
PHYSICAL REVIEW D, VOLUME 70, 084013
Path integral quantization of parametrized field theory

Madhavan Varadarajan*
Raman Research Institute, Bangalore 560 080, India
(Received 6 April 2004; published 12 October 2004)
*Electronic

1550-7998=20
Free scalar field theory on a flat spacetime can be cast into a generally covariant form known as
parametrized field theory in which the action is a functional of the scalar field as well as the embedding
variables which describe arbitrary, in general curved, foliations of the flat spacetime. We construct the
path integral quantization of parametrized field theory in order to analyze issues at the interface of
quantum field theory and general covariance in a path integral context. We show that the measure in the
Lorentzian path integral is nontrivial and is the analog of the Fradkin-Vilkovisky measure for quantum
gravity. We construct Euclidean functional integrals in the generally covariant setting of parametrized
field theory using key ideas of Schleich and show that our constructions imply the existence of
nonstandard ‘‘Wick rotations’’ of the standard free scalar field two-point function. We develop a
framework to study the problem of time through computations of scalar field two-point functions. We
illustrate our ideas through explicit computation for a time independent �1� 1�-dimensional foliation.
Although the problem of time seems to be absent in this simple example, the general case is still open.
We discuss our results in the contexts of the path integral formulation of quantum gravity and the
canonical quantization of parametrized field theory.
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I. INTRODUCTION

Most treatments of quantum fields on a flat spacetime
are based on the existence of foliations of the spacetime
by flat slices of constant inertial time. In generally cova-
riant systems like general relativity, no preferred folia-
tions exist. Indeed, general covariance requires that all
spacelike foliations should be allowed in the description
of dynamics. This is only one aspect of the many new
conceptual and technical issues which arise in attempts to
quantize the gravitational field. In order to isolate and
understand this aspect better, it is useful to study quantum
field theory on curved foliations of flat spacetime as a toy
model. Since we are interested primarily in the intertwin-
ing of general covariance with quantum field theory, the
detailed dynamics of the quantum field itself is a further
complication which we may ignore in a first treatment.

Thus, we shall focus on the quantization of a free
massive scalar field on arbitrary foliations of flat space-
time. An elegant way to view classical free scalar field
theory on arbitrary foliations is to cast it in a generally
covariant form known as parametrized field theory [1]. In
this form the theory can be used as testing ground for
various aspects of general covariance encountered in
gravity. Indeed, certain midisuperspace reductions of
gravity such as cylindrical waves [2], as well as theories
of gravity in lower dimensions [3], can be mapped onto
parametrized field theory by suitable variable redefini-
tions, thus providing an even stronger motivation for
studying parametrized field theory.

The canonical quantization of parametrized free field
theory was studied in [4–6] with interesting consequen-
address: madhavan@rri.res.in
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ces such as the necessity of an anomaly potential in the
functional Schroedinger equation in two dimensions [4]
and the nonexistence of the functional Schroedinger pic-
ture as the unitary image of the Heisenberg picture in
spacetime dimensions greater than two [6]. Such results
underline the importance of the study of parametrized
field theory both in itself and in its role as a toy model for
canonical quantum gravity. The next logical step is to
examine which, if any, aspects of the path integral ap-
proach to gravity may be better understood by an analysis
of the path integral quantization of parametrized field
theory.

As emphasized earlier, one of the problems of defining
the quantization of a generally covariant theory such as
gravity is the absence of a preferred choice of time [7].
This ‘‘problem of time’’ has been studied, most often, in
the canonical quantization context. In a path integral
formulation it is most directly encountered in the con-
struction of vacuum wave functions. In Poincaré invariant
theories, vacuum wave functions are constructed as
Euclidean path integrals which, in turn, are constructed
from their Lorentzian counterparts by a Wick rotation of
the preferred inertial time. In a generally covariant con-
text no preferred time, and hence, no preferred Wick
rotation, is available to define the Euclidean theory.

Another aspect of the problem of time is that of in-
equivalent quantizations. In canonical treatments of grav-
ity the choice of time is very often made by breaking the
time reparametrization invariance of the theory via a
choice of gauge fixing. Different choices of gauge fixing
lead to different choices of time which in turn may lead to
inequivalent quantizations. In a path integral for a theory
with gauge invariances, gauge fixing terms must be in-
cluded [8] so as to avoid infinities coming from summing
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over gauge equivalent configurations. Thus we expect that
the problem of time could manifest in different choices of
gauge fixings in the gravitational path integral.1

In this work we examine the above facets of the prob-
lem of time in the context of a path integral quantization
of parametrized field theory. In Sec. II we construct the
(Lorentzian) configuration space path integral from the
phase space path integral and hence obtain the correct
nontrivial measure. It is clearly seen that different time
slicings correspond to appropriately different choices of
gauge fixing terms. In Sec. III, we examine the issue of
Euclideanization. As mentioned earlier, in the generally
covariant context of gravity, no preferred Wick rotation to
a Euclidean theory is available. Instead ad hoc prescrip-
tions have been proposed [9] which have no clear con-
nection to the Lorentzian theory. An exception is the
proposal of Schleich [10], wherein the vacuum wave
function is defined from a reduced phase space path
integral. We use her ideas to define ‘‘Euclidean’’ path
integrals in the generally covariant context of parame-
trized field theory. We find that her unambiguous defini-
tion of Euclideanization implies the existence of
nonstandard Wick rotations of the standard free sca-
lar field two-point function. We confirm by direct inspec-
tion that such Wick rotated two-point functions indeed
exist.

We initiate our investigation into the existence (or
absence) of inequivalent quantizations for nonstandard
choices of time in Sec. IV. We show how computations of
the scalar field two-point function may be used to illu-
minate this issue. We work through, in some detail, the
case of a time independent foliation in �1� 1� dimen-
sions. Since there is reason to expect that this simple
choice of time reproduces the standard quantization,2

we provide explicit calculations primarily to illustrate
our general framework. Indeed, the case of a general
foliation is still open. In Sec. V we discuss our results in
the context of the path integral approach to quantum
gravity as well as in the context of canonical quantization
of parametrized field theory and indicate open issues.
Details of some of our considerations are collected in
the Appendix.
1The Fadeev-Popov determinants in the path integral are
supposed to ensure gauge independence. Note, however, that
the formal proof of gauge independence assumes that the
reduced phase space path integral implements a unique quan-
tization. In theories without extra structures such as global
Poincaré invariance or in quantizations which do not assign an
explicit role to Poincaré invariance, it is by no means clear that
there exists a unique quantization at the reduced phase space
level. Thus, a particular gauge choice may present the theory in
a guise which is amenable to a particular choice of
quantization.

2Our choice of foliation is such that the orbits of the time
vector field defined by the foliation agree with the orbits of the
time isometry of the flat spacetime metric.
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Note that the flat �n� 1�-dimensional spacetime mani-
fold is Rn�1. �;�; � � 0 � � � n are spacetime indices in an
arbitrary coordinate system x�. We shall set x0 � t. The
t � const submanifolds are assumed to be n dimensional,
spatial hypersurfaces diffeomorphic to Rn. i; j; k �
1 � � � n are spatial indices on this hypersurface. A;B;C �
0 � � � n are spacetime indices in inertial coordinates XA

with X0 �: T. The spatial inertial coordinates are
XÂ; Â � 1 � � � n. The Minkowski metric of signature
(�;�� � � � � ) is ���. @�; @A; @i are the partial deriva-
tive operators with respect to x�; XA; xi, respectively. The
dot ‘‘�’’ denotes @

@t .
II. THE PATH INTEGRAL

In this section we derive the classical phase space
action, define the phase space path integral, and integrate
over the momenta to obtain the configuration space path
integral.

