\
818 i

Current Science, September 5, 1986, Vol. 55, No. 17

} GRAVITATIONAL ANALOG OF THE DIRAC MONOPOLE

\ J. SAMUEL and B. R. IYER
Raman Research Institute, Bangalore 560080, India.

ABSTRACT

We present an exact analogy between rotation in stationary geometries and magnetic
fields based on a natural decomposition of spacetime into space and time in the spirit of
Kaluza-Klein theories. This analogy provides a framework for the discussion of
gravitational monopoles. We present a general argument to show that gravitational
monopoles violate causality. We also clarify related issues raised recently in the literature.

1. INTRODUCTION

HERE is a remarkable similarity between the
Tlaws of electromagnetism and gravitation.
For instance, Newton’s law of gravitation and
Coulomb’s law in electrostatics are both inverse
square laws. The source of the field in one case is
mass and in the other, electric charge. In elec-
tromagnetism, a moving charge produces both
magnetic and electric fields. However, in
Newtonian gravitation there is no analogue of
the magnetic field; a moving mass produces the
same gravitational field as a mass at rest, if the
instantaneous mass distributions are identical.
This is a reflection of the fact that, unlike
electromagnetism Newtonian gravitation is not
relativistically invariant. The situation in
Einstein’s general theory of relativity is quite
different from the Newtonian case, and quite
similar to electromagnetic theory. In Einstein’s
theory the gravitational field produced by a body
depends not only on the distribution of matter
but also on its state of motion. The mathematical
expression of this fact is that the source of
gravitational field is the energy-momentum
tensor (7,,) which has components correspond-
ing to mass (7o) as well as motion (7y;). The
gravitational analogue of the magnetic force—
gravimagnetism—is like the Lorentz force in
electrodynamics and depends on the velocity of
the test particle. It has physical consequences like

. the dragging of inertial frames and the Lense-
Thirring effect. Experimental tests of general
relativity so far measure only the gravielectric

part of the field. These are small but the gravi-
magnetic component is smaller still by a factor of
(v/c) where v is a typical velocity in the problem.
Experiments to detect this component are in
progress’.

To proceed with the analogy we notice that the
Lorentz force (ev x B) is similar in form to the
Coriolis force m(20 x @) in a rotating frame of
reference. From the principle of equivalence
between inertial and gravitational forces it is
plausible that the gravimagnetic force is similar
to rotation. In this paper we develop this analogy
both from the physical and mathematical points
of view and exhibit precise and detailed cor-
respondence between rotation and magnetic
fields. In electromagnetism there has long been a
conjecture about the possible existence of mag-
netic monopoles. Given the detailed similarity
between rotation and magnetic fields we ask if, in
gravitation there is such a thing as a gravimag-
netic monopole. This question has been discussed
earlier in the literature? ~*, We present a math-
ematically simple and physically motivated dis-
cussion of this question based on the analogy
between rotation and magnetic fields.

The material to be presented is organized as
follows. In §2 we discuss physical aspects of
rotation and operational ways of detecting it. In
§3 by restricting to stationary gravitational fields
we exhibit an exact analogy between rotation in
general relativity and magnetic fields. In the next
section the geometrical aspects of this analogy
are brought out. In §5 we search for a monopole-
like solution of Einstein’s field equations and are .
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uniquely led to the NUT spacetime. We discuss
this solution and bring out a complete parallel
with the electromagnetic case. In §6 we discuss
gravitational monopoles in general and show
that they necessarily lead to causality violation.
The last section is a concluding discussion.

2. ROTATING FRAMES OF REFERENCE

Many general relativistic effects can be under-
stood by invoking the equivalence between gravi-
tational and inertial forces—the equivalence
principle. Thus, a uniformly accelerated elevator
cannot be distinguished from an elevator in a
constant gravitational field, by means of local
experiments performed in the elevator. From this
one can for instance, deduce the bending of light
in a gravitational field. In order to understand the
effects of rotation let us now consider a uniformly
rotating elevator. How would an observer con-
fined to experiments in such an elevator detect
the presence of rotation? One way to do this is by
using the Sagnac effect®. The observer takes a
toroidal tube stationary relative to the elevator.
Using a half silvered mirror he sends two rays of
monochromatic light in opposite directions
around the tube. These are then made to interfere
after each ray has gone round once. The co-
rotating ray will take longer to come round than
the counter-rotating ray leading to a time delay
which can be observed as a fringe shift. The time
delay will be given by

At = —44w)/c?, (1)

where 4 is the area enclosed by the tube,
projected onto the plane normal to the axis of
rotation. Note that the Coriolis force and Sagnac
effect depend linearly on w unlike the centrifugal
force which is quadratic in w. The Sagnac effect is
dominant at lower angular velocities and finds
Practical application in inertial navigation
systems!.

