Pramana, Vol. 22, Nos 3& 4, March & April 1984, pp. 131-150. © Printed in ln&ia.

Relativistic particle interactions—A comparison of independent
-and collective variable models '

J SAMUEL and N MUKUNDA*

Raman Research Institute, Bangalore 560 080, India
* Centre for Theoretical Studies and Department of Physics, Indian Institute of Science,
‘Bangalore 560 012, India

Abstract. We present a detailed comparison of two models for relativistic classical particle
‘nteractions recently discussed in the literature—one based on independent particle variables,
and the other on centre of mass plus relative variables. Basic to a meaningful comparison is a
reformulation of the latter model which shows that it makes essential use of the concept of
invariant relations from constrained Hamiltonian theory. We conclude that these two models
havevery different physical and formal structures and cannot be thought of as two equivalent
desctiptions of the same physical theory.
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1. Introduction

Considerable attention has been paid recently to the problem of describing interactions
among classical relativistic point particles in the Hamiltonian formalism. The
motivation behind much of this work was to find ways to overcome the well-known no-
interaction theorem (Currie et al 1963; Cannon and Jordan 1964; Leutwyler 1965)
which states: in the instant form of Dirac’s relativistic Hamiltonian dynamics, there can
be no interactions if one insists on the objective reality of particle world lines. It has
been found possible to achieve this aim by exploiting the methods of constrained
Hamiltonian dynamics, and at the same time by choosing the evolution parameter in a
dynamical way (Todorov 1971, 1976; Komar 1978a,b,c; Dominici et al 1978a,b;
Rohrlich 1979a,b; Mukunda and Sudarshan 1981; Sudarshan et al 1981; Balachandran

et al 1982a). This means that the Hamiltonian equations of motion must be written not
with respect to kinematical time but with respect to a dynamically chosen parameter. In
most of the work in this direction, this is taken to be essentially the time in the overall
rest frame of the systera. As a result one works outside the framework of Dirac’s instant
form of relativistic dynamics (Dirac 1949). This increased flexibility permits the
construction of relativistic particle models with non trivial interactions as well as
invariant world lines.

It is a feature of the constraint formalism that one can handle the relativistic aspects
of the problem in several apparently different ways. One may use the method of
independent particle variables (ipv) involving four-vectors of position and momentum
for each particle (Todorov 1971, 1976; Komar 1978a,b,c; Sudarshan et al 1981); or one
may introduce collective centre of energy and total four-momentum supplemented by
relative variables for the individual particles (cMv) (Rohrlich 1979a,b; Mukunda and
Sudarshan 1981). One can even construct a third scheme in which the collective
variables describe the overall space-time orientation and four-dimensional angular
momentum of the entire system (Balachandran et al 1982a). What differs from case to
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caseis the choice of initial variables and the pattern of constraints needed to ensure that.
uitimately one has the correct number of degrees of freedom—6N for an N particle
system.

The purpose of this paper is to examine in some detail the relationship between the
1pv and the cMv approaches to this problem. Several other attempts in this direction
have appeared, but each of them differs in its approach and its specific results from ours
(King and Rohrlich 1980; Balachandran et al 1982b; Iranzo et al 1982). Our method is
to bring the cmv theory into an intermediate form where it can be rather easily
~ compared to the starting point of the 1pv theory, and thereafter the development of the
two theories can be followed rather closely. We find that the 1pv and cmv models are
indeed very different in their structures and cannot be simply viewed as two different
ways of presenting the same physical theory. In particular it will turn out that the cmv
model, when reformulated as we do, makes essential use of an aspect of constraint
theory that had hitherto not appeared in the present context—this is the idea of
invariant relations.

The use of rest frame time as the evolution parameter leads to a physical problem—
the various models are invariably nonseparable (Balachandran et al 1982c). It is
possible to alter the 1pv models significantly and to avoid this problem (Samuel
1982a,b). We have in this paper nothing new to say on this aspect, and as in the early
work on this subject will identify the evolution parameter with rest frame time in both
rrvand cMv models. Since the criterion of objective reality of particle world lines will be
met in the models we discuss and compare, this part of the subject and the so-called
world-line-conditions (Currie et al 1963; Kihlberg et al 1981) will not be touched upon
here. »

The material of this paper is arranged as follows. In §2 we give brief resumes of the
ipvand cmvmodels as originally presented in the literature. The latter refers to a specific
sequence in which the constraints of the cMv model are imposed. For simplicity and
because of a common physical interpretation, the individual particle positions and
momenta are denoted as g4 and p%,a = 1,2,..., N, in both models: while they are
primitive quantities in the 1pv method, they are derived quantities in the cmv method.
Section 3 develops the cMv model in a different way, and in particular takes it through
an intermediate stage at which point the ¢, and p, are the independent variables of the
theory. It is this that makes possible a meaningful comparison of the two models,and of
the forces or interaction potentials that arise in them. Both in §§2 and 3 the final form
of the cMmv theory is the same, involving exactly 6N independent degrees of freedom.
But the presentation of §3 makes it possible to see how very differently the final stages
of the reduction to 6N degrees of freedom are carried out in the two cases. Section 4
examines the final physical bracket structures on the 6 N-dimensional physical phase
spaces in the ipvand cMvmodels—what is common is the occurrence of quantities g, p,
with a common physical interpretation, but the phase space structures show many
differences. Section 5 summarizes the main points of the analysis of §§3 and 4, and
includes some concluding remarks.