A. The classical formulation

The Minkowski metric in an arbitrary coordinate sys-
tem is given by

��� � �AB@�XA@�XB; (1)

where �AB is the standard Minkowski metric in inertial
coordinates. From (1) the spacetime element in an arbi-
trary coordinate system is

ds2 � �� _T2 � _X2�dt2 � 2�� _T@iT � _XÂ@iXÂ�dtdxi

� �@iXÂ@jXÂ � @iT@jT�dxidxj: (2)

The line element may also be written in the standard
Arnowitt-Deser-Misner (ADM) form in terms of the
lapse N, shift Ni, and spatial metric qij as

ds2 � ��N2 � NiNi�dt2 � 2Nidtdxi � qijdxidxj: (3)

XAi are the projectors into the hypersurface and are de-
fined by

XAi � @iX
A: (4)

It is straightforward to show the following useful identi-
ties:

XAi XAj � qij: (5)

�AA1���AnX
A1
i1
� � �XAnin � �nA�i1i2���in (6)

where �AA1���An is the spacetime volume form, �i1i2���in is
the spatial volume form on the t � const spatial hyper-
surface, and nA is the unit, future pointing, timelike
normal to this hypersurface. From (6) and

����
�

p
� N

���
q

p

(�; q are, respectively, the determinants of the spacetime
and spatial metrics) it follows that
-2
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@N

@ _XA
� �nA: (7)

Equations (2) and (3) imply that

@Ni

@ _XA
� qijXAi: (8)

The action for a free scalar field � of mass m on
Minkowski spacetime expressed in inertial coordinates is

S��	 � �
1

2

Z
dn�1X��AB@A�@B��m2�2�: (9)

The action for parametrized field theory is obtained by
expressing (9) in arbitrary coordinates x� and treating the
action as a functional of � as well as the embedding
variables XA�xi; t�. Thus

S��;XA	 � �
1

2

Z
dn�1x

����
�

p
����@��@���m2�2�;

(10)

with ��� interpreted as a functional of XA via (1). In this
form, the action is a manifestly diffoemorphism invariant
functional of the �n� 1� scalar fields XA and the scalar
field �. A straightforward Hamiltonian analysis of (10)
using (1)–(8) yields the Hamiltonian form of the action
given by

S �
Z
dtdnx�PA _XA � � _��MACA�: (11)

Here PA and � are the momenta canonically conjugate to
XA and �. MA are the Lagrange multipliers for the first
class constraints CA with

CA � PA � nAh� qijXAjhi; (12)

h :�
�2

2
���
q

p �

���
q

p
�qij@i�@j��m2�2�

2
; hi � �@i�:

(13)

Note that nA and qij are to be considered as functionals of
XA through (5) and (6). The constraint algebra is Abelian,
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i.e., fCA; CBg � 0. The algebra of diffeomorphisms can be
recovered by smearing the constraints with vector fields
!1; !2 which depend on the embedding variables XA so
that�Z

dnx1!A1CA;
Z
dnx2!B2CB

�
�

Z
dnx�!B2@B!

A
1

� !B1@B!
A
2 �CA: (14)

We restrict attention to asymptotically inertial embed-
dings by imposing the following boundary conditions asPn
i�1 x

ixi ! 1:

X0�x; t� � t; X1�x; t� � x1;

X2�x; t� � x2; . . . ; Xn�x; t� � xn;
(15)

M0�x; t� � 1; MÂ � 0; Â � 1; . . . ; n: (16)

We also impose that PA; �;� be of compact support on
the spatial slice.

B. The path integral

In addition to the classical action (11), a choice of gauge
fixing is needed to define the phase space path integral.
Since this work constitutes a first attempt to analyze the
problem of time in a path integral context in parame-
trized field theory, we restrict attention to choices of
gauge fixing which have the clear geometric meaning of
fixing corresponding choices of time functions (i.e., foli-
ations by spacelike surfaces of constant time) on the flat
spacetime. The gauge fixing term "�#A	, where

#A � XA�x; t� � fA�x; t�; (17)

corresponds to choosing a foliation of the spacetime
defined by the embedding variables XA�x; t� taking the
values fA�x; t�.With this choice of gauge fixing it is easily
checked that the Fadeev-Popov determinant (see, for
example, [11]) is unity. Hence, the phase space path
integral is given by
Z �
Z

D�D�DMADPADXA"�XA � fA	 expi
Z
dtdnx�PA _XA � � _��MACA�: (18)
In the above equation it is understood that the configura-
tion variables ��x; t�; XA�x; t� interpolate between fixed
initial and final values at some initial and final instants of
time t � tI and t � tF. The end point values of XA are
assumed to be consistent with the gauge choice (17). We
shall not explicitly specify the end point dependence of Z
in our notation.

We integrate (18) over MA and PA to obtain
Z �
Z

D�D�DXA"�XA � fA	 expi
Z
dtdnx�� _�� Nh� Nihi� (19)
-3
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with

N � � _XAnA; Ni � qijXAi _XA (20)

[notice the consistency of these expressions with (7) and
(8)], and h; hi given by (13). In this form it is clear that our
choice of gauge fixing presents the parametrized field
theory in the form of free scalar field theory on the (in
general, curved) foliation fA�x; t�. A further integration
over the momenta � yields the configuration space path
integral

Z �
Z

D�DXA
�
det
iN���
q

p

�
�1=2

"�XA � fA	 expiS��;XA	

(21)

where S��;XA	 is the classical action given by (10).
Note that the path integral measure has a factor of

�det�iN=
���
q

p
�	�1=2. In our specific gauge choice, this de-

terminant factor reduces to an irrelevant c number de-
pending on fA�x; t�. However, with a more general choice
of gauge fixing term, we expect this term to persist and,
as a consequence, contribute nontrivially to the path
integral measure. Although the treatment of the most
general gauge choice can be done via Becchi-Rouet-
Stora-Tyutin (BRST) methods (see [10,12]), such a treat-
ment is beyond the scope of this paper. Instead, in the
Appendix, we have extended our treatment to slightly
more general (�-dependent) gauge choices than those of
(17). We find that the determinant factor persists and
contributes nontrivially to the measure. We believe that
this measure is the exact analog of the measure found by
Fradkin and Vilkovisky in [13] for quantum gravity. This
lends added credence to their measure being the correct
one rather than the more commonly used measure pro-
posed by DeWitt in [14].We shall comment further on this
in Sec. V.
III. EUCLIDEANIZATION

Our aim is to construct convergent path integrals in
order to evaluate vacuum wave functions. Indeed, we
shall define this construction to be Euclideanization. For
the case of a flat inertial foliation, it will be seen that the
construction reproduces the standard Wick rotated path
integral.

We are motivated by the remark of Schleich in [10] to
the effect that there is no obstruction to constructing a
convergent path integral for the vacuum wave function in
any theory with a positive definite Hamiltonian. To illus-
trate this remark, consider such a theory in the absence of
constraints with a time independent HamiltonianH and a
single configuration space degree of freedom q. The
vacuum is defined as the eigenfunction of Ĥ with lowest
eigenvalue. Under the assumption that the vacuum is
unique and that the zero of energy has been chosen so
that the vacuum energy vanishes, the vacuum wave func-
084013
tion (in obvious notation) may be obtained from the
Feynman-Kac–type formula:

 0�qF; tF� 
�
0�qI; tI� � lim

tI!�1
hqF; tFj exp��iaĤ

��tF � tI�jqI; tI�i: (22)

Here a is any complex number with negative imaginary
part and tF; tI are final and initial times. The above
identity is obtained by expanding jqF; tFi; jqI; tIi in a
complete set of energy eigenstates. The negative imagi-
nary part of a and the tI ! �1 limit conspire to project
the initial and final states onto the vacuum state, resulting
in Eq. (22). It is straightforward to check that the matrix
element on the right-hand side of this identity may be
written as a phase space path integral:

hqF; tFj exp��iaĤ�tF � tI�jqI; tI�i

�
Z

DqDp exp
�
i
Z
dt�pi _qi � �a� 1�H	

�
: (23)

SinceH is positive and a has negative imaginary part, the
path integral is (formally) convergent. Equations (22) and
(23) illustrate Schleich’s remarks in the context of sys-
tems without constraints.

