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Photons from quantized electric flux representations
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The quantum theory ofJ(1) connections admits a diffeomorphism invariant representation in which the
electric flux through any surface is quantized. This representation is the analog of the representation of
quantumSU(2) theory used in loop quantum gravity. We investigate the relation between this representation,
in which the basic excitations are “polymerlike,” and the Fock representation, in which the basic excitations
are wavelike photons. We show that normalizable states in the Fock space are associated with “distributional”
states in the quantized electric flux representation. This work is motivated by the question of how wavelike
gravitons in linearized gravity arise from polymerlike states in nonperturbative loop quantum gravity.
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I. INTRODUCTION nel of the corresponding quantum constraint operators. The
representation of holonomies, functionals of the triad, as well
The loop quantum gravity approa¢h,2] is based on a as the unitary action of diffeomorphisms &f(A/G,d )
Hamiltonian description of classical general relativity in provide a representation of the diffeomorphism constraints
which the basic configuration variable is a connec{id@  [15], and in a key breakthrough by Thiemann, the Hamil-
and its conjugate is a triad field. The spatial 3-metric on aonian constrainf16].! It turns out that elements of the ker-
Cauchy slice is constructed from the triad and the connectionel of the constraints are “too distributional” to be normal-
contains information about the extrinsic curvature of thejzaple states i 2(.A/G,du,). Rather, they are expressible as
slice as embedded in the spacetime, thus establishing contagén-normalizable, infinite, sums of spin network states.
with the usual Arnowitt-Deser-Misner formulation. In the  Thys, a nonperturbative physical state of the quantum
quantum theory, the basic connection dependent operatogfayitational field is a distributional sum of kinematic states,
are holonomies of the connection around loops in the Cauchgach of which is associated with 1 dimensional, polymer-like
slice [5,6]. ] excitations. Given such quantum states, a key open question
In recent years the approach has been put on a firm matfs: how do classical configurations of the gravitational field
ematical footing with the following key features. @uan-  gyise? In particular, how does flat spacetitaad small per-
tum) configuration spaced/d, of (generalized SU(2) con-  tyrpations around jtarise from non-perturbative quantum
nections modulo gauge and a canonical diffeomorphismiates of the gravitational field?
invariant measure, duo (also called the Ashtekar- e |atter question is particularly interesting for the fol-
Lewandowski measurg7]), on .A/G have been constructed |owing reason. Small perturbations about flat spacetime cor-
[7-11]. The space.*(A/G,duo) provides a kinematical Hil-  respond to solutions of linearized gravity. Quantum states of
bert space on which theself-adjoink SU(2) holonomy op-  |inearized gravity lie in the familiar graviton Fock space on
erators act by multiplication. This kinematical Hilbert spaceynich the conventional perturbative approaches to quantum
is spanned by an orthonormal set of “spin network” states,qgrayity are based. Such approaches seem to fail due to non-
each associated with an oriented, closed graph whose edggsormalizability problems. Thus, an understanding of the

areEIabeIed_by represkentatiqns$)U('2) [12_14]} relation between the quantum states of linearized gravity and
very spin network state Is an eigenstate of operators Cokaq i fy| nonperturbative loop quantum gravity would
responding to the area of 2-surfaces in the Cauchy slice—

roughly speaking, the area of a surface gets a contribution o%h(;ﬂ;gsht on the reasons behind the failure of perturbative

sVli(r{ N iv)hizﬂltisntzfrspelstgcrhgrzzr:;?:? t(ra:rfgvs?s%? Iagi?] Isg t?]y There are many aspects of this yet-to-be-understood rela-
pIn | . : Sely. Sl %ion between perturbative and nonperturbative states and we

area operator I const_ruc_ted from the triad fidd equiva- shall focus on only one of them, namely, the dramatically

lently the SU(2) electric field, the edges of the graph may different nature of the basic excitations in Fock space and in

be thought of as carrying quanta of non-Abelian electric flux. op quantum gravity: whereas Fock space gravitons can be

Since the edges are 1 dimensional, the intuitive picture o . .
== ’ hought of aspropagating 3D wave-packetstates in 100
states inL?(A/G,duo) is of “polymerlike” quantum excita- g nropagating packs P

tions.