2. Resumé of the ipv and cMv models

In this section we review briefly the 1pvand the cmMv methods for constructing models of
relativistic interacting point particles. This will help set up a suitable notation and also
serve as the basis for the discussion of later sections.
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2.1 The 1pv method

We follow here the presentation of Sudarshan et al 1981. The starting point is an 8N-
dimensional phase space I, with canonical coordinates g4, p,,,a = 1,2, ..., N. The
fundamental pB’s are

{qaw va} = 5abguv7

{qaw va} = {pau’ phy} =0. (1)

(The metric is goo = 1). So I'y is the usual phase space built on the 4N dimensional
configuration space of the variables g,,. When the model is completed, 4% and p3 will
respectively be interpreted as the space-time position and the four momentum of
particlé number a. On I'y, one has a canonical realisation of the Poincaré group 2, with
generators

N
jnv = Z (qau Pav —qavpau),
a=1
N
P, = Z Pay- @
a=1

The pB’s among #,,and 2, have the standard values corresponding to the Lie algebra
of 2. ‘
One now imposes on [, a set of N independent constraints
K,=pl-m}-Vg,p)=0,a=12,...,N, (3)

with the “potentials” ¥, subject to two conditions: (i) they must be Poincaré invariant,
(ii) the K, must be first class. These requirements may be expressed as

{Fuws Vot ={ 2, Va} =0, ' )
where the generators (2) of # are to be used, and
{Ka» Ko} = { Voo 02} + (P}, Vo) + {Vo, V3} = 0. | (5)

For the case that the V,are all equal to a common ¥, the general solution to (5) has been
developed in Sudarshan et al (1981).

Conditions (3) determine a 7N-dimensional region X, in I'y,. (The symbols I, I,
... are used for spaces of dimension of the order of 8N, while Z, X', . . . are used for
spaces of dimension of the order of 6N or 7N ). Due to the first class conditions (5), the
original pB’s (1) on I'y, do not lead to a natural system of pB’s among functions on Z,,.
This region is invariant under the realisation of £ generated by #,,, 2, Moreover,
the K, generate an N-parameter Abelian group of canonical transformations also
carrying Z,, onto itself. In fact these transformations give rise to a foliation of X, ;into a
6N-parameter family of leaves or “sheets”, each of dimension N. The Poincaré
invariance of the K, now implies that under the canonical transformations generated by
F uv» P, these sheets are mapped onto one another in their entirety. Stated in another
way, the quotient of Z,, with respect to the above foliation is the space of leaves Z,, of
dimension 6N. Both the pB structure (1) and the canonical realisation of £ on I'y,
project down in a natural way to a pB structure and a canonical action of 2 on Z,.

The 1pv model, leading to a physical system of N interacting point particles, is
completed by adjoining to the first class constraints (3) the following system of N
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additional constraints (no confusion is likely to arise by the use of 2 for Poincaré
group and 2, for the generator of translations):

o= y'(qa-qa+l)z0,a= L2,...,N—1;
In= P qy—t= 0. . ©)

(It is important to stress that though £, is of dimension 6N and carries a realisation of
2, it is not the appropriate space for defining the dynamics of an N-particle system.)
The x, for a=1,2,N —1 are Poincaré invariant; x, is not Poincaré invariant, and
moreover involves an evolution parameter 7. The K, and g, taken together should form
a second class system:

det |{x., Ks}| # O. UN

The purpose of the constraints y, ~ 0 is to determine a one-dimensional curve,
parametrised by 7, on each sheet in I,,. These curves are the possible states of motion
of the physical N-particle system. In a moment we shall explain how the original
canonical realisation of 2 on I'y,is to be amended so as to act on these states of motion
in a consistent way. For each 7 the region in Z,, determined by x, & 0 will be denoted as
I, it consists of one point, that with parameter value 7, taken from the one-
dimensional curve on each sheet. Alternatively we can think of X, as providing a t-
dependent section from oy iNtO Xy

The general equation of motion for a function f (g, p, t) has the Hamiltonian form

df af
dt

where the coefficients v, must be chosen so as to maintain the conditions x, = 0. In view
of (7), we denote the inverse to the matrix ({x,, K,}) by (& ,,):

+va{f, Ka} ®

o oo {Aps K.} = Oge- ' 9)
Then since only x, has an explicit t-dependence, the coefficients v, in (8) are
v, = o (10)

The final physical bracket among dynamical variables is not the pa{ , } originally
“defined on I'y, but rather the Dirac bracket (p8) { , }* correspondmg to elimination of
all 2N constraints K, x:

{f g}‘ {f g} 'ﬁab({f’K }{Xb’g} {be}{Ka’g})
—{f K} Fa{tos 10} Hww{Kas 9} (11)

Because of the vanishing of { #,,,, K,} and { 2,, K, }, we see that the DB’s among ¢,
2, reproduce again the Lie algebra of 2. Thus these expressions generate a new
realisation of 2, canonical with respect to the ps and distinct from the realisation via
pB’s used upto now. This new DB realisation of 2 is the physical one, and it does have
‘the property of mapping each state of motion onto another one. Obvnously so since the
conditions K, = 0, x, & 0 are preserved.