In Appendix A 2, we develop similar expressions for
vacuum wave functions in terms of phase space path
integrals for systems with first class constraints. We re-
strict attention to cases in which time evolution is gen-
erated by a nonvanishing positive definite Hamiltonian.
In Sec. III A, we extend the considerations of Appendix A
2 to parametrized field theory so as to write vacuum
functions as convergent phase space path integrals. In
Sec. III B, we integrate these expressions over momenta
to obtain convergent path integrals which we refer to as
Euclidean path integrals for want of a better name. The
results of Sec. III B imply that the standard Minkowskian
two-point function can be continued to a Euclidean two-
point function through nonstandard Wick rotations. We
show that this is indeed true in Sec. III C.

A. Vacuum wave functions as phase space path inte-
grals

In a theory with coordinates qi, momenta pi (i �
1 � � � n), first class constraints C�; � � 1 � � �m,
Lagrange multipliers -�, gauge fixing constraints #�,
and Hamiltonian H, the transition amplitude can be
written as

Z�qiI; tI; qiF; tF� �
Z

DqDpD-"�#�� det�fC�; #�g	

� exp
�
i
Z
pi _qi � -�C� �H

	
: (24)

The integral is over all paths which have end points at
times tI; tF specified by initial values qi � qiI and final
-4
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values qi � qiF. The end point configurations must satisfy
the gauge fixing constraints.

Standard arguments [11] using canonical transforma-
tions to appropriate variables indicate that the transition
amplitude (24) is independent of the gauge choice. #�.
These arguments are not without shortcomings. First, any
application of canonical transformations to the path in-
tegral is fraught with problems related to the ‘‘roughness
of paths’’ [15]. Second, many of the standard arguments
([16] is an exception) ignore end point contributions in the
canonically transformed action, as well as the possible
differences in the specification of end point values in
terms of the old configuration variables as compared to
their specification in terms of the new canonically trans-
formed configuration variables.

Here (and in Appendix A 2), we shall also ignore the
issues mentioned above. Although we shall further justify
our constructions for parametrized field theory, these
issues require a careful treatment in more complicated
systems such as quantum gravity. With these caveats in
mind, we consider the gauge independent quantity Za
given by

Za�qiI; tI; qiF; tF� �
Z

DqDpD-"�#�� det�fC�; #�g	

� exp
�
i
Z
dt�pi _qi � -�C� � aH�

�
;

(25)

where a is an arbitrary complex number. As shown in the
Appendix A 2, if we choose a to have negative imaginary
part and the vacuum to have vanishing energy, it follows
that

Za�qiI; tI � �1; qiF; tF� �  0�qF; tF� �
0�qI; tI�; (26)

where  0 denotes the vacuum wave function. For a fixed
initial configuration, this is an expression for the vacuum
wave function as a function of the final configuration.
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We aim to construct similar phase space path integrals
to express the vacuum wave functionals of parametrized
field theory. Our strategy is to first construct the counter-
part of Eq. (25) and then to argue that its tI ! �1 limit
is the correct parametrized field theory counterpart of
Eq. (26). There are two differences between parametrized
field theory and the system considered in Eq. (25). First,
the action for parametrized field theory given by Eq. (11)
does not exhibit a nonvanishing Hamiltonian, and, sec-
ond, the gauge fixing conditions which define a foliation
are time dependent.3 Our considerations for the system
defined by (25) generalize straightforwardly to parame-
trized field theory in spite of this time dependence. The
first point of difference remains, however, and we need to
construct an analog of the Hamiltonian in (25). To do so,
we note that in standard free scalar field theory, the
vacuum is defined as the ground state of the operator
corresponding to the conserved, positive definite scalar
field energy E given by

E �
1

2

Z
T�const

dnX
��
@�
@T

	
2
�

X
Â

@Â�@Â��m2�2

�
:

(27)

In the context of parametrized field theory it is straight-
forward to verify that E is simply the evaluation, on a
classical solution, of the Dirac observable H, given by

H �
Z
Rn
dnxPT; (28)

where PT :� PA�0. Therefore, we define the vacuum state
in parametrized field theory to be the ground state of the
operator corresponding to H [see (28)]. Since E � H on
the constraint surface, our definition is consistent with
the usual definition of the vacuum in free scalar field
theory.

The above considerations imply that the correct coun-
terpart of (25) is
Za��I; X
A
I ; tI;�F; X

A
F; tF	 :�

Z
D�D�DMADPADXA"�XA � fA	

� exp
�
i
Z
dtdnx�PA _XA � � _��MACA� � ia

Z
dtH

�
; (29)
3Note that the conditions XA�x; t� � fA�x; t� constitute a one
parameter family of gauge fixing conditions; i.e., for every
instant of time one has a complete gauge fixing. Hence, strictly
speaking, these conditions define a deparametrization of the
theory rather than a gauge fixing. We shall, however, continue
to refer to them as gauge fixing conditions.
with H defined by (28). Using the fact that H is a Dirac
observable, it can be checked that the methods of [11]
mentioned in Appendix A 2 show gauge independence
(with respect to appropriately defined infinitesimal
changes of gauge [11]) of the above expression.

To see that the tI ! �1 limit of (29) indeed yields the
vacuum wave function, we note that the integration of
Eq. (29) over XA and MA gives
Za �
Z

D�D� expi
Z
dtdnx�� _��H � aH�: (30)
-5
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Here H � _FAhA is the generator of evolution in time t
along the foliation FA�xi; t�. Therefore, in operator lan-
guage (with a suitable operator ordering prescription) the
above path integral expression corresponds to, in obvious
notation,

Za � lim
tI!�1

h�F; tFje�iaĤ�tF�tI�j�I; tIi (31)

�  0��F; tF	 
�
0��I; tI	; (32)

where  0 denotes the vacuum state and we have evaluated
the action of e�iaĤ�tF�tI� via a spectral decomposition of
Ĥ under the assumption that its lowest eigenvalue is
normalized to zero and that a has negative imaginary
084013
part. Equation (32) further justifies our constructions for
Euclideanization in parametrized field theory.

Finally, we note that on the flat foliation, fA � x�"A�,
Za evaluates to

Za �
Z

D�D� expi
Z
dtdnx

�
� _��

a� 1

2

�

�
�2 �

X
i

@i�@i��m2�2

	�
: (33)

The choice a � �1� i reproduces the usual expression
for the vacuum wave functional. Henceforth we shall set
a � �1� i and define the Euclidean phase space path
integral to be
ZE��I; XAI ; tI � �1;�F; XAF; tF	 �
Z

D�D�DMADPADXA"�XA � fA	 expi
Z
dtdnx

��PA _XA � � _��MACA � ��1� i�PT	: (34)

Because of the positivity of (28) on the constraint surface, the above expression is (formally) convergent. Our strategy
is to define the Euclidean theory in configuration space by integrating over the momenta in (34).

