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The quantum measurement problem and selection of classical
states*
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Abstract. The problem of selection of preferred basis during passage from quantum to
classical systems is treated with the help of a simple example of a 2-state system like the sugar
molecule. A simple principle leading to this selection is stated and demonstrated in case of the

chosen example. The principle, stated simply is that the preferred basis is the one in which the
system environment interaction hamiltonian is diagonal.
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1. The problem

I wish to talk about the quantum measurement problem in one of its conventional
formulations and point out a new development which, in my view, is a significant step
forward towards its solution. I will first state the problem as I see it.

Let us consider a simple two-state quantum system which can be either in state | + >
orin | — . Let us also consider an apparatus designed to tell whether the system is in
|+ > or| — ). The apparatus is a macroscopic quantum system which can exist in one of
three macroscopically distinct quantum states |4, ), |4 + > and | A — ), corresponding
to let us say, the pointer being in the middle one third, left one third or right one third of
the dial. The measurement interaction between system and apparatus establishes the
following correlations:

|dod [+ ) —===u |4+ |+, (1)

and Ao | = =224 =3 | =), @

where |4, ) is the initial state of the apparatus. Inspection of the final state of the
apparatus then reveals the state of the quantum system. If one always made
measurements on systems which are either in |+ ) or in | — ), there would be no
measurement problem. The problem arises when one notes that quantum mechanics
admits more general states of the form:

W) =al+)>+b|->, B )

* Talk given at the International Symposium on Theoretical Physics, Bangalore, November 1984.
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where a and b are complex numbers such that
laf*+[b]* =1, @

when the apparatus described above interacts with a system in state |y ), it follows from
the linear quantum law of time-evolution that one gets the correlation

|| > =2 gl A+ |+ > +blA =] —>. )

In the language of the density matrix, the state on the right side is represented by the
density matrix

_(la]* a*b
r=(ie of) @
if one chose the basis |4+ )|+ ), |4 — )| — ) for the combined system.

The appeararce of the off-diagonal matrix elements in the density matrix in the basis
of ‘pointer eigenstates’ of the apparatus is the problem of measurement in quantum
mechanics. In the presence of these terms, it is wrong to assert that the pointer is either
in the left half or is in the right half. There is another way to see this. The state in (5) can
be written as

a|A+>t+>+b|A—>|—>=—L[(a|+>+b|—>)|A,>

72

+(@a|+>=b|=>)|42)], Y]
1 1
where A,=—\/—5(|A+>+|A—>); A2=—\7_2—(|A+>—|A—)). 8

If, therefore, one allows for the reality of the states 4, and A4, of the apparatus, the same
measurement may be looked upon as a measurement of another set of states, namely,
(a|+>+b|—>)and (a|+ > —b|—>) of the quantum system. This set could, for
appropriate values of a and b, for example for a = b =4, be eigenstates of an
incompatible observable of the system. It would seem, therefore, that anytime before
one looked at an apparatus and finds it in |4+ ) or |4 — ), the measurement is
incomplete. Such a situation is unsatisfactory, because in any reasonable description of
measurement, actual reading of the apparatus should be inessential.

One must require, therefore, that in a measurement process, the density matrix
undergoes a two-stage reduction:

_(la]* a*b lal* © 1o 00
r= (i o) ~ (% b2 (0 o) (o 1 ®)

The last stage corresponds to the actual reading of the apparatus and resembles collapse
of a classical probability distribution as a result of acquisition of knowledge about the
system. This has nothing to do with quantum mechanics and is irrelevant in the present
context. The first stage of reduction is the crux of the problem under discussion. We
must require of a measuring apparatus the following: (i) the off-diagonal elements of
the density matrix must disappear; (ii) they must do so in the basis of the pointer
eigenstates and (iii) the diagonal matrix elements must stay intact in the process.
The problem, therefore, is What principle in nature selects the pointer eigenstates as
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the preferred basis? This question arises in a more general context then the problem of
quantum measurement. Selection of preferred basis is involved in the explanation of
classical’ behaviour of any macroscopic object. For example, for large objects like
\ables and chairs, nature selects a set of states localized in real space as the preferred set,
for large magnets, states with magnetization oriented in definite directions in real space
are selected as the preferred set and so on. The often-stated principle: “quantum
behaviour reduces to classical behaviour in the limit  — 0" should really be modified to
the statement “quantum mechanics allows for classical behaviour in the limit k — 0”.
One needs an additional principle for selection of preferred basis before classical
behaviour can be ‘explained’.