As nOted, earl'erLz(A/g'dMO), ',S a, k'nemat'cal, structure: INote that it is not clear if Thiemann's quantization has general
The dynamics of general relativity in its canonical descrip-re|aivity as its classical limif17]. It has also been realized that
tion is encoded in the diffeomorphism and Hamiltonian con-here are a large family of distinct Thiemann-like regularizations of
straints. Physical states in the quantum theory are in the kefnhe Hamiltonian constraifi.8]. On the other hand, recent results of

Bojowald [19] in the context of minisuperspace quantization may
be taken as evidence that some elements of Thiemann’s procedure
*Email address: madhavan@rri.ernet.in could lead to avoidance of singularities in quantum theory.
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guantum gravity are associated witD polymer-like excita- Il. THE ISSUE OF SMEARING
tions

Thi t of the relation betw wrbati d Since the Abelian Poisson brackets algebra of holonomies
IS aspect of the relation between perturbative and nofyg o primary structure from which the QEF representation
perturbative states in quantum gravity can be isolated an

obtained[21,22, we would like to relate the Fock repre-
studied in the simpler yet highly instructive context of ) 2 P

4 ) sentation to this holonomy algebra. As noted earlier, the
source-free Maxwell theory. To this end, consideU@l)  ysual Fock representation is not a representation of the ho-

connection on a spatial slice diffeomorphic . Starting  |onomy algebra because the connection operators in this rep-
from the Poisson brackets algebra bf(1) holonomies resentation are too singular for their holonomies to be de-
around loops irR?, it can be seen that exact counterparts offined. Instead, it is possible to obtain the usual Fock
the SU(2) constructions of loop quantum gravity exist representation as the representation of a related algebra of
[8,7,20,21. Thus, a canonical diffeomorphism invariant “smeared holonomies.” By using the smeared holonomy al-
measure exists on the quantum configuration space of genegebra as a link between the algebra of holonomies and the
alizedU(1) connections modulo gaugae shall continue to  Fock representation we shall be able to relate the two.
denote these bylu, and A/G—it will be clear from the In order to define the smeared holonomies we recall the

context whether these symbols refer $aJ(2) or U(1)], following definitions from[23,28,23. x denotes Cartesian
holonomies act as unitary operators by multiplication oncoordinates of a point oR®. A is the space of smoott(1)

L2(A/G,d o), andL2(A/G,du,) is spanned by an orthonor- connections,A,(x),? [on the trivial U(1) bundle onR?]
mal basis, each element of which is associated with a closet¥hose Cartesian components are functions of rapid decrease
oriented graph and a labeling of edges of the graph by repat infinity. £, is the space of unparametrized, oriented,

resentations obJ(1). Since such representations are labeledhiecewise analytic loops oR® with basepoint,. Composi-
by integers called charges, we refer to these states as “charggn of a loopa with a loop 3 is denoted bywe 3. Given a
network” states. Each such state is an eigenfunction of eledpop o e £, , the holonomy ofA,(x) around e is H ,(A)
tric flux operators associated with surfacesRA and the 0
edges of the graph underlying the state may be thought of
carrying quanta of electric flux. We refer to this diffeomor-
phism invariant representation, in which the basic excitations . .
are, once again, 1 dimensional and “polymer-like” as the Ha(A):expif 3XE;(X)AE,(x)dg’x, D
qguantized electric flux (QEF) representation R
In sharp contrast to this, is the usual Poincareariant with
guantum theory of & (1) connection on a fixed flat space-
time with flat spatial slices diffeomorphic t83. Here, the R - ..
connection and its conjugate electric field are represented as XE(x) = § dss®(y(s),x)9?, 2
operator valued distributions on the Fock space of photons Y
where the basic quantum excitations are 3D and wave-like. . N a>
Thus quantun (1) theory presents an excellent arena toyvheres Is a parametrization of the loon S€ [0,2m]. X,(X)
discuss the question raised earlier, nanfedyv can the 3D is called the form factor ofy. The Gaussian smeared form
wave-like excitations of Fock space arise from underlying@ctor[23] is defined as
1D polymer-like excitations?
At first sight, the Fock and the QEF representations are X2 (x) ::f d3yf, (y—x)X3(y)= 35 dsf,[ y(s)—x]y?
very different. In the Fock representation, the connection is o R® 7 Y
an operator valued distribution which needs to be smeared in ©)
3 dimensions to obtain a well defined operator. Holonomies
. o ST ; where
of this operator valued distribution involve smearings only
over the 1 dimension provided by the loop, and ao¢well
defined. In contrast, in the QEF representation, holonomies fr()‘(’): —x?/2r2 :=|)g| (4)
are well defined operators oh?(.A/G,duo). In Sec. Il we
review our previous resul{22] which point to a way around
this apparently insurmountable obstacle to relating the tw@pproximates the Dirac delta function for small

:=exp($, A,dx?). The holonomy can equivalently be defined

representations. Then, the smeared holonomy is defined as
In Sec. Il we present our main result, namely that states
in the Fock representation are associated with distributional _ ; J a (g 2143
. . H, (A)=expi | X (X)Ax(x)d>x. 5
sums of charge network states in the QEF representation. 7<r)( ) Pl s V(r)( YAa(x) ©