B. Euclidean path integral

Equation (34) can be written in the form

ZE��I; X
A
I ; tI � �1;�F; X

A
F; tF	 �

Z
D�D�DMADPADXA"�XA � fA	 expi

Z
dtdnx

��PT _TE � PÂ _XÂ � � _��MACA�; (35)

where we have defined

TE � T � t� it: (36)

Integration over MA;PA yields

ZE �
Z

D�D�DXA"�XA � fA	 expi
Z
dtdnx�� _�� NEh� Ni

Ehi�; (37)
where h; hi are given by (13) and we define

NE � � _XAnA � �1� i�nA�0; (38)

Ni
E � qij�XAj _X

A � �1� i�@jT	: (39)

Notice that the above equations can be obtained from
Eqs. (19) and (20) by replacing T with TE.

Next, we integrate over �. After ‘‘completing the
square,’’ the �-dependent term to be integrated over is

exp�i
NE

���
q

p

2

�
��

_�� Ni
E@i�

NE

	
2
:

In what follows, we shall denote the real and imaginary
parts of a complex number a by aR and aI so that a �
aR � iaI. The absolute value of a will be denoted by jaj.
From (38) and from the fact that nA is a future-pointing,
timelike vector, we have that

NEI � nA�0 � nA

�
@
@T

	
A
< 0: (40)

This ensures that the exponential is convergent and can be
integrated over �. Performing this integration yields

ZE �
Z

D�DXA"�XA � fA	 exp�
Z
dn�1xLE; (41)

where LE is given by

LE � �
i
2
NE

���
q

p
�� _�� Ni

E@i�
NE

	
2
� qij@i�@j��m2�2

�
:

(42)

This is our final expression for what we call the Euclidean
path integral.
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Next, we show that the Euclidean path integral is in-
deed convergent by showing that the real part of LE is
positive. From (42), the real part of LE is determined by
the expression

�
2LER���
q

p � NEI

�
qij �

Ni
EI
Nj
EI

jNEj2

	
AiAj �

NEI
jNEj2

B2

�2
Ni
EI
NER

jNEj2
AiB� NEIm

2�2; (43)

where

Ai � @i�; B � _�� Ni
ER
@i�: (44)

It is straightforward to show, using Eqs. (5), (20), (38),
and (39), that

N2
EI
� qijN

i
EI
Nj
EI

�
1

2

@2

@ _T2
�N2 � qijN

iNj�: (45)

Using this in conjunction with Eq. (3) gives the key
inequality

N2
EI
� qijN

i
EI
Nj
EI

�
1

2

@2

@ _T2
� _T2 � _X2� � 1> 0: (46)

Note that a trivial application of the Schwarz inequality
shows that

N2
EI
qijAiAj > �Ni

EI
Ai�

2: (47)

Straightforward manipulations using the above in-
equalities in conjunction with (40) imply that, when Ai
and B are not both identically zero,

�
2LER���
q

p <
NEI
jNEj

2 �jBj � jNER j
����������������
qijAiAj

q
�2 � NEIm

2�2 < 0:

(48)

Thus, as expected, the Euclidean path integral is
convergent.

For a flat foliation with T � t, Eq. (36) defines a
Euclidean time via the standard Wick rotation. Note
that we did not first define a Lorentzian configuration
space path integral and then make a Wick rotation.
Rather, we defined a Euclidean phase space integral and
Eq. (36) emerged as a consequence of this. For arbitrary
foliations, we have that t � T and consequently that
Eq. (36) differs from the standard Wick rotation. This
suggests that the two-point functions of the theory can be
continued through this nonstandard Wick rotation. We
shall confirm the existence of these Wick rotated two-
point functions in Sec. III C. The Euclidean action (42) is
in general complex and depends on the choice of foliation
as does theWick rotation. This is reminiscent of ’t Hooft’s
084013
discussion of Wick rotations in perturbative quantum
gravity [17] wherein he states that the details of the
Wick rotation depend on the gauge chosen.

C.‘‘Wick rotated’’ two-point functions

In order to discuss Wick rotations of the form (36), it is
useful to express the embedding time X0 � T in terms of
x� through a function h�x�� defined by

T � t� h�x��: (49)

From (36), the Euclidean time TE is

TE � �it� h�x��: (50)

Denote the standard time-ordered Minkowski space-
time two-point function byG�T1; XÂ1 ;T2; X

Â
2 �.G is a func-

tion of x�i , i � 1; 2 through the dependence on x� of the
embeddings, i.e., XA � XA�x��. The Wick rotated two-
point function GE is given by

GE�x�1 ; x
�
2 � � G�T1E�x�1 �; X

Â
1 �x

�
1 �;T2E�x

�
2 �; X

Â
2 �x

�
2 ��; (51)

where the right-hand side denotes a continuation of G to
the complex arguments defined by (50).

To show that GE exists, recall that the standard
Minkowskian two-point function is defined by

G�XA1 ; X
A
2 � � h0j4�T1 � T2��̂�XA1 ��̂�X

A
2 �

�4�T2 � T1��̂�XA2 ��̂�X
A
1 �j0i; (52)

where j0i denotes the vacuum state. As shown in Sec. IV
[see the discussion after Eq. (64)], due to Lorentz invari-
ance and the spacelike nature of t � const slices, we can
equally well write the two-point function as

h0j4�t1 � t2��̂�X
A
1 �x

�
1 ���̂�X

A
2 �x

�
2 ��

�4�t2 � t1��̂�XA2 �x
�
2 ���̂�X

A
1 �x

�
1 ��j0i: (53)

Denoting h0j�̂�XA1 �x
�
1 ���̂�X

A
2 �x

�
2 ��j0i by

D�XA1 �x
�
1 �; X

A
2 �x

�
2 �� we can write the above equation as

G�XA1 �x
�
1 �; X

A
2 �x

�
2 ��jt1>t2 � D�XA1 �x

�
1 �; X

A
2 �x

�
2 ��j; (54)

G�XA1 �x
�
1 �; X

A
2 �x

�
2 ��jt2>t1 � D�XA2 �x

�
2 �; X

A
1 �x

�
1 ��jt2>t1 ; (55)

G�XA1 �x
�
1 �; X

A
2 �x

�
2 ��jt1�t2 � D�XA1 �x

�
1 �; X

A
2 �x

�
2 ��jt1�t2 (56)

� D�XA2 �x
�
2 �; X

A
1 �x

�
1 ��jt1�t2 : (57)

To obtain the last equation, note that t2 � t1 implies that
events 1 and 2 are spacelike and hence the field operators
at these points commute. We use the standard expression
for D�XA1 ; X

A
2 � and Eq. (49) to obtain
-7
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D�XA1 ; X
A
2 � �

�
1

2�

	
n Z dnk

2!k
e�i!k�T1�T2��iki�Xi1�X

i
2� �

�
1

2�

	
n Z dnk

2!k
e�i!k�t1�t2��i�ki�Xi1�x

�
1 ��X

i
2�x

�
2 ���!k�h�x�1 ��h�x

�
2 ��	: (58)

where !k �
��������������������������������Pn
i�1�ki�

2 �m2
q

. From (51) and the above equations we obtain

GE�x
�
1 ; x

�
2 �jt1>t2 �

�
1

2�

	
n Z dnk

2!k
e�!k�t1�t2��i�ki�Xi1�x

�
1 ��X

i
2�x

�
2 ���!k�h�x�1 ��h�x

�
2 ��	; (59)

GE�x
�
1 ; x

�
2 �jt2>t1 �

�
1

2�

	
n Z dnk

2!k
e�!k�t2�t1��i�ki�Xi2�x

�
2 ��X

i
1�x

�
1 ���!k�h�x�2 ��h�x

�
1 ��	; (60)

GE�x�1 ; x
�
2 �jt1�t2 �

�
1

2�

	
n Z dnk

2!k
ei�ki�X

i
1�x

�
1 ��X

i
2�x

�
2 ���!k�h�x�1 ��h�x

�
2 ��	 (61)

�

�
1

2�

	
n Z dnk

2!k
ei�ki�X

i
2�x

�
2 ��X

i
1�x

�
1 ���!k�h�x�2 ��h�x

�
1 ��	: (62)
Clearly the first two equations above define convergent
integrals whereas the expressions for t1 � t2 agree with
their Lorentzian counterparts and hence exist as well
defined distributions.

