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Abstract. The divalent ions in alkaline earth chalcogenides are viewed as compressi-
ble objects and are treated within a purely ionic model. As in earlier studies on the
alkali and ammonium halides, the ions are taken to be ia the form of space-filling
polyhedral cells and the compression energy, which is the source of repulsion, is written
as a surface integral over the cell faces. A simple method of computing the repulsion
energy in any crystal lattice of arbitrary symmetry is proposed and the repulsion
parameters B and o are refined for the divalent ions under study. The theory explains
the predominant occurrence of the NaCl structure in the aikaline earth chalcogenides.
Hard sphere radii are estimated for the tetravalent cations Ti**, Sn*+ and Pb** using
the repulsion parameters of O2~ jon and the data on the corresponding rutile structure
oxides. These radii are seen to be consistent with the measured interionic distances
in several compounds occurring in the perovskite structure. The free transfer of
repulsion parameters among several structures, which is a key feature of the present
approach to repulsion, is confirmed to be valid by the present study.

Keywords. Divalent ions; compressible ion theory; repulsion parameters; hard
sphere radii.

1. Introduction

In a series of papers, Narayan and Ramaseshan (1976, 1978, 1979a, b) developed a
compressible ion model of repulsion in ionic crystals. The theory treats compressi-
bility as an ionic property and associates the repulsion energy between two ions with
the compression energies of the individual ions. An early version (Narayan and
Ramaseshan 1976, 1978), where the compression energy per bond was represented
by a simple exponential function of the ionic radius, was later modified (Narayan and
Ramaseshan 1979a, b) to empirically include many-body interactions. In this latter
approach the ions are viewed as polyhedral, space-filling cells with the repulsion
arising from the increased compression at the cell faces. This theory explained for
the first time the structures of all the alkali halides and has, more recently, worked
well in the ammonium halides (Raghurama and Narayan 1983b).

In view of its successes, it appeared worthwhile to extend the theory to other ions
and crystals. In the present paper we study the alkaline earth chalcogenides, which
are generally considered to be amenable to an ionic theory. At room temperature
and pressure these compounds crystallize in the NaCl-type structure, except MgTe
which occurs in the wurtzite structure. With a view to later extending the theory
to more complicated structures, it was felt that a simpler formulation of the compres-
sible polyhedral cell theory would be welcome. Section 2 presents such a formula-
tion which is then used in § 3 to derive the repulsion parameters, B and o, for the
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divalent ions. A study of the structural stability of alkaline earth chalcogenides is
carried out in § 4, where the theory is found to correctly predict the predominant
occurrence of the NaCl structure. In § 5, the theory is extended to the noncubic
rutile structure and hard sphere radii for tetravalent ions are derived. The radius of
Ti4+ ion is found to be consistent with the experimental electron density map. Also,
the radii of Ti*+ and Sn4t fit the lattice spacings of several perovskite type crystals.

2. Simplified area theory

In the compressible ion model (Narayan and Ramaseshan 1979 a, b) a radius is asso-
ciated with an ion in the direction of each of its nearest and next nearest neighbours.
The ion is then pictured to be in the form of a polyhedron whose faces are perpendi-
cular to the interionic bonds at distances from the ion centre equal to the correspond-
ing radii. For each bond the sum of the radii of the ions is taken to be equal to the
bond length and so the whole crystal is made up of space-filling polyhedra. The
compression energy at the face i of an ion of polyhedral shape is assumed to be of the
form

_B f f exp (— r' (s)/o) ds, 0]

P a

where r’(s) is the distance from the centre of the cell to an area element ds on the face
and the integral is over the face area. B and ¢ are the repulsion parameters for the
ion under consideration. The cell face can be approximated to a circle of equal area
(Narayan and Ramaseshan 1979b) and we can then write the compression energy of
the ith face as
Wrep,i = Bo [(r; + o) exp (— ri/o) — (I, + o) exp (— I/o)], 2
where r; is the distance to the ith face from the ion centre (referred to as the * radius’
of the ion) and /; is the distance to the circumference of the corresponding circular
cell face. The /;’s depend on the interionic distance r as well as the crystal structure.
Detailed formulae are given by Narayan and Ramaseshan (1979b) for the NaCl,
CsCl and ZnS structures. However, the labour involved in deriving exact formulae
for the different /; can become quite excessive when one deals with other lower sym-
metry structures and this would defeat the very purpose of the present approach
which seeks to develop a simple semi-empirical theory of repulsion. We present
here an alternative simplified approach, where /; is computed in terms of only the
co-ordination number and ionic radii. .
If there are n faces symmetrically disposed at equal distances from the ion centre,
the solid angle subtended by each face at the centre is ¢ = 4«/n. If the n faces are
at different distances r, from the centre, we may define a weighted average distance

r., as
1 . |
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If r; < r,,, the solid angle subtended by such a face will be greater than 4n/n while
the reverse will be true when r; > r,. Motivated by this we approximately write