This mirrors the mathematical structure of loop quantum

gravity in the sense that, there, physical states are associated——

with distributional sums of Spin network states in the kine- 2As noted in[20], to get an object with the dimensions ofJ{1)

matic Hilbert space. Section IV contains a discussion of ougonnection, we need to divide the usual magnetic potential by a

results and some concluding remarks. parameterg,, which has dimensions of electric charge. This reflects
We shall use units in which=c=1. in the Poisson bracket§) and the definition31).
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As shown in[22], the Fock representation is a represen-specify ther-Fock representation via the vacuum expectation
tation of the Poisson brackets algebra generated by thealues of the Fock representation as follows. The Fock rep-
smeared holonomie#]., (A) and the electric fieldE?(x): resentation is a cyclic representation generated from the Fock

o vacuum,|0) with vacuum expectation valués
{Hy Ha} ={E(0),EX(y)} =0,

0|H, |0)= fdskxa;zz 10
< | ’)/(r)| >_eX W(Z)k| 'y(r)( )| ’ ( )

L N
{H Yy Ea(x)}Z %X‘;(r)(X)H Yoy’ (6) a N a R
oA X8y ¥) ™ X, (X)
These Poisson brackets are generated from the elementaf|Ho  E*(X)H |0)= 24
Poisson brackets 0
1 ><ex;{ f dk |X8 (|Z)|2)
(A0, E(9)} = 300X, @ 4qgk " P L[

(11)
Here,qq is a parameter with the units of electric chargzo].

In the Fock representation, the smeared holononﬁie)%,), where Xéy‘(,)(k) denotes the Fourier transform Oﬁ(r)(x)-
This defines the-Fock representation as the cyclic represen-

are unitary operators and the electric figkd, X , IS an op- . .
Y op (x) P tation generated from the-Fock “vacuum” |0,) with

erator valued distribution. . |
How is the above algebra involving smeared holonomie/2CUUM expectation values
and the electric field related to the holonomy algebra? To this

. ) ) o d3k

end we define the classical Gaussian smeared electric field o — a (1|2

o - (0;[H,/0r) eXP‘(erkVy(r)(kﬂ ) (12
E3(x) by

Ea(i)-—f d3yf(y—X)EA(y) ® N B XG0~ X5y )
rX)= | EYhY ¥)- (0| HLE2(X)A0,) = 50
The Poisson brackets algebra generated by(iuhemeared d3k R
holonomies and the Gaussian smeared electric field is xex;{ — f m| X‘Zoﬁ(r)(k)|2>, (13
0

_rEasy Ebro
{H, H.}={E(x),E(y)}=0, The fact that the holonomies are well defined operators in the

i ©) r-Fock representation allows us to relate thHeock represen-
{H, E3X)}=—X2 (X)H,. tation and the QEF representation in a fairly direct manner,
7 do "0 7 as we show in the next section.
o i ) To summarize, although it is not possible to relate the
. Then, asis hinted by Eqg5) and(9) and proved in detail 5gp representation with the usual Fock representation di-
in [22], the abstract algebraic structures underlying the Poisge iy itis possible to relate the QEF representation with the

son brackets algebras generated (lbi/y(,)(A),Ea(i)) and  r-Fock representation, since both provide representations of

(H,(A),EZ(x)) are identical In other words,E%(x) and  the Poisson bracket algebra generatedHy(A), EZ(x)).

E3(X) andH, (A) andH_.(A) may be identified with the The only remaining question is of the relation between the
’ (1)

same abstract objects as far as the algebraic structure of ti'lzé) ck and tha-Fock representations. The mathematical rela-

two Poisson brackets algebras is concerned. Therefore, arE N between the two, in terms of representations of two dif-

representation of the Poisson brackets algebra generated ren_t realizations of the same algebraic st(uctqre, is clear
and is true forany r>0. So the only question is of the

(H,,(A),E*(x)) defines a representation of the Poissonnysicalrelation between-Fock and Fock representations.
brackets algebra generated @y,(A),E7(x)). In particular, ~We argue below that for certain measurements which are of

the Fock representation of thel., (A),E3(x)) algebra de- physical relevance in the context of our motivations from
0 quantum gravity, the two representations are physically in-

fines a representation of thegd (A),E%(x)) algebra. We distinguishable for sufficiently smail
shall call this representation, the -Fock repl’esentation" of Since we shall phrase our argument in terms of measure-
the (H y(A),E?(i)) Poisson brackets algebra. Thus, in thements of Fourier modes, we first discuss the behavior of
r-Fock representation the ho|0n0mié\$y are well defined FO_L)Jrier modes under Gaussian Smearing. Given any function
operators. h(x), its Fourier transform is

We can see this explicitly as follows. The Fock represen-
tation, or for that matter, any representation with a cyclic
“vacuum” state, can be reconstructed from the vacuum ex- 30ur conventions for the Fock space representation are displayed
pectation values of the algebra of operators. Thus, we maiy Sec. Ill B.
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o Hence, for the remainder of the paper we may alter our
= 7 3d3xh(x)e*'k'x (14)  original question tohow can the 3D wave-like excitations of
(2m)7 IR r-Fock space arise from underlying 1D polymer-like excita-
tions?