2. A proposed solution

This proposal (Zurek 1983) is based on the general consideration that macroscopic
systems cannot be considered isolated and the preferred basis is enforced on them by
some feature of the interaction between these systems and the environment. The
proposed principle could be stated as: “Nature selects as the preferred basis that basis in
which the Hamiltonian of the system-environment interaction is diagonal”. Another
way of stating this would be, for macroscopic systems that set of states is preferred in
nature between which the environment doc not »~nduce transitions.

3. A simple illustration

In this section I shall try to illustrate the opzration of this principle in a very simple
system which has been of interest to me for quite some time. This is the sugar molecule
which exists in nature as two distinct optically active isomers; the left-handed and right-
handed sugar which are mirror-images of each other. They can be experimentally
distinguished by the sense of rotation of the plane of plane-polarized light passing
through a solution containing one or the other kind of sugar. It is known that if one of
the above two kinds of sugar is prepared, it stays in that state almost for ever. Let uscall
the left-handed and the right-handed states | L > and | R ). The sugar molecule poses a
well-known paradox. The hamiltonian of the entire molecule is invariant under
reflection symmetry, since there are no parity-violating interactions present. The true
eigenstates of the molecule should therefore be states which are also eigenstates of the
parity operation. The | L) and |R ) states are, however, not. For some reason, nature
has given up energy eigenstates in favour of the broken-symmetry states, namely the
|L> and |R » states as the preferred states.

Let us consider the simple two-state model for this system in which the molecule is
approximated to be a system in a symmetric double potential well, the potential beinga
function of some configurational coordinate that takes a left-handed molecule intoa
right-handed one and vice-versa. If the potential barrier is infinitely high, there are two
degenerate states, one localized at the bottom of each well, corresponding to the | L )
and |R ) states. When the barrier height is finite, there is an amplitude, say 4, for an
| L ) state to tunnel into | R ) per unit time and vice-versa. The hamiltonian matrix in
the basis can be written as '
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0 A
- 10
(2 3) o
The energy eigenstates of this system, | + > and | — > separated in energy by 24 are,
1 1
+>=—=(L>+|RD) |=>=—F7=(L>—|R?)). (1)
+3 = L+ R | =) =L

The density matrix at time ¢ is given by

cos? At icos At sin tad
) h Aok 12
—icos At sin At sin? At
h h h

Let us now introduce some interaction of this system with the environment in the form
of collisions of random strength, separated by time interval © and make the crucial
assumption that this interaction is diagonal in the [L»,|R ) basis. In other words, the
collisions do not induce transitions between the | L ) and | R ) states, i.e., do not affect
the diagonal elements of p. The only possible effect is, therefore, to introduce a random
phase ¢ between the amplitudes of |L> and |R ). After the first collision at time T,
therefore

A . A A
cos? 2% i(e*>cos 2in 2t
h h h
p(r) = 4 4 (13)
—i(e“”)cos—rsin—T sinzﬂ
h h h

The net effect of the collision is, therefore, to reduce the magnitude of p, , by anamount
depending upon the magnitude of ¢ which can lic anywhere between —mand + 7. The
exact time evolution of p in the presence of collisions is difficult to solve except in a very
special case, when ¢ has a uniform distribution between —=n and +7, so that (e
= 0.In thiscase, p,, and p,, become zero after each collision and it can be easily shown
that after N steps of evolution,

1 1 +cos™ 24t

- 3 cos™ — 0 »
T) =
g 0 | w247 | (4
2 h
In the limit of very frequent collisions, i.e., for 24t/h < 2n we have

NA?:? A%t
Pn—l—h—2=1—m, (15)
where ¢ is the total time elapsed and n is the frequency of collision, so thatt = Ntand n

=1/t

It follows from (15) that if collisions are frequent enough, p, ; can be made arbitrarily
close to 1 for any given time t, i.e., the system can be frozen in state | L ) by frequent
collisions. Similar effects have been discussed in literature in various contexts under
various names, €.g., ‘quantum watch-dog effect’, ‘a watched pot never boils’ and so on
(Misra and Sudarshan 1977; Joos 1984; Horwitz and Katznelson 1983; Harris and
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Stodolsky 1981). The point to note here is that the absence of off-diagonal elements in
the system-environment interaction hamiltonian is crucial to the freezing of the | L)
state.

