ub,$t%&

5 (
g,$p%

cg,$p%^g,$p%uĤa,$q%ub,$t%&. ~41!

Orthonormality of the charge network states, together w
Eqs.~24! and ~28!, implies that

@GF~@a,$q%#!#2 expF2E d3x

q0
2 S 1

A2~]c]c!
Xa,$q%(r )

a ~xW !D
3Xab,$t%(r )

~xW !Gcb,$t%5cbøa,$tøq% ~42!

This equation can now be solved for the coefficie
cg,$p% ; of course, since the equation is linear and homo
neous the solution will be ambiguous by an overall consta
We fix this ambiguity by setting the coefficient labeled by t
trivial graph g50, 0W (s)5xW0, to be unity. Then settingb
50 in Eq. ~42! yields

ca,$q%5@GF~@a,$q%#!#2 ~43!

for every charge networkua,$q%&. It may be verified that,
miraculously, this also provides a solution to Eq.~42!. Thus

F05 (
g,$p%

@GF~@g,$p%#!#2^g,$p%u. ~44!

is theunique~up to an overall constant! solution to the con-
dition ~39!. We identifyF0 as the state corresponding to th
r-Fock vacuum.

As shown in @22# the action of the smeared holonom
operators on the Fock vacuum generates a dense subs
the Fock space. It follows that the action of the holonom
operators on ther-Fock vacuum generates a dense set of
r-Fock space. Therefore, we can use the dual represent
of the holonomy operator@see Eq.~30!# on D* to generate
the corresponding set of states fromF0. Call this setL* .
Thus any element ofL* is of the form( I 51

N aIĤg I ,$pI %F0 for
some complexaI andN finite.

As noted earlier,D* ~and henceL* ) is not equipped with
an inner product. Therefore an inner product onL* must be
10400
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chosen which implements the classical ‘‘reality conditions
namelyHg,$p%* 5Hg,$2p% and Er(xW )* 5Er(xW ),8 on the corre-
sponding quantum operators. It can be verified that the
lowing inner product~naturally extendible to all ofL* )
implements the reality conditions:

~Ĥa,$p%F0 ,Ĥb,$q%F0!

5expS 2
1

4q0
2E d3k

k
uXaøb,$2pøq%(r )

a ~kW !u2D . ~45!

It follows that the Cauchy completion ofL* with respect to
this inner product results in a Hilbert space which can
identified asr-Fock space and that the representation giv
by Eqs.~29! and ~30! is exactly ther-Fock representation.

IV. CONCLUDING REMARKS

In this work we have related the diffeomorphism inva
ant, non-separable quantized electric flux representation
quantumU(1) theory to its standard Poincare´ invariant Fock
space representation. This relation is based on the fact
theU(1) holonomies play an important role in the constru
tion of the QEF representation.

Since the holonomy operators are well defined in the Q
representation butnot in the Fock representation, we firs
constructed a 1 parameter family of representations in whi
the holonomy operatorsare well defined and which are
physically indistinguishable from the standard Fock rep
sentation. More precisely, the new representations are
beled by a positive parameter,r, with dimensions of length.
For finite accuracy measurements at distance scales m
larger thanr, these ‘‘r -Fock representations’’ are indistin
guishable from the standard Fock representation.

Next, we related ther-Fock representation~for any fixed
r ) to the QEF representation by identifying ther-Fock
vacuum as a~distributional! state in the~dual! QEF repre-
sentation. This identification was achieved by solving, in
QEF representation, Eq.~39! inspired by Poincare´ invari-
ance, which enforced the condition that the annihilation o
erator of ther-Fock representation kill its vacuum state. Th
QEF representation is built on the property of diffeomo
phism invariance and ‘‘knows’’ nothing about Poincare´ in-
variance and hence we find it truly remarkable that the c
dition ~39! which arises from Poincare´ invariance of the
Fock vacuum can be solved essentially uniquely in the~dual!
QEF representation. Once ther- Fock vacuum was identified
as a state in the dual QEF representation, we constru
states corresponding to a dense set inr-Fock space by the
~dual! action of the holonomy operators on ther-Fock
vacuum. Finally, the inner product was obtained on this
of states by requiring that the classical reality conditions
implemented as adjointness conditions on the correspon
quantum operators. Thus, in the qualitative language of

8Rather than using these reality conditions directly for the ope

tor Êr(xW ), it is simpler to use them to induce adjointness relatio

on the operators exp†2*(d3x/q0)„[1/A2(]c]c)]Xa,$q%(r )

a (xW )…Êa(xW )‡.
3-7
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Introduction, we may say that non-normalizable infinite s
perpositions of 1 dimensional, polymer like excitations co
spire, in collusion with the inner product~45!, to acquire the
character of 3D wavelike excitations in Fock space.

From the point of view of quantum gravity, we think th
we have unraveled an important set of structures which
help relate the Fock space of gravitons of linearized gra
to appropriate semiclassical states in loop quantum gra
In loop quantum gravity also, it is thedual representation to
the kinematic spin network representation which serves
the ‘‘home’’ for physical, dynamically relevant quantum
states of the gravitational field. Although there is no cons
sus on the exact physical states of the theory, it is still t
that thestructureof the physical states is that of distribution
on the finite span of spin network states and that quan
operators act on these distributions via dual action. Furt
the issue of the correct inner product on the space of phys
states is still open and this inner product may have v
different properties from the kinematical one in the cont
of solutions to the Hamiltonian constraint. Since ther-Fock
representation forU(1) theory has been obtained, in th
work, as the dual representation on distributions to the fin
span of charge network states with the ‘‘physical’’ inn
product~45! unrelated to the ‘‘kinematic’’ inner product~20!,
we feel that our results will play an important role in relatin
gravitons to physical states in loop quantum gravity. In
loop quantum gravity case there are other complications s
as the ‘‘linearization’’ of the non-Abelian gauge group to
copies ofU(1) @23#, as well as the identification of a sta
corresponding to flat spacetime. These issues are curre
under investigation. It is also of interest to ask if there is
generalization of ourr-Fock constructions to the non
Abelian case. In this regard, Ashtekar and Lewandowski@25#
have shown that a suitable reformulation of our results us
‘‘heat kernel’’ ideas admits a generalization to the no
Abelian context.