¢ = 4m {1/n + K[2 [L — (ri[ra N} Q)

where we have written ¢, in a form which ensures that = ¢, = 4m. K is a suitable

constant which has to be determined. It can be easily shown that (4) leads to the
following relation for /;

ry
=T 3+ Ky — D ©)
The constant K has been estimated to be 0-85 by a least squares fit to the known
exact values of the /;’s (Narayan and Ramaseshan 1979b) in the NaCl, CsCl and ZnS
structures.

The main advantage of relation (5) is that the only inputs required for the calcu-
Jation of J, are the number of nearest and next nearest neighbours and the correspond-
ing radii. This formula, when applied to the alkali halides, reproduces the interionic
distances and compressibilities with RMs deviations of only 0-2377 and 0-477; res-
pectively from the exact results of Narayan and Ramaseshan (1979b).

3. Repulsion parameters for divalent ions

Using the experimental data on the lattice spacings and compressibilities of the alka-
line earth chalcogenides as a function of pressure, we have refined the parameters
B and ¢ for all the constituent ions.

The free energy per molecule of the crystal is given by

Ae? C D

where r is the nearest neighbour distance, P the pressure and V" the volume per mole-
cule. The Madelung constant 4 is known for the structures of interest (Tosi 1964).
The van der Waal’s coefficients C and D can be calculated (Narayan and Ramaseshan
1978) in terms of the polarisabilities of the ions and the effective number of partici-
pating electrons (Kim and Gordon 1974). However, we have recently shown
(Raghurama and Narayan 1983a) that the polarisabilities of the chalcogen ions can-
not be considered to be constants but must be taken to vary in the form

Canion = aq (r/3", : . | Y

where the n value is 0-9. The effect is quite considerable and has to be taken into
account. )

In our calculations on the alkaline earth chalcogenides, the repulsion energy was
computed using the simplified formulae (5). The actual procedure of optimising
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the repulsion parameters B and o is explained elsewhere (Narayan and Ramaseshan
1976, 1979b). In table 1 we give the refined parameters of the divalent ions. During
the refinement, we included data on Pb, Sm, Eu and Yb chalcogenides and the para-
meters of these ions are also given. The RMS error between the calculated and observ-
ed interionic distances r in all the crystals included in the refinement is 0-76 9% while
for d* W;jdr? it is ~ 17 9%. The comparatively large error in the second differential

(which is essentially proportional to the bulk modulus) could perhaps imply that our
purely ionic model of these crystals is an over simplification.

Using the repulsive parameters of the chalcogen ions, we can determine repulsion
parameters for other divalent cations. However, considering the low compressibi-
lity of cations compared to anions, we can assume the cations to be hard spheres to a
first approximation. Then we have only one parameter per ion, the hard sphere
radius, which can be fitted to reproduce the experimental interionic distances of the
corresponding chalcogenides. The results for Fe?*, CO%*+, Ni**, Mn2t and Cd?*
are given in table 2. :

4. Structural stability studies

The compressible ion theory has been shown to satisfactorily explain the structures
of the alkali and ammonium halides as well as the pressure and thermal transitions

Table 1. Repulsion parameters of divalent ions.

Ton B (ergs/cm?) o (A)
Mg?+ 9-832 x 101° 0-:0750
Ca?+ 6-827 x 10 0-0784
Sr2t 2:271 x 101 0-0900
Ba?+ 9:-110 x 10 0-1050 .
Pb2+ 5-176 x 10 0-1060
Sm2+ 5985 x 1012 0-0769
Eu?t+ 1:432 x 1014 0-0662
Yb2t+ 3-840 x 10 0-0556
°- 9-672 x 108 0-2179
S2- 9-445 x 10° 0-2646
Se2- 7-959 x 10¢ 0-2867
Te?- 9-865 x 10° 0-2933

Table 2. Hard sphere radii of some divalent ions.