h(k)

and its Gaussian smeared version is

lll. r-FOCK STATES AS DISTRIBUTIONS IN THE QEF
h,(x)= fRad?’yf,(y—x)h(y). (15 REPRESENTATION

In this section the-Fock space representation is derived
It follows that from the QEF representation by identifying threFock
vacuum as a distributional state in the QEF representation.
hr(E):e—szz/Zh(E)_ (16) We show that the-Fock vacuum can be written as a formal
non-normalizable sum of charge network states and that it
In particular we have resides in the algebraic dual to the space of finite linear com-
binations of charge network states.
a (ﬁ):eszrzlzxa(g) (17) In Sec. Ill A we briefly review the properties of charge
"0 4 network states as well as the definition of the algebraic dual
representation. In Sec. Ill B 1 we encode the Poinaaveri-
ance of the Fock vacuum in a relation between smeared ho-
B S T lonomy and electric field operators. In Sec. 11l B2 we show
Er(k)=e E4(Kk). (18) how this relation implies the identification of theFock
vacuum with a distributional sum of charge network states.

and

From Egs.(17) and(5) it follows, in obvious notation, that
-~ 2.2 - A. Charge network states
Ho(AK)=H,  €T72A(K)). (19 | * |
Straightforward repetitions of constructions for ®&J(2)
Consider measurements of quantities at or above a lengffS€ Of loop quantum gravif2,11,10,13lead to the fol-
scaleL. More precisely, let the measurements be of FouriefoWing results forU(1) charge networks.
modes Ea(IZ) A (IZ) of the electric and connection fields (i) The charge network stgltes constitute(ancountablg
L yM\g Il . 5
say, the Coulomb gaugdor k<1/L. Further, let the accu- prtrobnc:rrgatlj spamlqlngdset h (f/dg’d'“‘))ﬁ E?]Ch sucdh state
racy of the measurement process be characterized by thg 'abeied by a closed, ornented graph whose €dges carry

. N > non-trivial representations &f(1). Representations &f (1)
(smal) positive numbers. If AE%(k),AA,(K) are the accu- 516 |apeled by integers called “chargef20], hence the

racies to whichE?(k),A,(k) are measured, thedis defined  name “charge network stateslJ(1) gauge invariance im-
throughAE2(k) = E3(K) 8 andAA,(K) =A,(k) 8. Thenifris  plies that the sum of charges at each vertex vanishes. We
chosen small enough that the conditici2L?< 6 holds, it ~ denote the normalized state labeled by the grap}iWith N
follows that the measurements cannot distinguish betweeedges carrying the charges,(. . . py) as|y,{p}). Orthonor-
the modes E*(K) and e ¥r*2Ea(k) and AL(K) and  mality implies
ek ’2Aa(IZ). Thus, the measurements cannot distinguish be- —
tween unsmeared fields and their-tounterparts” for suffi- (Al 7 AP = Ot nto 20
ciently smallr. Since the primary operators in the Fock and
r-Fock representations are related by E48) and(19), it is _
straightforward to see that for any state in the Fock space
there exists a state in theFock space such that the above
type of measurement can never distinguish between thé two. a -
We loosely interpret this statement to mean that, given Ea(i)ly {ph)= Xy,{p}(x)w T 21)
measurements at some length scale performed to some finite ' do ' '
accuracy, there is always a sufficiently sma#luch that the
r-Fock representation is experimentally indistinguishableHere
from the usual Fock representation. Although for Maxwell
theory the introduction of a length scale seems arbitrary, in _ N . .
the context of linearized gravity it is necessary to restrict X;"{p}(x):E pif ds 8°(ei(si),x)el. (22
attention to length scales much larger than the Planck scale =1 Ve
or else the linearized approximation will not be physically . ) ] .
valid. In this equatione; denotes theth edge ofy and is param-
etrized by the parametegr so thatéi(si) is the coordinate of
the point on the edge, at parameter valus, .
“In the language and notation [#2], the state in the-Fock space The electric flux operator associated with a surfaeéth
is the image of the state in the Fock space via the mmap surface normah, acts as

i.e., the inner product vanishes unless y andq;=p;, i

(ii) The electric field operator acts as
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E PicKie

% (23

IS A

Here the indexi g ranges only over the edges of which
intersect the surfac& «; =1 iff ei‘sana>0, Kig=—1 iff
ei'sana<0 andx; =0 iff ei'sana=0. This action may be de-
rived rigorously via a regularization along the lines[24].

From Eq.(23), every charge network state,{p}) is an
eigenstate of the electric flux operator and the edgey of

PHYSICAL REVIEW 34 104003

we shall use the labeling of holonomies by their associated
charge networksi.e. H, 1) interchangeably with their la-
beling by loops(i.e. Hg). Thus, if there is no charge labeling
in the subscript tdH, the label is to be understood as a loop;
else as an associated charge network.