Apart from potential applications to quantum gravity,
would be of interest to understand ther-Fock representation
in their own right. In this regard one question which com
to mind is that of dynamics in ther-Fock representation. Th
dynamics of ther-Fock representation is governed by t
‘‘ r-image’’ of the standard Maxwell Hamiltonian operato
The classical Hamiltonian for free Maxwell theory is

H5E d3k@Ea~kW !Ea~2kW !1Ba~kW !Ba~2kW !#, ~46!

whereBa(kW ) is the Fourier transform of the magnetic fiel
BW (xW )ªq0¹W 3AW (xW ). It follows that the classical function cor
responding to the Hamiltonian operator for ther-Fock repre-
sentation is given by

Hr5E d3k$Er
a~kW !Ear~2kW !1@ek2r 2/2Ba~kW !#

3@ek2r 2/2Ba~2kW !#%. ~47!

From considerations similar to those at the end of Sec. I
can be argued that the dynamics generated byHr , though
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different, is physically indistinguishable from the usual Ma
well dynamics generated byH in the context of finite accu-
racy measurements at distance scales much larger thanr.

We digress here to describe an alternative viewpoint9 on
the issue of physical indistinguishability of ther-Fock repre-
sentation. This is the viewpoint that onlyalgebraic proper-
ties of functions on phase space are physically measura
With this viewpoint, there is no way of asserting whether t
pair „Ĥg(r )

,Êa(xW )… are being measured with dynamics gen

ated byĤ in the Fock representation or the pair„Ĥg ,Êr
a(xW )…

are being measured with dynamics generated byĤr in the
r-Fock representation. With such a viewpoint, at least in
context of source-free Maxwell theory, the physics of t
r-Fock representation forany positive r is ~exactly, not ap-
proximately! identical to that of the usual Fock represent
tion. The difference between this viewpoint and the one
the preceding paragraph is that the latter tacitly assumes
there is some property other than purely algebraic proper
of the pair„Ĥg(r )

,Êa(xW )… by virtue of which the measuring

apparatus measures them rather than„Ĥg ,Êr
a(xW )…. This ends

our brief digression.
Another question of interest intrinsic to ther-Fock repre-

sentation is the one we raised in@22# as to whether the
r-Fock representation could be realized as
L2(A/G,dmF(r )) representation for some measuredmF(r ) on
A/G. As we show in the Appendix, the answer to this que
tion is in the affirmative and it would be of interest to unde
stand the properties of this newr-Fock measure. In this re
gard the recent work of Velhinho@26# contains a detailed
analysis of the properties of ther-Fock measures. Whethe
these new representations have applications outside of
quantum gravity remains to be seen.
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APPENDIX

1. Existence of ther-Fock measure onAÕG
In what follows we shall freely use results and notati

from @22# as well as from previous sections.10 We shall be
brief—the interested reader may work out the details. T
r-Fock measure exists onA/G iff the r-Fock positive linear
functional,

GF(r )S (
I 51

N

aI@a I # D 5(
I 51

N

aI expS 2
1

4q0
2E d3k

k
uXa I (r )

a ~kW !u2D ,

~A1!

9I learned of this viewpoint from Abhay Ashtekar.
10We shall use the corrected expressions of@22#—see footnote 7

in this regard.
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is continuous with respect to theC* norm, uu( I 51
N aI@a I #uu

ªsupAPAu( I 51
N aIHa I

(A)u. From @22# we have that

I(
i 51

N

aI@a I #I5 sup
APA

U(
I 51

N

aIHa I (r )
~A!U. ~A2!

Also, from Eq.~10! we have that
y

-
s,

,

e,

10400
GF(r )S (
I 51

N

aI@a I # D 5^0u(
I 51

N

aIĤa I (r )
u0&. ~A3!

Using the standardL2(S* ,dmG) @22,27# representation of
Fock space whereS* is an appropriate space of temper
distributions anddmG is the standard, unit volume, Gaussia
measure, we have
^0u(
I 51

N

aIĤa I (r )
u0&5E

AaPS*
dmG~A!(

I 51

N

aIHa I (r )
~A! ~A4!

⇒U^0u(
I 51

N

aIĤa I (r )
u0&U< sup

APS*
U(

I 51

N

aIHa I (r )
~A!U E

AaPS*
dmG~A!5 sup

APS*
U(

I 51

N

aIHa I (r )
~A!U. ~A5!
Since Xa(r )

a (xW ) is in Schwartz space, it follows that ever

AaPS* defines a homeomorphism,h, from HGr to U(1)
@the element ofU(1) corresponding to a loopa is just
expi*R3Xa(r)

a (xW)Aa(xW)d3x]. It follows from the considerations

of @22# @see especially Eq.~A15! of @22# # that

sup
APS*

U(
I 51

N

aIHa I (r )
~A!U< sup

APA
U(

I 51

N

aIHa I (r )
~A!U. ~A6!
It follows from Eqs.~A2!, ~A3!, ~A5! and ~A6! that

UGF(r )S (
I 51

N

aI@a I # DU<I(
i 51

N

aI@a I #I . ~A7!

This implies thatGF(r ) is continuous with respect touu uu
and hence that anr-Fock measure,dmF(r ) exists onA/G.
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