The choice (6) for the g, identifies T as the time in the centre-of-energy frame, apart’
from a factor (#* 2,)'/2. (It is implicitly assumed that in configurations of physical
interest 2* is positive time-like). The fact that only  ,is Poincaré-non-invariant (under
the original pp realisation of %) ensures that the world-lines of the N particles are
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objectively real—the so-called world line conditions are all obeyed. Since it is not of
direct concern to us here, we avoid a discussion of these conditions, as also of the details
of rewriting the equation of motion (8) in b form using a suitable Hamiltonian. Suffice
it to say that the physical system of N particles, realised via the 1pv method here, has
exactly 6N independent dynamical variables since all constraints K, ~ 0, y, ~ 0 must
be obeyed. The scheme underlying the method can be depicted by a diagram, wherein
the projection X, — Z, is denoted by =:

K,~0 Xa= 0

Fewo { 5 } Zow il I
ln t-dependent
section
)

2.2 The cmMv method

We follow here the presentation of Mukunda and Sudarshan (1981). The symbols I'", X’
will be used for the various spaces that arise in this method. The starting point now is an
(8N + 8)-dimensional phase space I';,,, with canonical coordinates Q*, P,, &4, n,,,
a=12,..., N. The basic non-vanishing ps’s are taken to be

{Qm Pv}_= guv’ {fa;u "bv} = 5¢b guv' . (12)

(No confusion is likely to arise from the use of the same symbol { , } for the starting pn
on I'yyin the 1pvapproachand for the pson Iy, , , here). Thus I, . is the usual phase
space built ona (4N + 4)-dimensional configuration space of variables Q,,, £,,.. The final
physical interpretation of Q* and P* is that they represent the centre-of-energy and the
four momentum, respectively, of an N-particle system. On I'}, , ; we define a canonical
realisation of £ by taking the generators

N
juv = Qqu _Qva+ Zl (énp"av —éav'lau)’

P, =P, (13)

As in the 1pv method, the final physical realisation of 2 will again be generated by these
expressions but through a new bracket.

To identify the quantities g%, p4 that will ultimately serve as the individual particle
positions and momenta, we need to introduce a set of single-particle potentials U,
which are functions of differences of the ¢’s, and of the 7’s, invariant under the
homogeneous Lorentz group acting in the obvious way on the ¢’s and 7’s:

U, = U,(AZ, n),
{jpv’U¢}=0sa=l,2,...,N. (14)
In terms of U, we define auxiliary expressions w,, ¢, as follows:

wa(A§9 ”) = (mi ’""3 + Ua(Aéy "))1/2,

8a(AE, 1) = 0, (AL, 1)/ Y wy (AL, 7). (15)
b
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Like U,, the w, and ¢, also have vanishing p8’s with #,,;and it is assumed that w, > 0
for physically relevant values of £, . The individual particle positions and momenta are
then defined by
q5 = Q"+ ¢4,
ph=w,Prens (16)
P = pr/(P*)'2.
A system of (2N + 8) independent constraints needs to be imposed on Iy, to lead

to a space with just 6N dimensions, appropriate to an N-particle system. To do this
efficiently, we introduce several useful objects at this point: -

K,= grz:y; (17a)
H =Y w,; | (17b)
Ky= (af”)“2 —Hy ' - (179
X = 2 €aais (17d)
Xa= ;~Q—t- (17¢)

The symbol L denotes orthogonal projection with respect to P,,. (It is again implicitly
assumed that P* is time-like positive in all physically relevant configurations).

The objects defined above are all functions on 'y, & and only the last of them, x4,
involves an evolution parameter t.

The first step in the reduction procedure is to impose on I'yy, ;@ set of 2N second
class constraints

P-é,~0, Pn,=x0. (18)

These lead to a region I’y , in [y, sof the indicated dimension; and moreover among
functions on I,y ;we can introducea ps{ , }'arising fromthe ps{ , } on elimination
of the constraints (18). The non-zero ps’s among Q, P, ¢, n are

-1
{Qn’ Qv}, = F Z (éau Nay = éav ”au);

{Quw P} =g
{Q#’ Eav}, = —ﬁaupv/Pz; - ) (19)
{Qw ’]av}’ = —Nau Pv/Pz;
{caw ’,bv}’ = 6ab(guv - ﬁuﬁv)'
The second step in the reduction procedure is similar in geometric terms to the passage
from Iy, to =, in the 1pv method. One imposes on Xy 4 the four independent first
. class constraints contained in
K,~0,K,~0, 20)

and thereby arrives at a region T, Within ' .. (There are only four independent
constraints here since P*K, = 0 identically). The first class condition here means that
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over Ly,
{K,,K,} = {K,,Ks}' = 0. (21)

We have also the Poincaré invariance of these constraints in the sense that, again over

’
Z6N+4’

{Fpwor 2,,K;,0r K.} = 0. (22)

Therefore the canonical transformations generated (through the ps { , }') by K, K,
map X', ,onto itself, giving rise to a foliation of T, , ,into a 6N parameter family of
four-dimensional leaves. This foliation is respected by the action of the Poincaré group
(Note that whether we use #,,, 2, to generate a realisation of P viathe p{ , } or the
pB { , } the effect on the basic variables is the same: Q, behaves as space-time position,
P, and &,, and 1, as translation invariant four-vectors). If we pass to the quotient of
Ty .« With respect to this foliation, we obtain a space ', which carries both a non-
degenerate bracket structure and an action of 2. However, as in the 1pv method, the
dynamics of the N particle system is not seen on the space X,; rather it involves
choosing in a suitable way a one-dimensional curve on each leaf in Z¢, ,, with an
evolution parameter 1, and then amending the action of 2 so as to map these curves
onto one another in a consistent way. Before doing this, we record some useful ps
relations which hold over X, ;:

{Q.or K,, U, or o, or g, or Hyp,}' = 0; ' (23a)
{K,.Q,} = 0; (23b)
{Kuéoor 1} & ~gu+ P, P,; (230)
{P-Q,¢&,orn,, or K,ory} =0 l (23d)
{P-Q,P,} =P, {P-Q K} =~ (P) (23¢)
{Q,, (P*)?} = P, (23f)
The third and final step in the cMv method is to impose on X , , the four constraints
X~ 0, xa=0. (24)

These taken together with the earlier set (20) now form a second class system. We
introduce at this point the following index conventions: j, k, . . . shall run over the values
1,2, 3 while r, s, . . . run over 1, 2, 3, 4. Then 4 x 4 non-singular matrix of the pB’s of
the y’s with the K’s can be exhibited as follows: If

{x» Ko} =F,, P'F,=x0, (25)
then
’ "‘5'1‘—}3'}31: F;
(2. K} = (JOJ(PZI)UZ) _ (26}
(Note that in the limit U, = 0, F, & 0 as well). The inverse matrix is

d,,{x,,K,}' = 5m

P,P, - G;
_.5)*4'1”)—(2)*- z J
(,,) = 5] s (27)

0
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= (F;—P;P,F,/P})/ (P2,

The constraints (24) pick out a one-dimensional curve on each leaf in the foliation of
Z'v .+« These curves are parametrised by T which appears in x,, and they correspond to
states of motion of an interacting N-particle system. At a given value of 7, the
constraints (24) determine a space ¢}, in XY, , ,. This appears as a t-dependent section
~ from £, into X, , ,. The general equatlon of motion for any function f of Q, P, {, 1, tis

dt ot

where v* and w must be such that (24) are maintained in .
The solution is

d{ af+v“{fK}+w{fK‘} Py, =0, (28)

w=(P)~12 y, = —F,/(P)'7?, | (29)
. SO
S i (f Ke= PR, Y 1P
zg+{fGK,+(PIf)m} ' (30)
One checks as a particular case that
dQ*/dt = P*/P2. . 31)

The final physical bracket among dynamical variablesisaps { , }’ * arising from {.,y
upon elimination of the K’s and x’s:

{f.a¥*={f9} - ({f. K} {209} = {fi2s} {Kng})
- {f; Kr}’ dn{Xv Xr}' dr's' {Kr’9 g}’ (32)
In a “manifestly covariant form” this can be written as

{figy*= {fig}y +[{f 2"} {K.. g}

1
+ o U PP K, =K (P Q.Y ~ ()]
- {j; Kll}' {X“v Xv}' {Kv’ g}l' (33)

Because of (22), we see that the ps’s { , }'* among #,,, 2, reproduce the Lie algebra
of 2. Thus they generate a new realisation of 2 canonical with respect to { , }'*,
distinct from the original geometrical realisation on I'y, , ;. It is this new realisation of
2 that is the physical one, and that maps states of motion onto one another in a
consistent way. After all the constraints of the cmv approach have been imposed one
finds

juv = Z (qau Dav _qavpau)’
P, = Zpau'

Qn = Zea Qay> Pn = Z Pap- b (34)
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As in the 1pv method, here again it is the fact that only g, is t-dependent and Poincare-
non-invariant (under the original geometrical action of #) that allows the world line
conditions for the individual particle positions g% as well as for Q* to be obeyed in a -
simple way. The parameter 7 is once again essentially the time in the centre-of-energy
frame, and one can put the equation of motion (30) into the Hamiltonian form using the
physical pB { , }'*. The entire scheme can be depicted as follows:

, Péx=xPn=0 _, , K,=0 _, L0 _,. ,
FBN+B’{ ’ } z6N+B’{ b4 } z6 +4 2GN’{ b4 }‘
n t-dependent
section
Zon

3. Alternative form of the cmv model

The cMv model has a more intricate structure than the 1pv model, though this is
balanced by the fact that only very mild restrictions need to be imposed on the cmv
potentials U,. The full set of (2N +8) constraints was imposed in the following
sequence: First, P- &, ~ P-n, = O;next K, ¥ K, ~ 0;and last, x, &~ x, ~ 0. However
the final result is independent of the sequence in which these (2N + 8) constraints are
introduced, as long as all of them are included. Any other sequence is sure to lead to the
same final physical N-particle system, physical brackets and realisation of #. We now
adopt the sequence '
K,~K,~0

X=X 0 Ptx~Pn=z0

AR (35)

’ ’ re
F8N+8 FBN-O»‘ FSN

In this form it becomes very easy to compare this model with the 1pv model.

Over Iy, , the variables Q, P, &, n, form a canonical coordinate system, with
elementary values for their p’s { , }. The variables q,, p, are defined by (16) all over
Iy s Wenow show that we can use @, P, q,, p, as a (non-canonical) coordinate system
over I';, , .. Since, to begin with, it is not true that P, equals the sum of the p,, over a, we
introduce as a definition over I'g, &

Py=3 P (36)

The orthogonal projection with respect to P, will be denoted by L'; it is distinct from
the projection L with respect to P,. (As with P,, we assume that P,, is positive timelike
in all physically relevant configurations). From (16), the difference A¢ between any two
&’s equals the difference Ag between the corresponding ¢’s: Symbolically,

AE = Ag. | (37)
We can easily eliminate £, in terms of g, and Q,
$a=4.—0Q. . » (3%)