(iv) Consider the holonomy operator associated with
charge network labeld,{q}). Thenﬂa,{q} maps|y,{p}) to
a new charge network state based on the graphr con-
sisting of the union of the sets of edges belongingytand
«.® The edges ofyU « are oriented and labeled with charges
as follows. Edges which are not shared fyand o retain

may be pictured as carrying quanta of electric flux in mul-their orientations and charge labels. Any shared edge labeled

tiples ofqgl. Although physical intuition forand, indeed,

by the chargep in vy retains its orientation fromy and has

the naming of the QEF representation arises from this prop-chargep+q if it has the same orientation ia and charge

erty of the electric flux, the electric flux operator itself will

p—q if it has opposite orientation in. We denote this new

not play a role in the considerations of this work. Instead, itstate byl yUa,{pUq}). Thus
is the Gaussian smeared electric field operator which will

play a key role and we now exhibit its action on charge

network states.
In the notation of Eq(3), it follows that Eq.(21) implies

{ }(r)

EZ(X)|v.{p}) = |7 {ph). (24)

In addition to (i) and (ii), the Abelian nature ofJ(1)
implies the following.

(iii) Every charge network state,{p}) can be obtained
from the “vacuum” state[()) [i.e. the state}(A)=1, Q
e L?(A/G,du,)] via the action of the holonomy operator
around a suitably defined loop, so that

|l v.{p})=H4l ). (25
Here g= gt gh2- o gAN and B denotes the loop obtained
by traversingp; times aroundB;. B;, i=1...N are de-
fined by the constructiofB.2) of [7] as

=Q(v;")°€°Q(v;) (26)

wherev;” are the vertices ofy which constitute the begin-
ning and end points o, andQ(v) is a path from the base
point )ZO to the pointv such thatQ(v) intesectsy at most at

a finite number of isolated points. It can be verified that

X5, 9y () =X(X) 27
and that Eq.(25) holds. For this reason we dendfeﬁ by
|:i%{p}' .

Conversely, it can be checked that for any Ig8p Ly
X3(X) = X3 1qy(X), where the closed, oriented graptis the
union of the edges which comprigewith the orientations of
the edges iny chosen arbitrarily and the labelidg}, given

Ha (il v =]yUa.{pua}). (28)

It can be checked that Eq0), (24) and (28) define a rep-
resentation of the Poisson bracket algebra of @g.such
thatl:|7 is unitary andIAEf‘(ff) is self-adjoint.

Next, we review the construction of the “dual” represen-
tation on the space of algebraic duals. I L2(A/G,d wo)
be the(dense set of finite linear combinations of charge
network states. LeD* be the space of algebraic dualsfo
i.e. every® e D* is a complex linear map of. Define the

action of E3(x),H, on D* through

[E?<i>q>]<|y,{p}>)==c1><éﬁ‘<>2>*|v,{p}>)

—CID(E (29
(H,@)(|7.{p}) =@ (H|v.{p}))
=D (H,-1|7.{p}). (30

Equations(29) and (30) provide an(anti-representation of
the Poisson bracket algeb(8). Note thatD* merely pro-
vides a linear representation space for the dual representation
—it does not inherit any natural inner product frdm

In Sec. Il B we shall see that the natural arena to discuss
the relation between theFock representation and the QEF
representation is the space of algebraic dulfs,

SStrictly speaking the discussion should and can be framed in
terms of holonomically equivalent labdlise. («,{p}) is equivalent
o (B,{qa}) iff xa{p}—xﬂ (g]- We gloss over this subtlety in the
|nterest of pedagogy.

such a choice of orientation is as follows. Let the number of & s assumed that the edges afy overlap only if they are

times an edge; is traversed irB, in the same direction as its
orientation iny, beqy; . Let the number of times the edege
is traversed i3, in the opposite direction to its orientation in
v, beqy;. Thene; is labeled byqg;=q,;—0,; . Henceforth,

identical and that intersections @f,y occur only at vertices of
a,vy. This entails no loss of generality, since we can always find
graphs which are holonomically equivalent 49y and for which
the assumption holds.
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B. The condition of Poincareinvariance Using these equations, the vacuum expectation value of the
Even in linear quantum field theory there is no analog ofSMeared holonomy operatfaiso called, in the language of

the Stone—von Neuman uniqueness theorem for quantuhf2) ‘the Fock positive linear functionalPLF) and de-

mechanics on a vector space. Hence there are infinitely marfiPted bYI'e] evaluates tb
inequivalent representations of the Poisson brackets algebra T'e([e.{q}]):=(O0|H @ |0)
of smeared holonomigsee Eq.(6)]. The Fock space repre- “m
sentation is singled out by the additional requirement of 1 r d3k .
Poincaregnvariance, which in turn, is encoded in the specific =exp< "2 2f T|X2,{q}(r)(k)|2)- (35
choice of complex structur@.e. the positive-negative fre-

guency decompositionfor the Fock representation. This With Eq. (34), Egs.(32) and(33) provide a representation of

choice is equivalent to the requirement that the Fock vacuun} o poisson brackets algebf@). As discussed above, the
be a zero eigenstate of the Fock space annihilation operator; ondition of Poincarénvariance implies

In Sec. 1l B 1 we shall express this requirement as a relation
between the action of the smeared holonomy and electric a,(k)|0)=0. (36)
field operators on the Fock vacuUmsee Eq.(37)].