Thus, direct evaluation of (51) indeed shows that the
Wick rotated two-point functions do exist. Note that in
the generally covariant formulation of parametrized field
theory, the coordinate t, which is crucial to the definition
of the Wick rotation (50), has no intrinsically distin-
guished role. Indeed, when confronted with parametrized
field theory, it is difficult to guess the existence of this
foliation-dependent Wick rotation and the consequent
Euclideanization of the theory. From this perspective it
is very satisfying to see that the well motivated definition
of Euclideanization which we have used is in harmony
with the properties of the standard Minkowskian two-
point function.

IV. PATH INTEGRAL QUANTIZATION WITH
NONSTANDARD CHOICE OF TIME

The form of the scalar field action appropriate to the fA

foliation may be obtained either by integrating the path
integral (21) over the embedding variables or by perform-
ing a coordinate transformation from inertial coordinates
XA to x� in the action (9). The action describes a scalar
field on a flat Minkowski spacetime with inertial coor-
dinates x� interacting with an external field determined
by fA�x; t�. The issue of interest is whether, despite being
classically equivalent to the standard action (9), the action
in this form naturally suggests a quantization procedure
based on the x� flat spacetime which is inequivalent to the
standard quantization. Since the action is quadratic in the
scalar field, most of the physics is in the two-point func-
084013
tion. An application of standard perturbative quantum
field theory to this form of the action results in a compu-
tation of the two-point function in an expansion in
powers of the external field. The result can be compared
to the standard Minkowskian two-point function.

Let pi; i � 1; 2 be a pair of events on the flat spacetime.
We denote their spacetime coordinates in the x� coordi-
nate system by ~xi and their coordinates in the inertial XA

system by ~Xi. Let the two-point function in the fA for-
mulation be Gf� ~x1; ~x2� and let the standard two-point
function be G� ~X1; ~X2�. In the case of the nonstandard
foliation, the two-point operator is

Ô f � 4�t1 � t2��̂�p1��̂�p2� � 4�t2 � t1��̂�p2��̂�p1�;

(63)

whereas in the usual inertial foliation the two-point op-
erator is

Ô � 4�T1 � T2��̂�p1��̂�p2� � 4�T2 � T1��̂�p2��̂�p1�:

(64)

Here 4 is the usual step function which implements time
ordering. It is readily verified, using the fact that the t �
const slices are spacelike with future-pointing timelike
normal �dt��, that if p1 and p2 are causally related then
they have the same time ordering with respect to t as with
T. Further, in the standard quantization, if p1 and p2 are
not causally related then ��̂�p1�; �̂�p2�	 vanishes and the
ordering does not matter. Thus, we can as well replace Ô
by Ôf in the standard quantization.

If Gf� ~x1; ~x2� � G� ~X1; ~X2�, we may conclude that either
the f-dependent quantization and the standard quantiza-
tion of the operator Ôf are inequivalent or that the vac-
-8
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uum state selected by the procedure to calculate Gf is
different from the standard vacuum state. Thus, in both
cases the choice of foliation affects the quantum theory
either in its representation of operators or in its identifi-
cation of the vacuum state. To illustrate our ideas, we
work through a simple �1� 1�-dimensional example in
Sec. IVA. It is worth emphasizing that the example
represents nothing more or less than the quantization of
a scalar field on a flat background in a specific and unusual
coordinate system. The issue is whether such a choice of
space and time coordinates presents the theory in a form
which suggests a natural quantization which is inequiva-
lent to the standard Poincaré invariant quantum theory.

In Sec. IV B we describe our framework for a general
foliation in �n� 1� dimensions. The actual computations
which would show existence (or lack thereof) of inequi-
valent quantizations are left for future work.

A. Two-dimensional example

In two spacetime dimensions denote the inertial time
by T and the inertial space coordinate by X and specify
the foliation by T�x; t� � t� f�x� and X�x; t� � x, where
f�x� is a function of compact support. The path integral
(21) can be integrated over XA to give

Z �
Z

D� expiS���x; t�	: (65)

The irrelevant c-number determinant has been dropped
and S���x; t�	 is defined as

S���x; t�	 �
1

2

Z
dxdt����@��@��

�f��@��@���m2�2�: (66)

Here ��� denotes the flat metric with line element ds2 �
�dt�2 � �dx�2 and f�� is defined as
084013
f00 � �

�
df
dx

	
2
; f01 � f10 �

df
dx
; f11 � 0:

(67)

The reader is requested to bear with us, in that we have
changed our conventions for the metric signature from
( ��) to ( ��) only in this subsection. The reason is to
ensure easy cross-checking of numerical factors for
Feynman diagrams with standard field theory references
(see, for example, [18]) which use the ( ��) conventions.

The action (65) describes a scalar field interacting with
a static potential on the �x; t� Minkowski spacetime and
Gf may be computed via standard Feynman diagram-
matics. In momentum space, we have

Gf� ~p; ~q� :�
Z
d2xd2yei ~p� ~xe�i ~q� ~yGf� ~x; ~y�; (68)

where we have used the notation ~x for �x0; x�, ~p for �p0; p�,
and ~p � ~x for �p0x0 � px�. The Fourier transform of
f��� ~x� is defined as

f��� ~k� �
Z
d2xf��� ~x�ei ~q� ~x: (69)

No loops are encountered in the Feynman diagrams
since (66) has only two-point interactions. Each vertex
contributes a factor of

iC� ~k1; ~k2� � if:;� ~k1 � ~k2�k1:k2; (70)

with incoming momentum ~k1 and outgoing momentum
~k2. Each propagator contributes a factor of �i=� ~k2 �
m2 � i��. Here ~k2 � ~k � ~k. Notice that the choice of time
t dictates the i� prescription in the propagator.

With the correct factors of i and 2� we have
Gf� ~p; ~p� �
i�2��2

~p2 �m2 � i�
"� ~p; ~q� �

�i

~p2 �m2 � i�
C� ~p; ~q�

1

~q2 �m2 � i�
�

X1
n�2

��1�ni

�2��2n�2

1

~p2 �m2 � i�

Z Yn�1

j�1

d2kj

�

�
C� ~p; ~k1�

1

~k21 �m2 � i�
C� ~k1; ~k2� � � �C� ~kn�2; ~kn�1�

1

~k2n�1 �m2 � i�
C� ~kn�1; ~q�

�
1

~q2 �m2 � i�
: (71)
From (67) and (70) we have that

C� ~k; ~l� � C�1�� ~k; ~l� � C�2�� ~k; ~l�; (72)

C�1�� ~k; ~l� � 2�i"�k0; l0�f�k� l�k0�k2 � l2�; (73)

C�2�� ~k; ~l� � k20"�k0; l0�
Z
dsf�s�f�k� l� s�s�k� l� s�:

(74)

The "�k0; l0� factors ensure that, as expected, the static
potential conserves energy. Of course, momentum is not
conserved due to the lack of translational invariance in
the presence of the potential. Using (73) and (74), we can
write Gf� ~p; ~q� as an expansion in orders of f so that

Gf� ~p; ~q� �
X1
N�0

G�N�
f � ~p; ~q�; (75)

where G�N�
f � ~p; ~q� is of order fN .
-9



MADHAVAN VARADARAJAN PHYSICAL REVIEW D 70 084013
On the other hand, the standard two-point function is