What would be the metric the rotating ob-
server uses to describe spacetime? The answer
follows by starting with flat spacetime in polar
coordinates

ds? = —de? +dr? +r2(d6? +sin? 0d¢?) (2)

and performing a coordinate transformation
¢+ P+t 3)
This yields

ds? = — (1 —w?r?)dt* +dr? +r*(do?
+sin? 0d¢?) +2wdedt. “4)

Notice the appearance of a cross term d¢ dt in the
metric proportional to w. This as we shall see
later is a signature of rotation in any spacetime.

3. ANALOGY BETWEEN ROTATION IN
GENERAL RELATIVITY AND MAGNETIC
FIELDS

As seen in §2 the cross term in the metric is
related to rotation. However in that case they
represent inertial forces. Genuine gravitational
fields also lead to similar effects; we now move on
to discuss these, restricting ourselves to
stationary spacetimes, which correspond to un-
iform rotation.

Consider a stationary spacetime .#, i.e. one in
which the metric tensor g, ,(x)[(u, v =0, 1, 2, 3),
signature (— + + +)]admits a time-like Killing
vector field &:

-?)gnv =0. (5)

The family of integral curves of this vector field
form a three-dimensional manifold, X. Each
curve represents the world line of a stationary
observer and the family of curves, X is space. Let
us choose local co-ordinates x, i = 1,2, 3)on T
and a time co-ordinate ¢ adapted to the time-like
Killing vector: & = d/dt. In co-ordinates (¢, x') on
M, (5) reads

i}
5Gu) = 0. (©)
The co-ordinate transformations on .# that
respect (6) are
(@) x*— x (x%) (b) t>ct
and (c) t—t+a(x) )

(a) corresponds to a co-ordinate transformation
on X, while (b) is a global rescaling of the time co-
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ordinate. (c) represents the freedom of each
stationary observer, labelled by x', to indepen-
dently reset his origin of time. Under (7), the
combination of metric coefficients 4; = goi/go0
transforms as

A,- - A.‘ +a,;, (8)

as seen easily by writing the line element in the
form

ds? = y;;dx' dx/ — y(dt + A;dx")>.
This also shows that

Yij = gij— GooAid;,

are invariant under (7). Transformation (8) is

identical to gauge transformations for the elec-
tromagnetic potential. We will refer to (7) as a
“gauge transformation” in quotes. If we intro-
duce the “field strength” corresponding to A

Fij= A;;— A,

we find that it is ‘gauge invariant’. From the
definition, F satisfies the Bianchi identity

Fiju+Fpi+Fu;=0,

which corresponds to Gauss’ law. If F vanishes,
A; can locally be set to zero by a ‘gauge trans-
formation’ (7). The Killing vector field £ is then
orthogonal to the space-like hypersurfaces
t = constant. Such a space-time is static or non-
rotating. In the general case, F is non-zero and 4
cannot be transformed away. This situation is
stationary and the Killing vector ¢ is not hyper-
surface orthogonal. The stationary case cor-
responds, in electromagnetism, to a time-
independent configuration of electric and mag-
netic fields and the static one to a purely electric,
time-independent field.

As seen in §2 the Sagnac experiment provides
an operational definition of rotation. In a space-
time which is stationary but not static even a tube
at rest will register a Sagnac shift given by 2v,®(c)
where v, is the conserved frequency of the
radiation and ®(c) is given by

o0 = facx = [ Fuaxnas, o)

where s is any surface bounded by c. (The

timelike Killing vector, £, provides a natural

- definition of rest.) This is the general relativistic

Sagnac effect”:® and is analogous to the Bohm-
Aharonov effect. The non-vanishing of ®(c) is
also related to the impossibility of synchronizing
clocks on a closed curve®.