The image of this relation in the-Fock representation This, in turn, implies the following relation between the
[see Eq(38)] may be thought of as a condition which picks smeared holonomy and the electric field operators:
out ther-Fock vacuum. In other words, threFock vacuum
may be thought of as a solution to the conditi@8). Since [Te([a{aq}])]?
this condition relates the action of the holonomy and the 4 1
smeared electric field operators, it is well definedainy X exp _f_x( X2 (;) E ()z)
representation of the Poisson brackets algebra of ®qlin Qo \ v—(8%,) i 2
Sec. Il B2 we impose the conditiai38) in the (dual) QEF R
representation and show that it hasirque (up to a multi- = sz{q}(r)|0>. (37)
plicative constantsolution. Since this condition is deduced
from the requirement of Poincaievariance, we may inter- This equation holds foeveryclosed oriented grapk and
pret the solution of Eq(38) as ther-Fock vacuum expressed encodes the condition of Poincdrevariance in terms of el-

|0)

as a state in thédual) QEF representation. ements of the algebra of smeared holonomies and the electric
field.
1. Poincareinvariance in terms of smeared holonomies
Our conventions for the Fock space representation are as 2. Poincareinvariance in terms of holonomies
follows. The expansions of the field operators in the Cou- The image of conditior{37) in the r-Fock representation
lomb gauge are is
- 1 d3k [ - -a,(k) d3x 1
A (x)=—f—(e‘k'X 2 _f_ = ya v
a qo(277)3’2 \/E \/5 [Te([a{a}]]"ex % \/Tcac)xa,{q}(r)(x)
+ Hermitian conjugat}, (3D X Era(X) ||0;)= F'jy,{q}|0r>' (39)
E (%)= 1 f &k _ie“;.;aa(k) We impose this condition in the QEF representation on
a (2)3/2 V2 the spaceD* of algebraic duals defined in Sec. Il A. Thus,
the following equation is to be solved for sorig e D*:
+ Hermitian conjugat} (32 d3x 1
et Pt - [ 22t g, 7
, [ F([ ])] F{ qO ( \/Tc(?c) a,{q}(r)( )
N i [ d’k .
=H =exp — | —X2 (k)
a{q} F{ f a{q} PO A
(” GoJ 2k MO X E a(X) | @o=H1 4 ®o. (39)
x[éa<12>+é;<|2>]>. 33 , o
Note that the expression fdig in [22] is incorrect. The correct

expression is Eq:35) above and differs from the expressiorn 2]
The commutation relation between the annihilation and creby a factor in its exponent. Also, if22] the parameteq,* was

ation operators is written ase, but factors ofe appeared if22] often in the wrong
KK places. We have corrected the erroneous expressidi2pin this
A0y At b C P work. With appropriate corrections regarding these factoigpéll
ax(K),al (1= Sap— — | S(K, D). 34 bprop garding o
[8a(k),ap(1)] ( ab ) (k1) (34) the results of22] continue to hold.
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Any element ofD* can be written as a formal sum over all chosen which implements the classical “reality conditions,”

charge network states as follows. do(|y.{p}))=Cyp  namelyH* ,=H, , andE(x)*=E.(x).® on the corre-
wherec, () is a complex number, it follows thak, can be  sponding quantum operators. It can be verified that the fol-
written as lowing inner product(naturally extendible to all ofC*)

implements the reality conditions:

(Ha,(py®o,Hp,1q)Po)

Substitution of this in Eq(39) and projection of the resulting =exp< _ 1
4

d3k -
| —|x? 2
equation onto the kgi3,{t}) yields qgf K |Xauﬁ,{—Puq}<r)(k)| - 49

Do= 2> c, i nipll. (40)
v.ip}

d3x It follows that the Cauchy completion d@* with respect to
[Te(afaiDI2 X ¢y vip ex;{—f— this inner product results in a Hilbert space which can be
v} fo identified asr-Fock space and that the representation given

by Egs.(29) and(30) is exactly ther-Fock representation.