Hard sphere
Ton , radius (A)
Cd+ 1-297
Mnuz+ 1-127
Fe?+ 1-075
- Co?* 1-:064

Ni%+ _ 1-033
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in these crystals, (Narayan and Ramaseshan 1979, b; Raghurama and Narayan
1983b). We have carried out a similar study on the alkaline earth chalcogenides.

Experimentally, the most stable structure here happens to be the NaCl type, except
for MgTe which exhibits a wurtzite type structure. The calculated free energies at
0°K of the various dichalcogenides were compared with the NaCl, CsCl and ZnS
structures. The results showed that all the chalcogenides prefer the NaCl structure
—even MgTe is predicted to occur in this phase. Thus, while the theory correctly
identifies the NaCl structure as being the most likely, it appears to overestimate the
stability of this phase. We note that the energy differences between the three struc-
tures is only about 1% of the total lattice energy. Apart from the Coulomb inter-
action, the other contributions to the free energy have been calculated through empi-
rical models which could be in error. For instance, an error in the evaluation of
the van der Waal’s interaction cannot be ruled out.. Also, we have completely neg-
lected any possible covalency. At this stage, it is difficult to identify the precise
source of the trouble.

5. Extension to rutile structure

One of the attractive features of the compressible ion theory is that the repulsion para-
meters are structure-independent and depend only on the ions concerned. Once
the parameters B and o of an ion have been determined from any set of experimental
data the same parameters can be used for that ion in any other crystal in which it
occurs. Thus, having obtained the parameters of the O%~ ion, we are now in a posi-
tion to use them in other oxides. An interesting class of crystals are dioxides in the
rutile structure. Calculations with these crystals would be an ideal opportunity
to test the theory in a non-cubic structure.

Rutile has a tetragonal lattice with two molecules per cell (Wyckoft 1963). The
atomic positions are (see figure 1)

Tit+: (0, 0, 0)
(05, 05, 0+5)

0 : 4+ (x,x,0) »
4+©05+x, 05—x 05) (®

OT!‘. O o?"
Figure 1. The unit cell of the tetragonal crystal rutile. The numbers refer to the
bond types referred to in the text.
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The x value is ~ 0-305 in the oxides of interest to us. Each cation is held in a dis-
torted oxygen octahedron, two oxygens being at a slightly different distance compared
to the other four. The anion sites are non-centrosymmetric and thus the electric
fields at these locations are non-zero. This leads to induced dipoles on the oxygen
ions and thereby an additional polarisation energy. Though this contribution is
not very significant (Bertaut 1978), for completeness we have included it in the free
energy. Hence, we have per molecule

Ae* C D ;
WL("):—T“’TG_;Q_*‘Z[Wrep—%GEZL ©)
where the first term is the Coulomb attraction which we have calculated by the
method of non-overlapping charges (Bertaut 1978), the second and third terms repre-
sent the van der Waal’s attraction, and Wrep is the compression energy per anion.

We take the cation to be a hard sphere and hence there is no corresponding contribu-
tion to Wi, The last term in (9) represents the polarisation energy, where a is the
anion polarisability [see equation (7)] and E is the magnitude of the electric field at
the oxygen site. The factor of 2 accounts for two anions per molecule. The magni-

tude of the electric field at the anion site can be written as
E=Sgelr:

where S is a lattice sum which we have evaluated using the method of Bertaut (1978).
To make the treatment simple, the position parameter x in (8) is fixed at 0-305 and the
c/a ratios in the various crystals are taken to be the experimentally observed values.
The coefficients C and D are given in terms of the appropriate lattices sums S;; and T,
as

C=c4- S+ Cey Spy + ¢S,
D=d, T\ . +dp T, +d_T_, (10)

where ¢;; and d;; are ion-dependent coefficients. The lattice sums of interest could
not be found in the literature and were computed by summing in direct space
(table 3).

We have studied three oxides viz TiO,, PbO, and SnO,. The polarisabilities of
the cations Ti%+, Pb4+ and Sn**+ were taken to be 0-185, 1-12 and 3-4 A2 respectively
(Tessman et al 1953; Shanker and Verma 1976). The repulsion energy associated
with the anion compression was computed using (2) and (5). Each anion has 3
~ surrounding cations. In TiO,, two of the Ti¢* ions are at a shorter distance (Ti-O

bonds marked 1 in figure 1) compared to the third (Ti-O bond, 2 in figure 1). The
situation is reversed in SnO, and PbO,. There are a total of 11 next nearest neigh-
bours around each 0%~ ion. These are distributed in groups of 1, 8 and 2 ions (the
corresponding O-O bonds are marked 3, 4 and 5 in the figure). Thus the compres-
sion energy of each anion is

Wiy =20+ W+ WO g WO 42 WS, -y
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Table 3. Calculations on oxides in the rutile structure.