To pursue the analogy further, consider a test
particle of rest mass m moving in a background
space-time. Its Hamiltonian is

H =}(g*"p.p,+m?) =~ 0. (10)

Since the metric is assumed stationary, ¢ is a cyclic
co-ordinate and its conjugate momentum

E=¢p,=p 11

is conserved in the motion. E is a general co-
ordinate scalar and represents the energy of the
test particle in any reference frame in which the
metric is stationary. Putting (11) back into (10),
we can rearrange the Hamiltonian in three-
dimensional form as

H= i[y“(p, —EA)(p;— EA) —%’Mz] ~0,
(12)

where y/ = g" = (y,;) ! is the three-dimensional
metric on X. This closely resembles the
Hamiltonian for a charged particle in a magnetic
field, with minimal coupling. From (12),
we identify the conserved energy (11) in four
dimensions with the coupling constant in three
dimensions. This reduction from four to three
dimensions (spacetime to space) is entirely in the
spirit of the Kaluza-Klein reduction from 4+ D
to 4 direensions!?. In fact, the Einstein action can
be written in three-dimensional form as

S = |d*x \/—_gR
= ”dt] Jd’xﬁﬂ(’R +%F,,F”). (13)

The gravitational field splits up into a scalar
potential ¥, a vector field, 4;, describing rotation
and a second rank tensor field y;; describing the
curvature of space. The reduced form of action
(13) shows that the rotation field obeys equations
similar to those of a magnetic field.
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4. GEOMETRICAL FORMULATION OF
THE ANALOGY

The theory of fibre bundles provides an elegant
and economic description of the analogy de-
sribed in the previous section. This has the virtue
of being entirely coordinate free and ideally
suited to describe monopoles.

Consider the triplet (#, X, IT) where IT is the
natural map which assigns each point me .# to
the curve on which it lies. The triplet forms a fibre
bundle with base space Z, the fibres being the
integral curves of £. Since the spacetime is
stationary, there is a one parameter group of
motions G on #, generated by ¢, which maps
each fibre onto itself. Let us choose a point p,
from each fibre I1~ ! (0); 0 € £, smoothly over each
coordinate patch on X. Then any point m, on the
fibre [T~ " () can uniquely be written as m, = gp,
where g € G and so the fibre can be identified with
the group G. (#, Z, I1, G) then forms a principal
fibre bundle'! with structure group G. Tangent
vectors at m orthogonal to ¢ are called horizontal
and these form a ‘horizontal subspace’ of the
tangent space at m. Let C be a curve in Z(o(u) € Z,
0<u<1) and m0)eIl (a(0))<# an initial
point on the fibre over ¢(0). There is a unique
curve C(m(u)e 1~ Y(o(u))<#) in 4, called the
‘horizontal lift’ of C, whose tangent vector is
horizontal. This is precisely the definition of a
connection'? on a fibre bundle. The connection
1-form A and the curvature 2-form F are then
naturally regarded as forms on X. In general, the
lift of a closed curve with base point ¢(0) = a(1),
is open (m(0) # m(1)), which means the connec-
tion has curvature. m(0) and m(1) lie on the same
fibre but differ in their time coordinate by ®(C).

In physical terms, .# is space-time, ¥ is space
and IT assigns each event to its spatial location. A
stationary observer at oeZ would regard an
event m' eI1~ !(o), at a neighbouring spatial lo-
cation ¢’, as simultaneous with mell~(¢), if
the infinitesimal curve joining m to m’ is horizon-
tal. This notion of simultaneity can be operation-
ally realised by flashing light signals®. Stationary
observers along any open curve in space can thus
synchronize their clocks. But this cannot be done
if the curve is closed.

5. NUT SPACETIME AS A GRAVITATIONAL
MONOPOLE

Given the detailed similarity between rotation
and magnetic fields, we ask if (in a theory of pure
gravity) there is an exact solution of Einstein’s
field equations that represents a gravitational
monopole. The field of a Dirac monopole at rest
at the origin is stationary and spherically sym-
metric. So we look for a stationary, spherically
symmetric vacuum solution of Einstein’s field
equations with the rotation field of a monopole.
These symmetries imply that there exist Killing
vectors ¢ and R, (a=1,2,3) satisfying the
algebra

[5 R =0, [R,,Ry]=c¢mR.. (14)

It is convenient to project the problem (and its
symmetries) down to the three-dimensional space
X, using a formalism due to Geroch!3. The fields
on X are ¥, A; and y;; Einstein’s equations can be
projected down to X as equations for these'*. The
topology of X is taken to be R* — {0}, where {0}
represents the location of the monopole (and the
centre of symmetry). The rotational Killing vec-
tors, R, on .# can be projected down to X,
preserving their algebra. From the original spheri-
cal symmetry of the space-time metric on .#, it
follows that the tensors y;;, F = d4 and y on
are spherically symmetric. Using this symmetry,
we introduce coordinates (r, 6, ¢) on I, where the
radial coordinate r is chosen so that the area of a
sphere in X is 4nr? and 6 and ¢ are the usual polar
coordinates on the sphere. The spatial line el-
ement is then constrained to be