Era(X)|1B8.4t})

1 . -
| it

=> c%{p}(y,{p}lﬂa,{q}|/3,{t}>. (47 In this work we have related the diffeomorphism invari-
v.{p} ant, non-separable quantized electric flux representation for
. ...quantumU (1) theory to its standard Poincaresariant Fock
g;??g%rgsg%g itr?wfjliizhsatrgzt network states, together W'thspace representation. This relation is based on the fact that
' ! theU(1) holonomies play an important role in the construc-
d3x 1 tionsof thehQEFI representation. | defined in the QEF
2 — | | ———x® v ince the holonomy operators are well defined in the
[Pe(eiai))] exr{ f a5 ( V—(0%,) Xa’{Q}(’)(X ) representation bunot in the Fock representation, we first
constructd a 1 parameter family of representations in which
Co=C 42) the holonomy operatorare well defined and which are
BAUT MU {tug} physically indistinguishable from the standard Fock repre-
sentation. More precisely, the new representations are la-
This equation can now be solved for the coefficientsbeled by a positive parameter, with dimensions of length.
Cyip} s of course, since the equation is linear and homogeFor finite accuracy measurements at distance scales much
neous the solution will be ambiguous by an overall constantiarger thanr, these ‘r-Fock representations” are indistin-
We fix this ambiguity by setting the coefficient labeled by theguishable from the standard Fock representation.

IV. CONCLUDING REMARKS

X Xaﬁ,{t}(r)(i)

trivial graph y=0, 6(5):)'(’0, to be unity. Then settingg Next, we related the-FocK represgntati_o(‘for any fixed
=0 in Eq. (42) yields r) to the QEF representation _by identifying theFock
vacuum as ddistributiona) state in the(dual) QEF repre-

Caaqr=[Cr([a{a}])]? (43)  sentation. This identification was achieved by solving, in the

QEF representation, Eq39) inspired by Poincarénvari-
for every charge networke,{q}). It may be verified that, ance, which enforced the condition that the annihilation op-
miraculously, this also provides a solution to E42). Thus  erator of ther-Fock representation kill its vacuum state. The
QEF representation is built on the property of diffeomor-
- 2 phism invariance and “knows” nothing about Poincare
®o y%} [Ce(ly PPl 44 variance and hence we find it truly remarkable that the con-
dition (39) which arises from Poincarévariance of the
is theunique(up to an overall constansolution to the con-  Fock vacuum can be solved essentially uniquely in(thel)
dition (39). We identify®, as the state corresponding to the QEF representation. Once theFock vacuum was identified
r-Fock vacuum. as a state in the dual QEF representation, we constructed
As shown in[22] the action of the smeared holonomy states corresponding to a dense set-Fock space by the
operators on the Fock vacuum generates a dense subset(dfia) action of the holonomy operators on threFock
the Fock space. It follows that the action of the holonomyvacuum. Finally, the inner product was obtained on this set
operators on the-Fock vacuum generates a dense set of thef states by requiring that the classical reality conditions be
r-Fock space. Therefore, we can use the dual representatigmplemented as adjointness conditions on the corresponding
of the holonomy operatdisee Eq.(30)] on D* to generate quantum operators. Thus, in the qualitative language of the
the corresponding set of states fraby. Call this setl*.
Thus any element of* is of the formEI\‘ZlaHyuy{p@@O for
some complexa, andN finite. ®Rather than using these reality conditions directly for the opera-
As noted earlierD* (and henceC*) is not equipped with  tor E,(x), it is simpler to use them to induce adjointness relations
an inner product. Therefore an inner product&hmust be  on the operators expf(de'x/qo)([1/\/—(a°¢9c)]X;{q}(r)(i))éa(i)].
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Introduction, we may say that non-normalizable infinite su-different, is physically indistinguishable from the usual Max-
perpositions of 1 dimensional, polymer like excitations con-well dynamics generated [y in the context of finite accu-
spire, in collusion with the inner produ@t5), to acquire the racy measurements at distance scales much largerthan
character of 3D wavelike excitations in Fock space. We digress here to describe an alternative viewgant
From the point of view of quantum gravity, we think that the issue of physical indistinguishability of thé=ock repre-
we have unraveled an important set of structures which wilsentation. This is the viewpoint that onalgebraic proper-
help relate the Fock space of gravitons of linearized gravityties of functions on phase space are physically measurable.
to appropriate semiclassical states in loop quantum gravityVith this viewpoint, there is no way of asserting whether the
In |00p quantum graVity aISO, it is thadual I’epresentation to pair (H ,Ea(i)) are being measured with dynamics gener-
the kinematic spin network representation which serves as 0! . 5 ag o
the “home” for physical, dynamically relevant quantum ated byH in the Fock representation or the p(alrtz,E,(x))
states of the gravitational field. Although there is no consenare being measured with dynamics generatedHbyin the
sus on the exact physical states of the theory, it is still trug-Fock representation. With such a viewpoint, at least in the
that thestructureof the physical states is that of distributions context of source-free Maxwell theory, the physics of the
on the finite span of spin network states and that quanturfrFock representation faany positiver is (exactly, not ap-
operators act on these distributions via dual action. Furthegroximately identical to that of the usual Fock representa-
the issue of the correct inner product on the space of physicéion. The difference between this viewpoint and the one in
states is still open and this inner product may have veryhe preceding paragraph is that the latter tacitly assumes that
different properties from the kinematical one in the contextthere is some property other than purely algebraic properties
of solutions to the Hamiltonian constraint. Since thEock  of the pair (H y(r),IAEa(i)) by virtue of which the measuring
representation fotJ(1) theory has been obtained, in this N Al .
work, as the dual representation on distributions to the ﬂniteappargtus measures them rather titdp, E; (). This ends
. p o our brief digression.
span of charge network states with the “physical” inner Another question of interest intrinsic to the~ock repre-
product(45) unrelated to the “kinematic” inner produ¢20), q P

