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Abstract. Most of the known pulsars are sources of highly linearly
polarized radiation. Faraday rotation in the intervening medium rotates the
plane of the linear polarization as the signals propagate through the medium.
The Rotation Measure (RM), which quantifies the amount of such rotation
as a function of wavelength, is useful in studying the properties of the
medium and in recovering the intrinsic polarization characteristics of the
pulsar signal. Conventional methods for polarization measurements use
telescopes equipped with dual orthogonally polarized feeds that allow
estimation of all 4 Stokes parameters. Some telescopes (such as the Ooty
Radio Telescope) that offer high sensitivity for pulsar observations may
however be receptive to only a single linear polarization. In such a case, the
apparent spectral intensity modulation, resulting from differential Faraday
rotation of the linearly polarized signal component within the observing
bandwidth, can be exploited to estimate the RM as well as to study the
linear polarization properties of the source. In this paper, we present two
improved procedures by which these observables can be estimated reliably
from the intensity modulation over large bandwidths, particularly at low
radio frequencies. We also highlight some other applications where such
measurements and procedures would be useful.

Key words.  Stars: neutron—pulsars—interstellar medium: Faraday rota-
tion—telescope: polarization.

1. Introduction

Pulsar signals are generally weak (with average flux densities ranging from a few
milli-Jansky to a few Jansky), with a high degree of linear polarization. The position
angle of the linearly polarized component changes as a function of longitude within
the pulse in a manner that depends on the geometry of the spin axis and magnetic
poles of the pulsar relative to the observer’s line-of-sight (Radhakrishnan & Cooke
1969). At a given longitude, the average polarization seems to have a good long-term
stability in most cases, but the apparent plane of linear polarization rotates as function
of frequency across the band due to Faraday rotation in the intervening medium. The
extent of the rotation § is given by

§ = RM )2 (1)
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where A is the wavelength of observation and RM is the Rotation Measure
(= fo ngB"dl where 7, is the electron density, By is the line-of-sight component of
the magnetic field and D is the distance to the source). It is clear from this equation
that by measuring the polarization position angles at differént frequencies spanning
a sufficiently wide band one can estimate the Rotation Measure (RM). Usually,
polarization measurements use antennas with dual orthogonally polarized feeds. By
measuring the Stokes parameters across the spectrum or at several suitably separated
frequencies, the amount of Faraday rotation is determined. At low radio frequencies,
the Faraday rotation of the position angle becomes large enough to be able to measure.
the differential rotation within even moderate bandwidths. In addition, the pulsar
signal is generally stronger at lower frequencies, although at very low frequencies
the strong galactic background radiation seriously affects the sensitivity of these
measurements. Thus such measurements require a suvitable observing frequency,
large bandwidths and sensitive telescopes to achieve the required aceuracy. The
number of pulsars for which RM has been estimated is.only about 260 (Taylor et al.
1993) out of about 1000 known pulsars. Most of these 260 pulsars are strong sources
and hence relatively easy to study also for their polarization characteristics. To extend
such studies to weaker pulsars and at low radio-frequencies, large telescopes
operating at suitable frequencies are required. Some telescopes may have large
collecting areas, but are receptive to only a single linear polarization. In such cases,
an indirect way exploiting the effect of Faraday rotation can be used for studying the
linear polarization properties of continuum sources. The basic principle involved in
this type of measurements is outlined below.

For simplifying the following discussion, we assume that the RM contnbutlon of
the interstellar medium and the ionosphere are constant over the period of observation
and consider the time-varying effects of these media later. When a 100% linearly
polarized wave is incident on a linearly polarized antenna, the amount of power
received by the antenna depends, among other things, on the angle ¢’ between the
directions of polarization of the wave and the antenna feed as

Pin !
Predeived = ; [1 + COS(2§ )] . (2)

where Py, is the linearly-polarized incident power. The incident polarization position
angle changes at different frequencies within the observed bandwidth due to the
Faraday rotation in the medium between telescope and the source. Then, even if the
power radiated by the pulsar at all frequencies remained the same, the power received
by a linearly polarized antenna would show a modulation across the band as shown in
Fig. 1. The sampled version of the power spectrum is given by

‘. ) _‘ RMc? | | . ,
P(fL,+zAf)__AO+A1.cos{2(§“+(m)>} fori=0,1,...,N (3)

where c is velocity of light, f; is the lower edge—frequency of the spectrum, Af is the
bandwidth of each frequency channel, i is the channel number, Ag is the average
power, A; is the linearly polarized power, ¢ is the intrinsic position angle of radiation
relative to the antenna polarization angle and the second term in the argument is the
total Faraday rotation (f; = RMM?). The following can be determined from the
modulation: S
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Figure 1. The modulation due to Faraday rotation in the spectrum of the power received by a
single linearly polarized antenna.