(ds?)g = a(r)dr? +r*(d6? +sin? 0d¢?), (15)

and ¢ must depend on r alone. The general form
for F allowed by spherical symmetry is

F = g(r)sinf, d0 Ad¢. (16)

But since F is closed, g(r) must be a constant, g,

* which represents the strength of the monopole. A

‘vector potential’ that leads to this ‘field strength’

is
A =g(1 —cos6)d¢. )

Solving the field equations for ¥ and a leads
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uniquely to

gz 2M gz 1/2
vo-(1-5)-7(-)
(18)

) g g*\ 2M g* |12
1 _[1_9 \_9 \_ M, 9
a (.r) - (1 2r2)<1 4r2) r (l 4]

where M is an integration constant representing
the mass of the source. For g = 0, we recover the
well-known Schwarzschild spacetime, which«cor-
responds to the Coulomb field in electromagnet-
ism. The solution with M = 0, g # O represents a
pure gravitational monopole. In general the

metric with (M, g) describes a gravitational dyon, ™

where g relates to M as magnetic charge to
electric charge. This solution is known in the
relativity literature as the NUT metric!'® and has
a coordinate singularity at 6 = n, which is the
string singularity of the Dirac'® monopole. It can
be moved around by ‘gauge transformations’,
and eliminated entirely by covering X with two
coordinate patches.

The Killing vectors corresponding to the sphe-
rical symmetry of the NUT metric are

R, --gcosqbtan‘9 g +sm¢
20t
+cos¢cot0%,
00 17
R, = gsmd;tanza cqsqS +sm¢cot06¢
(19)
0 0
Ry=95-3¢

For the motion of a test particle in the ‘monopole’
background, the conserved angular momentum
of the particle is given by

-

L, = R¥p, = [sin ¢(ps — EAg) + cos ¢ cot 0(p,
—EA,)] +9gEsin 0 cos ¢,

L, = R4p, = [ —cos ¢(ps — EAp) + sin ¢ cot O(p,
—EA,)] +gEsin0sin¢g

L,=R4p, =[—(py—EA,)]+gEcosd.  (20)

While the ‘gauge-invariant’ expressions in brack-

ets correspond to the usual 7xmv angular momen-
tum, there is an extra piece

gE (sinf cos ¢, sinfsind, cosf), (21)

like the term egr familiar from magnetic mono-
poles. By noticing that

sin@cos¢ Ly+sinfsing Ly+cosd L, = gE,
(22)

one sees the motion is restricted to a cone with
axis along the angular momentum vector, exactly
as in the electromagnetic case. Thus the analogy
with electromagnetism is complete (table 1).

The NUT solution was first discovered by
Newman et al'®> and many of its properties
elucidated by Misner!”. It has many features that
defy physical intuition'® like closed time-like
curves and the absence of global space-like
hyperfaces. Its monopole interpretation was first
realized by Demianski and Newman®. Other
interpretations have been attempted'® but these
are not as appealing. A particularly clear discus-
sion of the NUT solution as a gravitational dyon
is due to Dowker?. The ‘interior’ NUT is perfectly
acceptable as a homogeneous and anisotropic
cosmological solution and first discussed by
Taub?®. Our treatment which goes beyond the
linearized theory leads uniquely to the NUT
solution as a gravitational monopole in general
relativity.

Table 1 Comparison of the eleétramagnetic and gravitational

cases
Electromagnetism Gravity
Vector potential A; = Goi/Goo

Resetting of clocks
Synchronizing clocks along

a spatial curve
Rotation field, F;

Gauge transformations

Parallel transport
along a curve

Magnetic field

Electric charge Mass-Energy

Coupling constant e Total conserved Energy (E)
Bohm-Aharonov effect Sagnac effect

Coulomb solution Schwarzschild solution
Magnetic charge Dual mass, g

Dirac monopole NUT (M = 0)

Dyon NUT (Mg # 0)
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6. GRAVITATIONAL MONOPOLES
IN GENERAL

The NUT solution regarded as a magnetic
monopole suffers from the unphysical feature
that it has closed timelike curves. This malady is
not peculiar to the NUT solution but afflicts
gravitational monopoles in general. A gravi-
tational monopole is defined as an object with a
nonzero gravimagnetic flux integral [, F over a
two surface S in space. We do not require that the
object be spherically symmetric or a solution of
Finstein’s field equations. We will see below that
this necessarily leads to the existence of closed
timelike curves.