G� ~X; ~Y� �
i

�2��2
Z
d2k

e�i ~k�� ~X� ~Y�

~k2 �m2 � i�
; (76)

with Fourier transform

G� ~p; ~q� �
Z
d2xd2ye�i ~p� ~xei ~q� ~yG� ~X� ~x�; ~Y� ~y�� (77)

� i"�p0; q0�
Z
dxdydk

ei�p�k�xe�i�q�k�y

~k2 �m2 � i�
eiq0�f�x��f�y�	;

(78)

where we have substituted for ~X; ~Y in terms of ~x; ~y. We can
expand the last exponential in (78) in a power series and
hence obtain G as an expansion in powers of f, i.e.,

G� ~p; ~q� �
X1
N�0

G�N�� ~p; ~q�; (79)

where G�N�� ~p; ~q� is of order fN. To second order we have,
084013
from (78),

G�0�� ~p; ~q� �
i�2��2

~p2 �m2 � i�
"� ~p; ~q�; (80)

G�1�� ~p; ~q� � 2�q0"�p0; q0�f�p� q�
�

1

~p2 �m2 � i�

�
1

~q2 �m2 � i�

	
; (81)

G�2�� ~p; ~q� �
�iq20
2

"�p0; q0�
Z
dkf�p� k�f��q� k�

�

�
1

~q2 �m2 � i�
�

1

~p2 �m2 � i�

�
2

q20 � k2 �m2 � i�

	
: (82)

Clearly, G�0�� ~p; ~q� � G�0�
f � ~p; ~q�. From (71) and (73), we

have
G�1�
f � ~p; ~q� �

�i

~p2 �m2 � i�
C�1�� ~p; ~q�

1

~q2 �m2 � i�
�

�i

~p2 �m2 � i�
2�i"�p0; q0�f�p� q�p0�p

2 � q2�
1

~q2 �m2 � i�

� 2�p0"�p0; q0�f�p� q�
�

1

~p2 �m2 � i�
�

1

~q2 �m2 � i�

	
� G�1�� ~p; ~q�: (83)

Finally, from (71), (73), and (74) we have

G�2�
f � ~p; ~q� �

i

�2��2
1

~p2 �m2 � i�

Z
d2kC�1�� ~p; ~k�

1

~k2 �m2 � i�
C�1�� ~k; ~q�

1

~q2 �m2 � i�

�
��i�

~p2 �m2 � i�
C�2�� ~p; ~q�

1

~q2 �m2 � i�

� �iq20"�q0; p0�
Z
dk

�
f�p� k�f��q� k�

� ~p2 �m2 � i��� ~q2 �m2 � i��

�
�p2 � k2��k2 � q2�

q20 � k2 �m2 � i�
� �p� k��k� q�

��
: (84)
After some algebra it can be shown that

G�2�
f � ~p; ~q� � G�2�� ~p; ~q� �

iq20�p� q�

� ~p2 �m2 � i��� ~q2 �m2 � i��

�"�q0; p0�
Z
dkf�p� k�f��q� k�

�

�
p� q
2

� k
	
: (85)

Setting �p� q�=2� k � l we have

Z 1

�1
dkf�p� k�f��q� k�

�
p� q
2

� k
	

�
Z 1

�1
dllf

�
l�

p� q
2

	
f
�
�l�

p� q
2

	
; (86)

which vanishes by virtue of the integrand being odd in l.
Hence G and Gf are identical to second order. We have
exhibited the calculations in some detail to show that this
agreement is not entirely trivial as well as to illustrate our
ideas in a concrete setting. In the next section we discuss
the case of an arbitrary foliation in �n� 1� dimensions.

B. The general case

Integration of (21) over XA and dropping of the irrele-
vant c-number determinant term gives

Z �
Z

D� expiS���xi; t�	: (87)

Here

S���x; t�	 � �
1

2

Z
dn�1x

����
�

p
����@��@���m2�2�;

(88)
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where �:; is defined by (1) with XA � fA. In the above
equation, the coordinates x� are fixed once and for all by
the choice of the embedding fA�x; t�. Just as for the 2D
example in Sec. IVA, the action (88) can be written as the
sum of a free part and an interaction term describing
interaction with external fields.

The free part of the action describes a scalar field
propagating on a flat spacetime with x� as inertial coor-
dinates so that the line element of this spacetime is ds2 �
��dt�2 �

Pn
i�1�dx

i�2. We denote the flat spacetime metric
defined by this line element by �:;f . The analog of f�x; t�
in Sec. IVA is

hA�xi; t� :� XA�xi; t� � x�"A�; (89)

i.e., h0 � T � t; h1 � X1 � x1, etc. We define the external
fields f:; and � by

f:; �
����
�

p
�:; � �:;f ; � �

����
�

p
� 1: (90)

The above equation is defined in the fixed �xi; t� coordi-
nate system and

����
�

p
is calculated in this coordinate

system. Note that in analogy to (67), f:; and � can be
obtained as a series expansion in powers of @�hA.

The action (88) takes the form

S���x; t�	 � �
1

2

Z
dn�1x����f @��@���m2�2

�f��@��@��� �m2�2�: (91)

Gf can be defined as a standard perturbative quantum
field theory expansion in powers of the external field
f:;; �. This expansion makes use of the propagator de-
fined from the free part of the action which in turn derives
its structure from the flat metric �:;f .

Our general strategy is as follows. The momentum
space two-point function Gf� ~p; ~q� is defined by an �n�

1�-dimensional analog of the expression (71) with C� ~k; ~l�
defined by an appropriate generalization of (70). C� ~k; ~l�
itself is a sum over C�N�� ~k; ~l� where the C�N� are of order
�hA�N . Unlike the specific two-dimensional example dis-
cussed in Sec. IVAwhere N � 1; 2, here N can in general
range from 1 to 1. TheNth order (in hA) contributionG�N�

f

to Gf can be calculated. The standard two-point function
G� ~X� ~x�; ~Y� ~y�� can be Fourier transformed in analogy to
(77) to give G� ~p; ~q�. The latter can be expanded in powers
of hA in analogy to the expansion defined by Eq. (79).
Finally, the Nth order contributions G�N�� ~p; ~q� can be
compared with G�N�

f � ~p; ~q�.
Though the general strategy seems straightforward, the

following discussion indicates that there are complica-
tions in defining Gf� ~x1; ~x2� in the manner sketched above
(similar complications, arising from ‘‘illegal’’ expansions
of the relevant exponential inside the �n� 1�-dimensional
analog of (78) for a general foliation, may exist for the
084013
computation of G�N�� ~p; ~q�). If hA�xi; t� are of compact
support in x�, one can check that contributions to
Gf� ~p; ~q� to any order in f:; are UV finite. For an arbi-
trary choice of fA, hA is restricted by the boundary
conditions (15) to be of compact support only in xi and
not in both xi and t. For generic choices of hA, UV
divergences may possibly exist. Further, even if there
are no UV divergences, Gf� ~x1; ~x2� is defined in position
space via the inverse Fourier transform of Gf� ~p; ~q�, the
latter being the sum of contributions at every order of
perturbation theory. Whether this sum converges well
enough for its inverse Fourier transform to exist (as a
distribution) is also not clear. We shall concern ourselves
with an investigation of these issues in future work.

Our computations in Sec. IVA indicate that a brute
force term by term analysis would probably be quite
involved. In the remainder of this section we propose a
line of attack springing from considerations of a more
general nature. In what follows, we shall simply assume
that there is some way to define Gf� ~x1; ~x2� as a distribu-
tion by using standard perturbative quantum field theory
techniques on the flat �:;f spacetime such that its only
singularities are when ~x1 � ~x2. Once this fairly restrictive
assumption has been made, Gf� ~x1; ~x2� is constrained by
the following argument.