(1) The degree of linear polarization, dj, can be determined by simply measuring the
depth of modulation, as

Pmax _Pmin — (Al)
Pmax + Pmin (AO)

where Prax and Pp, are the maximum and minimum values of the apparent
spectral power contribution, respectively.

(2) By observing with a bandwidth B over which the modulatlon completes Xo
cycles, the Rotation Measure can be estimated as

dy = (4)

-1
1 1

2 (f+B)

_Xor

(5)

(3) The phase (¢) of the modulation pattern (i.e. the argument of the cos term in
equation (3)) depends directly on the intrinsic position angle of the radiation.
Therefore, at a fixed frequency, the variation of ¢ as a function of the pulse
longitude can be used to trace the intrinsic sweep of the position angle during the
rotation of the pulsar. Using the ¢ value at a reference frequency, say fi,, ¢ can be

estimated as
¢o (RMc?
‘=72 —( 7 ) ©

where ¢ = ¢y at f = f1.

(4) Knowing the dispersion measure (DM in pc cm™3) and the rotation measure (RM
in rad m~2), the mean line-of-sight component of the magnetic field (weighted by
the electron density) can then be estimated from the relation
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(By) = 1.235 [—];R%} (u Gauss). (7)

The basic method outlined above has been used earlier (Sulemanova ef al. 1988) for
polarization measurements of 18 pulsars. However, they model the modulation phase
to vary linearly with the radio frequency which does not account properly for the non-
linear dependence of ¢ (see equation 3), particularly at low radio-frequencies and
over large fractional bandwidths. -

A modified, more direct method to estimate (B)) along the directions to pulsars has
also been used by Smirnova & Boriakoff (1997). In this method, the data are not
dedispersed and the spectral modulations translated to an equivalent temporal
modulation (through the dispersion law) are monitored across the pulse longitude.
This treatment exploits the similarity between the non-linear frequency dependences
of Faraday rotation and dispersion making the temporal modulation phase a linear
function of time. Despite the elegance and simplicity of this procedure, it unfor-
tunately suffers from several disadvantages. The depth of the modulation decreases
with large position angle sweeps across the pulse, and with smoothing by the finite
pulse width. The method is not applicable for ‘continuous’ sources, and for pulsed
sources it has a poorer signal-to-noise ratio than potentially available. And finally, the
modelling of various effects in this work is less than satisfactory.

In this paper we explore two different approaches (which are presented in the next
two sections). We also present some test observations and the results obtained using
these two approaches. In the last section, we compare the two approaches and discuss
their limitations and advantages.

2. Auto-correlation (ACF) domain approach

We begin by noting that it is difficult to detect weak modulation across the band
directly from the power spectrum. If the modulation was a simple sinusoid (as in Fig.
1), the domain best suited for studying its parameters would be the ‘auto-correlation’
domain. In this hypothetical case, it would correspond to a narrow feature in the auto-
correlation function obtained through a Fourier Transform of the power spectrum.
The ‘lag’ associated with the feature would be directly proportional to the RM. The
relative amplitude of the feature (with respect to the ‘zero-lag’ auto-correlation)
would correspond to the fractional linear polarization while the associated phase
would depend on the Faraday rotation as well as on the intrinsic position angle. In
the method outlined below, we exploit the simplicity of analysis in studying the
modulation feature in the auto-correlation domain.

Step 1: Linearization of modulation phase: The argument of the cosine term in
equation (3) has a non-linear (inverse square) dependence on the frequency of observa-
tion, and consequently on the frequency channel index in the case of a conventional
spectrometer with uniform channel spacing. The spectrum can, however, be
resampled in a suitable (non-uniform) manner such that the argument varies linearly
with the new pseudo-frequency indices, making the modulation appear as a pure
sinusoidal wave as a function of the new ordinate. This linearization simplifies the
analysis and enables the use of linear methods, such as Fourier transforms, to detect
and interpret the possible periodic feature directly in terms of the RM, ¢ and % linear
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polarization. The relation between the new (pseudo-frequency) channel index, j, and
the original (true frequency) index i is given by

(G 3)
j= ) 11 1L ®
((fL+Af)§ "'f?)
where the value of o can be chosen to match the new and the original modulation rate
at a desired reference frequency (for example, o = 1 will give a match at the lower-
edge frequencies).

The range of j is that implied by the range of i. For integer values of j, the
corresponding i values are not integers in general. Therefore, a suitably interpolated
spectral contribution from the original spectrum is to be obtained for a given j.
Alternatively, one may use all the samples in the original spectrum by stepping
uniformly in i, where for each i, the spectral contribution is suitably shared by new
spectral channels j & j + 1. Then, the share in each of the new channels should be
noted, so that the linearized data may then be normalized by the respective counts. In
both cases, linear interpolation would suffice provided the phase rotation between
two adjacent channels is small (say, less than a radian). It is important to note that this

linearization procedure is independent of the rotation measure and depends only on
the nature of the non-linearity (see equation 8).