X ; ; . sentation is the one we raised j22] as to whether the
we feel that our results will play an important role in relating r-Fock representation could be realized as an

gravitons to physical states in loop quantum gravity. In the , —— .

loop quantum gravity case there are other complications such_(A/9:die () representation for some measaig ;) on

as the “linearization” of the non-Abelian gauge group to 3 “A/9- As we show in the Appendix, the answer to this ques-
copies ofU(1) [23], as well as the identification of a state 0N IS N the affirmative and it would be of interest to under-

corresponding to flat spacetime. These issues are currentij@nd the properties of this newFock measure. In this re-
under investigation. It is also of interest to ask if there is adard the recent work of Velhinh{26] contains a detailed
generalization of ourr-Fock constructions to the non- analysis of the properties of theFock measures. Whether
Abelian case. In this regard, Ashtekar and Lewandoi@%j these new representayons have applications outside of loop
have shown that a suitable reformulation of our results usinglu@ntum gravity remains to be seen.

“heat kernel” ideas admits a generalization to the non-
Abelian context.

Apart from potential applications to quantum gravity, it
would be of interest to understand th&ock representations | gratefully acknowledge helpful discussions on this ma-
in their own right. In this regard one question which comesterial with Abhay Ashtekar. | am indebted to Marcus van
to mind is that of dynamics in theFock representation. The Bers for sharing his insights with me.
dynamics of ther-Fock representation is governed by the
“r-image” of the standard Maxwell Hamiltonian operator.

The classical Hamiltonian for free Maxwell theory is APPENDIX

ACKNOWLEDGMENTS

1. Existence of ther-Fock measure onA/G
— 3 " L " L

H‘f A k[E*(KEa(—k)+B(K)Ba(—K)],  (46) In what follows we shall freely use results and notation

from [22] as well as from previous sectioffsWe shall be

whereB?(K) is the Fourier transform of the magnetic field, brief—the interested reader may work out the details. The

I§(>Z) :=qoﬁxﬁ(§)_ It follows that the classical function cor- [-Fock measure exists ad/g iff the r-Fock positive linear

responding to the Hamiltonian operator for thEock repre- ~ functional,
sentation is given by N N 3
1pdk .,
., N0 Z‘l afa] :Z‘l a ex _4_qu 1K (K
Hr:f dk{EF(K)Eqr(—K) +[e772B2(K)] i (A1)

X [e2B,(—K) 1} (47)
% learned of this viewpoint from Abhay Ashtekar.
From considerations similar to those at the end of Sec. Il, it %e shall use the corrected expression§asfl—see footnote 7
can be argued that the dynamics generatedHby though in this regard.
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N

Ceen Z la] <O|E a| @y |0).
=1 ()

is continuous with respect to th@* norm, ||=],a,[ ]|

=SUph e 42N 18/H,, (A)]. From[22] we have that (A3)

N N
_ Using the standard.?(S*,dug) [22,27] representation of
; L] ASSB 21 “Im(A) (A2) Fock space wheré&* is an appropriate space of tempered
distributions andlu¢ is the standard, unit volume, Gaussian
Also, from Eq.(10) we have that measure, we have
N N
(012 afl,, [0)= f dua(A) 2, aH g, (A) (A4)
=1 r AgeS* =1 "
N N
‘(0@ aH,,,)[0)| < sup| X aH,,  (A) f duc(A)= sup| 2, aH,, (A)). (A5)
Acsl! AqeS* AestI!=
|
Since X‘Z(r)(i) is in Schwartz space, it follows that every It follows from Egs.(A2), (A3), (A5) and (A6) that
A, S* defines a homeomorphisrh, from HG, to U(1)
[the element ofU(1) corresponding to a loopr is just N N
expi[peXs, ()AL()d>]. It follows from the considerations ‘FFU)( 21 al[a,]) < ;1 ala] ‘ (A7)

of [22] [see especially EqA15) of [22] ] that

N

2, a

= “I(r)

N

> a

Hay This implies thatl'r(, is continuous with respect t ||
=1 i

and hence that anFock measured () exists onA/G.

sup
Acs*!!

(A)|<sup

Ae A

(A)|. (AB)
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