An alternative way of looking at the problem makes the above point clear and also
helps in studying the evolution of the density matrix for arbitrary strength of the
collisions. Let us note that the two-state problem can be mapped exactly onto a spin
—1/2 problem. Further, all the states of a spin —1/2 particle can be mapped onto
points on the surface of a sphere in three dimensions. If the axes are chosen as shown in
figure 1 with |L > and | R > located at the poles, a point with spherical coordinates (6, ¢)
on the sphere represents a state

Y = exp (i/2)cos6/2|L ) +exp(—i¢/2)sing|R >. (16)

Also, any arbitrafy hamiltonian can be written in appropriate units, as
H = —-o0-B, (17)

where B is a magnetic field in some direction and g, 6, and g, are the Pauli matrices.
With axes chosen as in the figure, hamiltonian (10) corresponds to a magnetic field of
strength 4 in the x-direction. The quantum evolution of the state point on the surface is
acircular orbit (curved dotted line) in the y —z plane with angular frequency A/h. The
interaction with environment corresponds to a series of magnetic field impulses of
random strength in the z-direction. A collision, therefore, rotates the state point about
the z-axis by a random angle ¢ depending upon the strength of the collision, leaving ¢
unchanged (arrowed arc). It may be looked upon as a diffusion in the ¢-coordinate.
With this picture, the problem lends itself easily to a computer simulation, where one
starts with a sample of, say, 100 spins at one of the poles, allows them to evolve and

Figure 1. The state sphere and the evolution track for the two-state system.
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undergo diffusion and keep track of p, ;, which is given by (cos® $8 ) over the ensemble.
Two parameters are used in the simulation. The random ‘kick’ in ¢ is taken to be
uniformly distributed between + ¢, and — ¢,, a measure of ‘strength’ of the collision.
The number of collisions per period of the quantum oscillation of the amplitude, N, is
the second parameter. The results of the computer simulation are briefly as follows:

(i) When ¢, = n we recover the analytical result mentioned above.

(i) In the limit ¢¢ \/_IV <m, p,,; behaves like a weakly damped harmonic oscillator
with a decay time ~ 2n2fi/Ad, /N.

-(iii) For ¢, \/_N_ ~ 7 one has the situation analogous to critical damping and

(iv) If ¢ or N is increased further, the decay of p,, is slowed down. In the limit of
large N, p,, does not decay.

4. Conclusions

The behaviour of the two-state system in the presence of the assumed random
interaction with the environment may be summarized as follows: In the absence of
interaction, the probability for | L ), ie., p;, oscillates indefinitely. Thermal equilib-
rium is, therefore, never attained. For small interaction (weak damping), p,, decays to
1 hence equilibrium attained with a finite time constant which decreases with
increasing strength of the interaction. After a critical strength of the interaction, the
decay time increases with increasing strength of the interaction (heavy damping).

It is important to note that instead of | L ) or | R ) if one started with a state like | + )
or | — ), i.e., witha point on the equator of the state sphere, this state cannot be frozen as
above, no matter how frequent the collisions. Instead, the state would become
uniformly distributed along the equator in a finite time; decreasing with the strength
and frequency of collisions.

The above is true as long as collisions imitate a magnetic field in the z-direction. If one
introduces collisions that take | L ) to | R ), i.e., off-diagonal elements in the | L ), IR >
basis, these imitate a magnetic field in the x—y plane. It can be easily verified that in the
presence of such a field, once again | L ) and | R ) states cannot be frozen. The structure
of the system environment interaction is, thus, the crucial factor that stabilizes the | L )
and |R ) states.
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