The equations of motion from the action (88) are

@:�
����
�

p
�:;@;�� �

����
�

p
m2� �

����
�

p
�� �m2�� � 0:

(92)

Here � �m2 � �AB@A@B �m2 is a scalar differential
operator. From its definition, it follows that Gf� ~x1; ~x2� is
Green’s function for the operator @:�

����
�

p
�:;@;� �

����
�

p
m2

so that�
@
@x:

����������
��x�

q
�:;�x�

@
@x;

�
����
�

p
m2

�
Gf� ~x; ~y� � i"� ~x; ~y�:

(93)

Using the fact that "� ~x; ~y� transforms as a unit density in
its first argument and as a scalar in its second, we have

�� �m2�Gf� ~x; ~y� � i"� ~X; ~Y�: (94)

Thus Gf and G are constrained by virtue of their being
Green’s functions for the same differential operator. In
the context of our restrictive assumptions this implies that
their difference, �Gf� ~x1; ~x2� � G� ~X1� ~x1�; ~X2� ~x2���
Gf� ~x1; ~x2�, must be a smooth solution to the Klein-
Gordon equation.

First consider the case when hA are of compact support.
This means that x� agree with XA outside a compact
region K � Rn�1 and that f:;; � vanish outside K.
Suppose that we could show that �Gf� ~x1; ~x2� � 0 for
~x1; ~x2 2 Rn�1 � K (here Rn�1 � K refers to the comple-
ment of K). Then the following argument shows that
-11



5We again emphasize that we have neglected end point terms
and used only canonical gauges in our arguments (see [20,21]
in this regard). Nevertheless, our intuition is that our result for
the measure is sufficiently robust to survive a more careful
treatment of end point contributions.

6For perturbative quantum gravity calculations in a dimen-
sional regularization scheme, contributions of the nontrivial
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�Gf� ~x1; ~x2� � 0 everywhere. Fix the point p1 such that
p1 2 Rn�1 � K. Then, we have that �Gf� ~x1; ~x2� � 0 for
~x2 2 Rn�1 � K and that �Gf� ~x1; ~x2� satisfies the Klein-
Gordon equation. From the uniqueness of evolution from
initial data on a Cauchy slice contained in Rn�1 � K, it
follows that �Gf� ~x1; ~x2� vanishes for all ~x2 2 Rn�1. Since
G and Gf are symmetric in their arguments, it follows
that �Gf� ~x1; ~x2� vanishes also for all ~x1 2 Rn�1 and all
~x2 2 Rn�1 � K. Again using uniqueness of evolution
from a Cauchy slice in Rn�1 � K, it follows that
�Gf� ~x1; ~x2� vanishes for all ~x1; ~x2 2 Rn�1.

If hA is not of compact support, it must still be true
from the boundary conditions (15) that x� agrees with XA

outside a timelike tube ? and that f:;; � vanish outside ?.
Again, suppose that we could show that �Gf� ~x1; ~x2� � 0
for ~x1; ~x2 2 Rn�1 � ?. Then, using the fact that the only
smooth solution of the Klein-Gordon equation with sup-
port restricted to ? is the trivial solution,4 arguments
similar to those used for the case of hA having compact
spacetime support show that, once again, �Gf� ~x1; ~x2�
vanishes for all ~x1; ~x2 2 Rn�1.

Thus, the absence (or existence) of inequivalent quan-
tizations has been reduced to the vanishing (or not) of
�Gf� ~x1; ~x2� for ~x1; ~x2 both outside the support of hA. We
propose to analyze this behavior of �Gf� ~x1; ~x2� through a
position space perturbative expansion of Gf� ~x1; ~x2� in
future work.

V. DISCUSSION

The three issues dealt with in this work are the correct
measure for the Lorentzian path integral, the construc-
tion of a convergent Euclidean path integral to compute
the vacuum wave function, and the possibility of inequi-
valent quantizations based on different choices of time.
These issues arise in the quantization of any generally
covariant theory. Below, we remark on each of them in
view of the results obtained in Secs. II, III, and IV.

The Lorentzian path integral measure obtained in
Appendix A 1 is very similar to the one obtained by
Fradkin and Vilkovisky in [13] (and anticipated even
earlier by Leutwyler in [19]) for quantum gravity. In
both cases (i.e., parametrized field theory and gravity),
the measure appears noncovariant in that it explicitly
refers to the coordinate time t. In the case of gravity,
Fradkin and Vilkovisky argue that their measure is, de-
spite appearances to the contrary, diffeomorphism in-
variant. The key point is that diffeomorphisms
corresponding to time reparametrizations must be
handled with extreme care because of the nontrivial con-
tribution of nonsmooth paths to the transition amplitude.
The reason for the noncovariant factors in the measure is
that the path integral is defined in terms of the limit of a
4We shall display our proof of this assertion elsewhere.
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discretization which itself depends on the choice of time.
The noncovariant factor in the measure exactly compen-
sates for this intrinsic discretization dependent noncovar-
iance, so as to make the measure diffeomorphism
invariant. Since parametrized field theory is also a space-
time diffeomorphism invariant theory, the arguments in
[13] apply to it. Since we have derived the measure for
this simple system from the correct Liouville measure in
the phase space path integral, we believe5 in its validity
and interpret our results as supportive of the Fradkin-
Vilkovisky measure being the correct one for quantum
gravity as opposed to the more commonly used de Witt
measure [14].6 We also would like to note that contrary to
what Fradkin and Vilkovisky state in [12], the above
subtleties regarding the measure do not have anything
to do with the appearance of structure functions in the
constraint algebra; clearly in parametrized field theory
the constraint algebra for the constraints CA is Abelian
and no structure functions appear. Rather, these subtleties
seem to be entirely due to the property of general
covariance.

Our definition of Euclideanization was motivated by
the work of Schleich [10]. She was interested in construct-
ing diffeomorphism invariant, convergent Euclidean path
integrals from the correct reduced phase space path in-
tegral expression for the vacuum wave function. Her
strategy was to start from the explicit reduced phase
space path integral expression and rewrite it as a conver-
gent, diffeomorphism invariant, configuration space path
integral. For a treatment of gravity beyond perturbation
theory, an explicit characterization of the reduced phase
space is not available and Schleich’s strategy is hard to
implement. In this work we have suggested a strategy
which does not require an explicit parametrization of
the reduced phase space. We start from a gauge fixed
expression in phase space and integrate out the momenta.
We are not concerned with maintaining diffeomorphism
invariance and indeed this is an aspect of our construc-
tions which we need to understand better.We have verified
that the Euclidean action (42) is spatially diffeomorphism
invariant. We do not know if it displays any sort of
invariance related to Lorentzian time reparametrizations.
Although in general the Euclidean action is complex, it is
easily verified that for the case of an inertial foliation, the
action turns out to be the standard, real Euclidean action.
The difference between Schleich’s aims (as we under-
local factor in the measure are regulated away to zero because
they are proportional to "4�0�. However for any nonperturba-
tive treatment, this factor should be important.
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stand them— of course we could be in error in our under-
standing) and ours may be stated in this context as fol-
lows. Whereas we are content with the form of the action
given by (42), Schleich would take the flat foliation
related standard Euclidean action and construct parame-
trized Euclidean field theory to obtain an explicitly dif-
feomorphism invariant, convergent path integral
expression for the vacuum wave function.