Let S be any closed 2-surface in Z enclosing the
monopole at the origin. We regard S as a family
of loops C,, 0 < s <1, all with the same base
point ¢ on S(0,5(0) = o5(1) = o). The family starts
from the trivial loop Co(o;(4) = o) at o, goes
around S and ends at the trivial loop C,(o(u)
= g)at . Thelift of C, is a curve C, in .# withend
points m,(0), m,(1)el1~(c) separated in t by
®(C,). As s goes from 0 to 1, ®(C;) goes from 0 to
4ng. But C, is a single point and so its lift must
also be a single point. Hence we are forced to
identify points on the fibre I1~ () separated in ¢
by 4ng. This implies that the time-coordinate is
periodic and that the fibres I1~!(s) , 0€Z have
topology S! rather than R and the structure
group must be u(1) rather than R. Note that the
argument is independent of the field equations
and so applies to any stationary metric with a
non-zero |F. In physical language, each C,can be
regarded as a Sagnac tube. As s goes from O to 1,
the Sagnac shift goes from 0 to (2v,)(4ng). But C,
is an infinitesimal tube and so must not register
any Sagnac shift. The only way out is to identify
points on each fibre as discussed above.

The existence of a gravitational monopole
implies that time is a periodic coordinate i.e. that
the integral curves of ¢ have topology§ S* rather

than R. This means that the space-time has closed -

timelike curves. Indeed there are closed timelike
curves through any event in the space-time, no
matter how far removed from the monopole.
This leads to logicdl paradoxes if one allows for
observers with free will. This makes gravitational

monopoles unacceptable as they violate
causality.

The above argument also shows that gravi-
magnetic charge must be quantized. If T is the
coordinate length of the fibre, the monopole

charge must come in multiples of 7/4x:
g = nT/4n. (23)

This condition is derived in a purely classical
framework. In the quantum-mechanical context
a time periodicity of T would imply energy
quantization for test particles in units of &
= 2nh/T. Equation (23) then reads

gE = nh/2.

This is analogous to the Dirac quantization
condition for magnetic monopoles.

7. CONCLUSION

We have presented a simple and physically-
motivated discussion of gravitational monopoles
using an exact analogy between rotation in
stationary space-time and magnetic fields. The
essential. ingredient in this discussion was a
decomposition of space-time into space and time,
using timelike Killing vector. This is entirely in
the spirit of Kaluza-Klein and leads to the
identification of the conserved energy E as a
coupling constant. Rotation is viewed as a gauge
field which couples to E. This approach leads to
an exact and remarkably complete analogy be-
tween the gravitational and electromagnetic situ-
ations. For instance, the geodesics of NUT space
lie on a cone and the expression for the particle
angular momentum has an extra contribution.

We have also presented a general argument to
show that closed timelike curves are inevitable if
gravitational monopoles exist. Our framework
gives a simple way of thinking 4bout gravi-
tational monopoles and removes confusions
which might otherwise remain. In a recent letter
Zee?! raises a number of issues which can easily
be settled in our framework. The first is the
question whether it is the total energy or the rest
mass which is quantized in the field of a gravi-
tational monopole. Our analysis shows quite
clearly that it is the conserved energy of the test
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particle which serves as the gravimagnetic coup-
ling constant. Hence it is the conserved energy
which is quantized. A related question is whether
the photon energy will be quantized. Our ap-
proach which does not rely on the post-
Newtonian approximation applies to photons as
well and shows again that the conserved
frequency of the photon is quantized. The other
question relates to the magnitude of the basic
quantum of energy. Quite independent of the
subtleties of gravitational monopoles or the
NUT solution within the framework of conven-
tional quantum mechanics, if energy is quantized
in units of ¢ then time must be periodic. For, the
wave function of any isolated system can then be
expanded in terms of stationary states

W(x, 0) = ¥ Uy(x) exp( - i“';"‘),

which are all periodic with period T = 2nh/e..

This means that the wave function too is periodic
and events repeat after a time 7. If energy
quantization is invoked in the world we live in, T
would need to be of cosmological scale, so as to
escape detection. If ¢ were as large as Zee suggests
(10723 eV), events would have repeated every
thirteen years or so, which would have been
noticed.
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