The more difficult problem is to see how to eliminate 1, in favour of p,; starting with the
definitions of p, in (16),

o=, P+n, (39)
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we tentatively write

nazpa—aa(A‘Lp,ﬁ)ﬁ' ’ ' (40)
We then develop the equation

az = w: = mi —"z'*' Ua.(Aé’ ’1) = "lf + Ua_(pa -—aaﬁ)z,
ie.

al—a,ps P=}(m}-pl+U,Aqp—aP)), a=12....N. @1

For the arguments of U, we have used (37) and (40). We will assume that these highly
lmphclt equations for the a’s can be solved to express each a, as some function of Aq, p
and P: these are the only quantmes appearing here apart from the «'s. The solutions will
for convenience be written in the form

aa(Aqap’ﬁ) =
3 {pa P+ [(p.- PY? +2(m2 —p2 + U,(Aq,p, P))]'7}, 42)

thereby introducing the expressions U,. It is important to stress that the U, are
completely determined by the original potentials U, of the cMv model. For orientation,
we remark that U, =0=U, =0, and U,=U (A8 = U, = U,(Aq). With the sol-
utions for a, in hand, we have (38) and (40) valid all over 'y, 4, and moreover

U, (A n) = U,(Aq, p, P),

@, (A&, n) = a,(Aq, p, P), (43)

also hold all over I';,,,. Thus we can use QPg,p, as a system of independent
coordinates for Iy, In terms of them, we can write:

= (P4, K.=(P)'"-H,

ln(’
Hy =Y o,(Aq, p, P). (44)

Now we take the first step of the new reduction procedure (35) and impose on I'y ¢
four independent first class constraints

K,~0,K,~0. 45)

The first class property, with respect to the pB { , } on Iy, ,, is obvious from the
previous section; it depends essentially on the fact that only the differences A appear in
the cmv potentials U,. Denote by I';, , ,the region determined by the constraints (45) in
IMn+s- We can see that in this region P, is determmed as a function of g, and p,. For,
firstly,

K, ~0=P . P’ 1~ 1,

P, =P, /(P2 (46)
Making use of this simplification, we shall set over Iy,

g (Aq’ ps ﬁ') = ﬂa ‘Aqa p)a
U,(Aq, p, ') = V,(Aq, p). @7)



Relativistic Hamiltonian particle systems 141

(It is these ¥, that will later be compared to the 1pv potentials V,). Then the remaining
constraint in (45) gives, over I'y,

P,x P, Y B.(Aq,p). (48)

’

It follows that since QPgq,p, formed a coordinate system over Iy, ;, now Qg,p, form a
coordinate system for I', , ..

With the Poincaré generators of (13) and the pB{ , } on Iy, it is obvious that on
I3y .4 We have

A Fmor 2, K,or K} = 0. (49)

(This statement must be distinguished from (22).) Thus the canonical realisation of 2
on I'y, , ¢ leaves Iy, , ,invariant. Moreover by a now familiar argument we see that the
canonical transformations generated by K, and K foliate I';,, , ,giving a 8 N-parameter
family of four-dimensional sheets, and this foliation is respected by the canonical
realisation of 2. If we pass to the quotient of I'yy , , with respect to this foliation, we get
a space I';, which carries both a bracket structure and a compatible action of 2.
In preparation for the second step of (35), we express ¥, x4 over Iy ,in terms of

Q4.Pa:
Xu =0+ (Y. B.(Ag, p) a.t)/ Zb: B,(Aq, p),

Xa® —t+P'-QY B.(Aq,p). (50)

The second step in the reduction (35), namely imposing on I', , , the four constraints
L~0, x=0, (51)

can be viewed in two equivalent ways: either (i) as a way of choosing a one-dimensional

curve parametrized by t on each four-dimensional sheet in I'y , , or (ii) as a choice of a

1-dependent section I'}, from I"yinto ', . This already means that on I'';, we havea

definite equation of motion, i.e. a definite dynamics, though it is for a system with 8N

degrees of freedom and not for an N-particle system. First we note that the effect of the

four constraints (51) is to determine Q in terms of g, p, over I'y,. Remembering that L
~ 1’ already on I'}, ., we get:

Xp =~ 0’ Xa = 0=
Q. ~ (1B, + ¥ B.(Aq,p) aL)/Y Bu(Aq, ). (52)
a 1] .

Therefore, we can say that g, p, form a coordinate system over ['},. As a result, from this
point onwards a meaningful comparison with the 1pv model becomes possible. As part
of this comparison, we must pass from the pB{ , } on I'yy stoapB{ , }' on Iy} by
elimination of K, K, 1, X4 and express the Poincaré generators #,,, 2, of (13)in
terms of q,, p,. The latter task is easy; we find the expressions

#.,=P,=P,Y B.(Ag,p),



142 J Samuel and N Mukunda

}pv = (QAP+ Zém\"a)yv

1 1
=<Z¢1MP¢+ (W“;)%ﬂbQM}y) . (53)
¢ B. "

As functions of g, p,, these expressions are strikingly different from those of the pv
model, equations (2). Nevertheless, our general procedure guarantees, because of (49),
that with respect to the pB{ , }"onTI"}, these ¢ wand 2, will reproduce the Lie algebra
of 2. To determine { , }', we note some properties of the K’s and z's and introduce
some definitions:

{K,,K, or K, or Xa} = {Xw2a} =0 (54a)
(XK.} = g ~PB, P, {1, Ks} = (P2 (54b)
{twKa} =84 PL=0; (54¢)
{tw it} =Q,, PQ, =0. (54d)