We would like to emphasize again that in our argu-
ments for the phase space path integral [Eq. (25) in
Sec. III A and Eq. (A11) in Appendix A 1], we have
neglected end point contributions. These contributions
are important (see [16,20–22]). A more careful treatment
of these end point contributions is desirable. Indeed, this
seems to be the only possible obstacle to an application of
our ideas to quantum gravity in the asymptotically flat
case where a true, nonvanishing, positive Hamiltonian
exists. If we neglect the end point contributions and use a
canonical gauge independent of momenta, it does seem
possible to try out our proposal for asymptotically flat
quantum gravity. If end point contributions could be
taken care of and if we could do the relevant calculations,
we would expect to get an, in general complex, conver-
gent Euclidean action for gravity. It is conceivable that
progress could then be made towards numerical evalu-
ation of the vacuum wave function. In fact, Loll and co-
workers [23] have embarked on a program of numerical
evaluation of Euclidean path integrals, but their analyti-
cal justification [24] seems to have as an input the de Witt
measure, which we suspect is incorrect. It is worth em-
phasizing that our proposal does not apply to configura-
tions of the gravitational field which admit no preferred
sense of time at all (not even an asymptotic one) and
consequently no true, nonvanishing Hamiltonian. This is
the case for cosmological solutions with compact (with-
out boundary) spatial topology. Note that in the absence
of a true Hamiltonian, it is not possible to define a lowest
energy vacuum state, let alone display vacuum wave
functions via path integrals.

Finally we turn to a discussion of the issue of inequi-
valent quantizations. As shown in Sec. IV, we have con-
nected this issue to that of gauge independence of the
time-ordered two-point function. Note that by virtue of
our boundary conditions (15) we have disallowed all
global Poincaré transformations (with the exception of
time translation). The two-point function in different
gauges actually corresponds to (in the Hamiltonian
framework) the evaluation of the vacuum expectation
value of the same Dirac observable in different gauges.
The Dirac observables can be constructed as ’’evolving
constants of motion’’ [25] from observables correspond-
ing to initial data on a fixed T � 0 slice. The latter
observables can be constructed from the data
��;�; XA; PA� by a Hamilton-Jacobi type of canonical
transformation [1]. Note that the sort of gauge indepen-
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dence which would ensure the absence of inequivalent
quantizations is qualitatively different from the more
commonly encountered gauge independence of the
S-matrix in Poincaré invariant quantum field theory. It
may well turn out that there is no inequivalent quantiza-
tion as far as the two-point function is concerned but, as
we have tried to argue, the verification of this is non-
trivial. We would also like to make contact with the
existence of unitarily inequivalent quantizations in
higher dimensions noted in [6] in the context of canonical
quantization.
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APPENDIX

1. The path integral measure for �-dependent gauges.

Consider the following momenta-independent but oth-
erwise arbitrary gauge fixing conditions #A�XB;�; y� �
0. The notation indicates that #A is a functional of XB and
� and a function of the point with coordinates y�. In what
follows we shall suppress the XB;� dependence in our
notation. The contribution of the ghosts �!A;!�A� to the
phase space action (11) is

Sgh �
Z
dn�1xdn�1y!�A�x�fCA�x�; #B�y�g!B�y�; (A1)

where

fCA�x�; #B�y�g � �
"#B�y�

"XA�x�
�
"#B�y�
"��x�

�
�nA�x�

��x����������
q�x�

p
�qij�x�XAj�x�@j��x�

�
: (A2)

Integration of the phase space path integral over MA;PA
can be done as before to obtain

Z �
Z

D�D�DXD!�D!"�#	

� exp
�
i
Z
dtdnx�� _�� Nh� Nihi� � iSgh

�
: (A3)

Notice that from (A2), Sgh is linear in � and hence the
total action is still quadratic in �. It is straightforward to
integrate (A3) over � to obtain
-13
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Z �
Z

D�DXD!�D!
�
det
iN���
q

p

�
�1=2

"�#	

� exp
�
i
Z
dtdnx�� _�� Nh� Nihi� � iSgh

�
;

(A4)

where Sgh is evaluated at the classical value of � given by

�class �
���
q

p
� _�� Ni@i�

N

	
: (A5)

The only nontrivial step in the computation is to use the
Grassmanian nature of !�A to conclude that
�!�A�x�nA�x��

2 vanishes. As usual, qij; N; Ni are inter-
preted as functions of XA. The ghost variables can be
integrated over to give the determinant of fCA�x�; #B�y�g
where the latter is given by the right-hand side of Eq. (A2)
evaluated at � � �class given by (A5). It is straightfor-
ward to verify that

fCA�x�; #B�y�gj���class
� �

�
"#B�y�

"XA�x�
�
"#B�y�
"��x�

@��x�

@XA�x�

�
:

(A6)

The operator @
@XA�x� is defined via the invertible depen-

dence of the embeddings XA�x� on the coordinates x�.
Thus, Eq. (A6) can be rewritten as

fCA�x�; #B�y�gj���class
� �

"L!#B�y�

"!A�x�

� �
"L!#B�y�

"!��x�
@x�

@XA�x�
: (A7)

Using this and the fact that the Jacobian of the coordinate
transformation from XA ! x� is

����
�

p
, we have

Z �
Z
d:��;XA	"�#B	 det

�"L!#B�y�

"!��x�

	
expiS��;XA	:

(A8)

Here S��;XA	 is the classical action (10), and the path
integral measure can be written in the context of an
appropriate discretization as

d:��;XA	 �
Y
x

�tt�x���1=4�x�d��x�dXA�x�: (A9)

MADHAVAN VARADARAJAN
2. Gauge independence of Za and its relation to the
vacuum wave function.

In the case where the gauge fixing constraints are
independent of momenta, gauge independence of the
084013
transition amplitude (24) may be shown (modulo the
caveats mentioned in Sec. III A) through methods similar
to those employed in [11]. We make a canonical trans-
formation from �qi; pi�, i � 1 � � � n to new conjugate pairs
� �ql; �pl�, l � 1 � � � n�m and �Q�; P��, � � 1 � � �m. Here
Q� � #� and � �ql; Q�� encode the same information as qi.
On the surface defined by Q� � C� � 0, P� is a function
of �ql; �pl. It can be checked that (24) reduces to

Z� �qlI; tI; �qlF; tF� �
Z

D �qD �p exp
�
i
Z

�pl _�ql �H� �p; �q�
�
:

(A10)

Gauge independence of (24) under infinitesimal changes
of gauge can be checked [11] by subjecting the gauge
condition to a canonical transformation generated by the
constraints. In this treatment, end point contributions
arising from the canonical transformations encountered
are ignored and (24) [as well as (A10)] is identified with
the transition amplitude between the gauge fixed end
points qiI and qiF.

An identical treatment can also be applied to show the
gauge independence of the expression (25). It is straight-
forward to check that (25) reduces to

Za� �qlI; tI; �qlF; tF� �
Z

D �qD �p exp
�
i
Z

�pl _�ql

�aH� �p; �q�
�
; (A11)

and that its gauge independence is ensured by virtue of
the fact that H�qi; pi� commutes (weakly) with the con-
straints. Again, we disregard various end point contribu-
tions coming from canonical transformations. It is
straightforward to see that in operator language,

Za � h �qlF; tFj exp��i�a� 1�Ĥ�tF � tI�	j �qlI; tIi: (A12)

Since �qlI; qlF� satisfy the gauge conditions, we may
identify them with � �qlI; �qlF�. Then, under the assumption
that the ground state energy vanishes and with a chosen
such that it has negative imaginary part, the usual
Feynman-Kac–type arguments show that

Za� �qlI; tI � �1; �qlF; tF� � Za�qiI; tI � �1; qiF; tF�

�  0�qF; tF� �
0�qI; tI�: (A13)

Here  0 is the vacuum wave function, the vacuum being
defined as the lowest energy state of the quantum operator
corresponding to the classical Hamiltonian H.
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