TiO, SnO, PbO,

Input Data
a (R) 4-593 4737 4-946
c (&) 2:959 3-186 3-379
r (A) 1-948 2-060 2:171
A 19-099 19-129 19-025
Sy 0-736 0-428 0-320
Sy 6-318 6657 6788
Set 0-230 0-238 0-241
S__ 1-655 1-780 1-828
T,_ 5-861 6272 6-435
Ty 0-072 0-073 0-073
T _ 0-725 0-804 0-835

Results

Cation radius ]

r. (A) 1-196 1-340 1-348

d: W, /dr?

(10° erg/cm?)

Calculated 2:350 2-213 2:072

Experimental 2-18

where the superscripts describe which type of contact is involved (figure 1 gives the
code). Each term in (11) can be written in terms of B_ and o_ using (2) and (5). The
total free energy (9) is minimised with respect to the shortest interionic distance .
The equilibrium condition at temperature T is given by (Hildebrand 1931),

PO _ P apix), ®)

r

where B is the coefficient of thermal expansion and K is the compressibility. The
experimental values of B and K were taken from Krishna Rao (1973), Ming and Man-
ghnani (1979) and Hazen and Finger (1981).

The radius of the tetravalent cation was optimised in each of the three dioxides
studied so as to fit the experimentally observed interionic distance. The input data
are given in table 4 along with the results. The calculated radii are much larger than
the standard values. For example, we obtain a radius of 1-2 A for Ti** ion which is
almost double the value (0.76 A) quoted by Shannon (1976). From the available
electron density map of TiO, (Baur 1956), we deduce the ‘ experimental ’ radius of
Ti¢+ to be ~ 1-15 A. We consider this a strong experimental confirmation of our
calculated radii. Moreover, our predicted compressibility of TiO, is within 8%
of the measured value, again establishing the validity of our theory.

Another way to check the tetravalent cation radii is to predict the interionic dist-
ances in other structures where these ions may occur; e.g. the perovskite family.
The results in table 4 show that the RMS error in the predicted cell dimensions in a
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Table 4. Predictions on crystals in the perovskite structure.

Cubic cell parameter (A) d2 W /dr® (10° ergs/cm?)

Crystal

Calculated Experimental 9 error Calculated Experimental - 9 error
BaTiO,* 4-049 4-012 092 7-63 5-99 274
CaTiO; 3-908 3-840 1-77 7-69
SrTiOs 3-958 3-904 1-38 775 634 220
BaSnO; 4-155 4117 0-92 699 .
SrSn0O; 4-089 4-033 1-39 6-81

*at T = 474 K; other data are at 300 K.

number of ABO, perovskites is only ~ 1-3%. This again confirms that the radii
of the tetravalent ions as well as the B, o values of the divalent ions are reliable and
meaningful parameters describing the properties of these ions quite adequately.
The bulk modulus agrees to within ~25% in BaTiO, and SrTiO,, for which values
could be traced (Huibregtse et al 1959; Okai and Yoshimoto 1975). This must be
considered satisfactory in view of the long chain of calculations from the alkaline
earth chalcogenides to rutile to the perovskites.

6. Conclusion

The compressible ion theory of repulsion has been applied to the alkaline earth chal-
cogenides using a simplified formulation of the polyhedral cell approach. The theory
correctly shows that most of the crystals should occur in the NaCl structure. The
repulsion parameters of the chalcogen ions have been used to derive hard sphere
radii for a few divalent ions. ‘Also, the theory has been extended to the rutile and
perovskite structures where the interionic distances and compressibilities are satis-
factorily predicted. These results indicate that the theory, which is based on a purely
ionic picture, is quite valid for divalent ions in crystals. However, there is a mild
discrepancy in the matter of the relative stability of different crystal structures. The
present approach appears to overestimate the stability of the NaCl structure and
underestimate the binding energies of the competing ZnO (or ZnS) and CsCl struc-
tures. The presence of covalency might possibly explain the discrepancy.
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