Then among the independent components K, x,.,rs =1, 2, 3, 4 of the constraint
systems [(45) and (51)], we have the following matrices of pa’s:

{K,K,} =0 (55a)
~8,—B.P .
_ (% ;0

The inverse to the matrix (55b) enters in the construction of the ps {, "

A, {Xv Kr} = 6m

P,P, -
_5ﬂ‘+;)_zk : Pj |
(A")-_—_ e ... 0 - I, (56)

0 o '(132')#1'/2
p;= (C;-PijCk/P(Z))/(PZ)UZ-
(Note that the matrices ({x,, K,})and (A,,) here are similar in structure to the matrices
({x.» K,}")and (o#,,) of (26)and (27) used in the previous reduction procedure: F;and G,
are replaced by {; and p; respectively). On I'yy we now have the ps
ait ={£9} -0/, K} {09} = { i 1.} {Knng))
"‘{f;K,}A,,{X,,X,'}A,r,r{K,',g}- (57

This ps among the independent coordinates g, p, of Iy arising at this stage of the
reduction of the cMv model, is to be compared with the elementary brackets (1)on I 8N
which formed the starting point of the 1pv model !

-
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The equation of motion on Iy, takes the form

ds af o
d'[ {f’ }+z{f’K4}9

Pu* =0, (58)

with u* and z chosen so as to maintain the constraints (51) in 7.
The solution is

z=(P)~ 12 u,= —{,/(P)'7? (59)
SO
N A A e
x %:*‘{fs ijj+K4/(P2)”2}' ' (60)

Equations (58), (59) and (60) are to be compared with the previous equations (28), (25)
and (30) respectively. The present set describes a Poincaré invariant dynamics for a
system with 8 N degrees of freedom; the Poincaré generators are as in (53) and they act
through the ps { , }!. The previous set described already the final form of the cmv
model: a Poincaré invariant dynamics for a physical N-particle system with 6N degrees
of freedom, the Poincaré generators taken as in (34) and acting through the final
physical B { , }'* on Z},.

For the last step of the reduction (35) to take us from I';y, to Z(},, we note that on I'yy,
we have

P& P-q.—r; (61a)
P~ P-(p,~B.P)
~ 3{pa- B [ (p,- P> +2(m? —p? + V,(Aq, p))]'2}. (61b)

From the numerical point of view, therefore, on imposing the 2N second class
constraints on I'g},

Pé,=Pn,=0 (62)
to arrive at X'}, what we have are just the relations
Pé~0=Pq,—1x0; (63a)
Pn,~0=B,(Aq,p)~ p, P>H~ P- PP, ~ P,
also =p2-m2—-V,(Aq,p)~0. (63b)

These are similar in appearance to the K’s and x’s that define the 1pv model, but not in
their canonical properties. (Incidentally we note that while on the spaces Iy, ,and I'yy
we have P = P,,on X'}, we have the complete equality P, = P},.) From the dynamical
point of view, w1th reference to the equation of motion (60) already existing on I}, we

find d P
d_- P 2(P2)1/2 Z aéa Ub(Aér ’7)’
d P-n, - 1 0 '
d_‘[P 53 ~ (Da(Pz)”z - 2(P2)1/2 ;"a)-bp %:Ub(Aév ”) (64)
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Since the U’s are formed in a Lorentz invariant way out of A{ and 7, we assume that
what appear in the U’s are various scalar products among these four-vectors. Then the
right sides in (64) are linear in P-¢ and P-n. This means that- with respect to the
dynamics (60) on I'}, the constraints (62) have the appearance of a system of invariant
relations: if to begin with P-{, ~ P-n, ~ 0, they continue to vanish for all . The
system (62) is therefore a way to reduce the number of degrees of freedom from 8N in
I,y to 6N in X', consistent with the dynamics cn the former space.

If from the B { , }' on I';, we form the final pB { , }’* by elimination of P- £, and
P-n,, the result will be the same as in the previous section: we definitely recover (32) and
(33). At the same time, making use of (63b) we easily see that the Poincaré generators
Fuv P, (53) reduce to the forms (34), as they ought to.

Having completed this second way of presenting the cMv model, we can depict this
scheme by adding the new important elements to the diagram (35):

, K,~K =0 , L= Xe= 0 e P§{,~x~Pn=~0 . ,
Doves——> Tgyy ———= Ty ﬁzsm{ 3
QPf'] qu qp invt. reins.

or '~ 1 {,}}t
QPqp i
{ ’ } -d dent

", t-dependen
rSN section

4. Comparison on the physical phase spaces

It is possible to compare the two models at yet another level, by formulating each model
on its true physical phase space. The idea here is to choose 6N variables u,, a = 1, 2,
..., 6N with the property that their final physical Dirac brackets are independent of
when expressed in terms of themselves:

a’ *
{1} =0 (©9)

(¢’ /9t denotes 1 differentiation with the u,’s held constant; and the bracket here refers
to the final bracket obtained by eliminating all the constraints of the theory). It then
follows (Sudarshan et al 1981) that there exists a physical Hamiltonian function,
¥ (u, 7) on the physical phase space Xy (we drop the superscript 7 in view of (65))
spanned by these variables (u,, x = 1, 2,. .., 6N), which reproduces the equations of
motion as given by (8), (10) or (28), (29) through the Dirac bracket

du,/dt = {u,, # }*. (66)

On Z,, the constraint functions vanish strongly, so these relations on the original
phase space can be used to express the physically significant functions (g5, Paus £ uvs
#,) in terms of the u’s and 7. #,,(u, 1) and 2,(u, 7) provide a realisation of the
Poincaré group on X through the Dirac bracket. g% (u, 7) and p,, (4, 7) give the physical
identification of the particle position and momentum variables on Z,. 5 (u, 7) is the
Hamiltonian function and {u,, u,}* provides X, with a (t independent (65)) bracket
structure. Thus it is possible to formulate each of the above models on a phase space
with just the right number (6N) of degrees of freedom and no constraints.
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In order to have a clear comparison of the two models, we will choose variables u with
the same physical significance, so that the two theories resemble each other as closely as
possible. It turns out that such a choice is indeed possible and consistent with the
requirement (65). Once this is done, the differences between the two models are clearly
visible and we will find (as we did in §3) that the 1pvand cMv models represent entirely
different physical theories.

tpv model: We choose for the u’s the following 6N functions:

l" = O”qm pau ovpaw '&u (67)
where
Op=9uw—2,2, (68)
and .
P,= P, P, P=(P,P")N? (69)
For the physical Hamiltonian we guess the form
H = —In P (70)

(This functional form for »# differs from that found by Hsu and Shi (1982). This is due
to their use of a different set of functions for the u’s). The equations of motion ((8)and
(10)) for the 1 evolution of any function give

du, axp

dt {ua’K}‘d = _{ua’K}Mnba (71)
If we notice that

{K,,#} =0 (from (4)), {u,H#}=0, {x,H}= dx/ot, (72)
we see from the definition of the ps (11) that

du,

el U _ 73)

and so ¥ does reproduce the equations of motion (8) and (10) in Hamiltonian form
with respect to the Dirac bracket. (It is now possible to reverse the arguments of
Sudarshan et al (1981) and show that the existence of such an 3¢ in fact ensurcs that the
Dirac brackets between the u’s are t independent (65) (Samuel 1984).

We now use the constraint functions (3), (6) to express the functions 45, p,, (and #,,,
#,) in terms of the u’s. From (6) we have for the component of g, along @’,,:

=4, =1/ (74)

Next we ¢ suppose that the N constramts (3) are solved to expose pl(the component of p,
along 2 ,) in terms of g, p, , 3’ and T

pl=W,@at pt, 2, 0. ' (75)
It is clear that
Yol=YW,=2, - , (76)

so that
' gt = qr+ T PHIY W, an
b
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pa;a = pdj;l +VVa &u' (78)

The Poincaré generators (2) are written in terms of q,, p, and so they too can be
expressed through (77) and (78) as functions of u and . Finally 5 is given by

#=-In)W, (79)
and so all the relevant variables have been expressed on the physical phase space Z gy.

cMv model: 'We again choose for the physical variables

an.# = Q oy fﬁ,

P = Maws

B, (80)
where 1 now refers to orthogonal projection with respect to P,, and

B,=P,/P, P=(P,P")" (81)

Let us suppose that the first stage of reduction is done as discussed in §2 and the 2N
constraints (18) eliminated. The present discussion starts with the space sy, sendowed
with the bracket { , } given by (19). The equations of motion (28)and (29) on this space
may be written

affdcs (K o, @

since the v* and w must be such that (24) are maintained in 7. We can once again confirm
that the form of the physical Hamiltonian is

#'=—hP (83)
By noticing that the u’s (80), constraints (17) and " (83) satisfy

{u,,#'} = 0,

{1} = 0y,/0r,

{K,,»#'} =~ 0 from (22), (84)
we see that ' :

du,/dt = {u, H'}'*, (85)

where the bracket { , }'* is given by (32).
As before, we can express the physically significant functions g,, p, in terms of the u’s
(80) by using the constraint equations:

gk = Q'+ &8 =qlr+ Py w,,
b

Pow = Pis+ 0, P,, (86)

using (17¢) and (24). w, in (15) is directly expressed as a function of Aq Land ptandso
q* and p,, are given by (86) as functions of the u’s (80). From (34), which holds after all
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the constraints have been imposed, the Poincaré generators too can be expressed as
functions of the u’s. From (17b,c) and (20) we see that

K = -InY o, 87)

The two models have now been cast into a form where they can easily be compared.
Note that in each case we have a 6N dimensional phase space spanned by ;% p, 2,
and the expressions for the physically significant functions g,, p, ((77), (78) and (86)),
Fuvr» 2, ((2)and (34)) and # ((79) and (87)) are identical. The W, (75) occurring in the
1pv model have the same four-dimensional kinematic physical meaning as the w, (15)
occurring in the cmv model and so, the correspondence is complete.

However, to discuss the equivalence of the two models it is also necessary to consider
the bracket relations between the dynamical variables of the two theories: a
correspondence at the algebraic level is not enough. It is in this respect that the two
models differ. We will see below that although the bracket relations between some
variables are identical in both models, they are completely different for some others. We
discuss the similarities first and then the differences.

. We know on general grounds that both the models are Poincaré invariant and so the
bracket relations between the Poincaré generators (and functions of them) coincide:

{ I Foat* ={Fur Foal'™
{Fww Po}* ={ S 2,}'"",
{20 2} ={2, 2,})* =0,
AP0 Foa* = {20 F0u}'™
(2.2} =(2.2)* =0,
(2,2 ={2, 2,}*=0. (88)
Some algebra reveals that
{43 Fpo}* = {4d" Foa)'™,
{Pai» Fpa}* = {Paiir F0o}'™
{a% 2.}* = {a% 2.},
{pa, 2.}* = {pik 2},
{Pa Piv}* = {Pair P&}'*. (89)

The remaining brackets are quite different in the two models. As an example, we
exhibit {u,, # }* and {u,,#'}'* which determine the t development of the u’s and
hence the world lines.

1PV model:
oV,
OPay

{q}",x’}*=2p}“~da~~0‘v‘z A oy,
b

av,
{p&,#}* =0 ; 5‘: oA - (0)
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cMv model:
1 /ns U, 1 F,
.L]l AR = a _0‘4 - uv
{aak "} ?(w, 'than,, 2w,,) 0 P»’
1 1 oU,

{pi, H'}*=—0, 1)

P 2w, ELC
It is easily seen that these expressions do not coincide, even in the case where the
interaction potentials are small. (They of course coincide, as they must, in the free
particle case). We therefore conclude that the two models have different dynamics and
different particle world lines and so describe different physical systems.

5. Comparison and conclusions

The principal idea of §3 has been to realise that in the presentation of the cMv model, we

may take the initial 8N + 8 independent variables to be Q,, P,,, 4,, and p,, rather than Q,,,

P,, &.us N, Of course we realize that, unlike (12), the p8’s { , } among g, and p, are not

atall simple and kinematical even on I} , ;: While the ps’samong the ¢’s do vanish, both

{4a Py} and {p,, p,} are interaction-dependent. With the first stage of the reduction-
scheme (35), P, ceases to be an independent variable; and with the second stage Q,, also

gets determined, so that on I}, just the q,, and p,, are independent.

The 1pv model at the level of 'y must now be compared to the cMv model at the level
of I'gy. Both use q,,, p,, With identical physical interpretations as independent variables.
However, in the 1pv case we have elementary p’s given by (1); while the pB’s { , }ton.
;i among g’s and p’s are complicated and interaction-dependent. The potentials
V. (g, p) of the 1pv model are highly restricted by the first class requirements (5), to be
contrasted with the cmv potentials ¥,(Ag,p) which arise from the essentially un-
restricted original cMv potentials U, (A&, 7). For example, the choice U, = U,(A¢) is
quite acceptable in the cmv approach; this leads to ¥, = U, (Aq) with no p-dependence at
all, but such choices of ¥, are completely disallowed in the 1pv theory. In any case we
must note that in general the functional forms of U, and ¥, are quite different, and the
initial potentials U, of the cMv method are not the objects to be compared to the ¥, of
the 1pv method.

From the work of §4, we see that for a given 1pv model with specified V,, we can
certainly choose a cMv model with suitable U, such that g,, p,, the Poincaré generators,
and physical Hamiltonian ) are identical functions of variables u, which share a
common physical interpretation. To do this it is only necessary to determine W, in (76)
from ¥, and choose U, in the cMv model such that w, = W,. However, even after having
achieved a similarity to this degree the difference between the models persists—being
now isolated in the structure of the bracket relations. It is clear that there is far greater
freedom in the cMv models, since the possible W, in the ipv models are highly
constrained by the first class conditions obeyed by the corresponding ¥,. The w, of the
cMv model are subject to no such restrictions. The extra freedom here is attained by
trading the first class conditions (5) for invariant relations (64).

The Poincaré generators #,,, 2, for the 1pv theory have again the simple four-
dimensional kinematic forms (2) on I',,, making it obvious that their { , } brackets
reproduce the Poincaré Lie algebra. For the cmv theory on I}, on the other hand, we
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have highly non-trivial expressions (53) for #,,, #,: one would hardly believe that
these expressions reproduce the Poincaré algebra through their ps’s { , }', had one not
known where these expressionsand { , }' came from! Of course in their final forms on
tvand X'} the 1pv and cMv models use identical Poincaré generators—identical in
appearance when expressed in terms of g, and p, as shown by (2) and (34). However, the
final physical brackets are very different in the two cases, so the Poincaré realisations
must be treated as distinct. This emerges clearly from §4 where the brackets { , }* on
Zivand { , }'*on I, have been explicitly computed for pairs of quantities with the
same physical meanings in the two cases, and the results have been quite different.

In the (final) reduction of the 1pv model from Iy, to £%,, we have no dynamics to
begin with, but end up with a definite dynamics. The reduction itself involves a foliation
by first class constraints K, = 0, followed by the choice of a t-dependent section from
X yinto Z,,. On the other hand, the cMv model has a definite dynamics on I'’;}; and the
final reduction to X'}, uses a system of 2N second class constraints which are invariant
relations with respect to this dynamics. This is a new and perhaps unexpected feature
that has emerged from the particular way we cast the cMv theory in §3, and is added
proof of the great degree of flexibility available with constraint methods. It also shows
that the appearance of a large number of first class constraints, characteristic of the 1pv
model, is not an unavoidable feature of such constrained Hamiltonian theories of
interacting relativistic particles—a fact realised and exploited elsewhere to solve the
separability problem (Samuel 1982a, b).

It would be interesting to carry out a similar comparison of the 1pv model and the
model of Balachandran ef al (1982a) wherein the collective variables consist of a
Lorentz matrix describing the spacetime orientation of the entire system, and its
conjugate four-dimensional angular momentum. One would need a reformulation of
this model similar in spirit to § 3 of this paper. We are then likely to find that the concept
of invariant relations plays again, an essential role in the model.
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