Step 2: Fourier transformation: The ‘linearized’ spectrum at each longitude is
(inverse) Fourier transformed separately to obtain the corresponding ACFs to allow a
detailed estimation of the modulation parameters. The magnitude of the ACF is
scanned to find the location corresponding to the modulation feature, and the corres-
ponding frequency is used to estimate the RM using equation (5).

Step 3: Estimation of parameters: The peak magnitude of the ACF feature
(corresponding to the Faraday modulation) gives the value of A;, while that at “zero-
lag’ (the first point in the ACF) provides an estimate of Ag. The ratio of A; to Ap
yields the corresponding fractional linear polarization. An estimate of Ao is also
available directly as simply the mean power in the spectrum. Removal of this mean
value from the RF power spectrum before computing the ACF can significantly
reduce the side-lobe leakage of the ‘zero-lag’ component in to the modulation feature.
This is useful particularly when the differential Faraday rotation across the band is
not large. The modulation phase o, is the phase at the peak of the ACE. Then, from
equation (6), the intrinsic position angle ¢ is estimated at different longitudes. The
longitude corresponding to the centroid of the pulse in the Aq profile is taken as a
reference longitude. The final results include the fractional polarization and position
angle as functions of the longitude. The uncertainty in estimates of the parameters A,

and A; is given by the rms value of noise in the ACF excluding the two discrete
features. When the signal-to-noise ratio (SNR) is large, the formal statistical uncer-
tainty in the modulation feature phase (expressed in radians) is simply the reciprocal
of the SNR at the peak of the modulation feature in the ACF. However, a given phase
value can result from a wide range of combinations of RM and ¢ values, making it
difficult to decouple the uncertainties in the two. If the value of ¢ is known apriori,
then the RM estimate can be refined using the observed phase information, provided
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the possible 27 ambiguity is resolved. Otherwise, only the modulation ‘frequency’
(rather than the modulation ‘phase’) can be used to estimate the RM as mentioned
above. The uncertainty in RM estimated in this manner can be related to the signal-
to-noise ratio as shown below.

Effect of non-integral number of modulation cycles: If the number of modulation
cycles within the bandwidth is not an integer, then the modulation feature
contribution will not be centered on one of the sampled points in ACF with nominal
delay resolution (1/B). This is generally the case, necessitating finer sampling of the
ACF to avoid appreciable additional errors in the estimation of the location and other
parameters of the ACF feature. The required over-sampling is achieved by artificially
extending the spectral span by suitably zero-padding the trailing edge of the
measured spectrum or by a direct sinc-interpolation of the ACF. The SNR of the ACF
feature dictates the optimum over-sampling factor and in turn implies the uncertainty
in the RM estimation. It is easy to see that the uncertainty o, in estimation of the
location xy of the feature is given by sinc(o,) = (1 — 1/SNR) where x is in units of
the nominal delay-resolution (i.e. 1/B). Also, the optimum over-sampling factor is
then simply ~ 1/0,. From the estimates of x, and ox, the RM and the corresponding
uncertainty can be estimated as

-1
2|7 hrar (%0 £ ). %)

An improved RM estimation is possible by using a suitably weighted sum of the
ACFs (magnitudes) across the longitude range of the pulse.

RM:tagMzz-r-i:I 1

Effect of scintillation: The intensity scintillations produced due to the interstellar
medium result in superposed random modulations in the RF power spectra, on the
scale of the associated decorrelation bandwidth. Correspondingly, the Faraday modula-
tion feature in the ACF is convolved with a “scintillation ACF feature”, resulting in
reduction of the contrast of the feature of interest and thereby increasing the
uncertainty in the RM estimate. This effect is expected to be small for data averaged
over spans much longer than the decorrelation time-scales of the scintillations or when
the decorrelation bandwidth is much wider than the width of the band observed.

3. Non-Linear Least-Square (NLS) fitting approach

In this approach, an equivalent least-squares fit solution is sought through ‘matched
filtering’ and the best fit values of Ay, A, ¢ and RM are obtained. In doing so, we will
restrict the ‘grid’ search to RM only, and use a simple procedure to estimate (rather
solve for) the other three parameters, for each of the RM values. Thus, for each of the
trial RM value, a model spectrum is obtained and compared with observation and the
RM corresponding to the best match is sought. For the purpose of the following
discussion, we rewrite the equation (3) for the model spectrum, P,,, as

Py = Ap + Ay[cos(h) cos(2¢) — sin(h) sin(2()] = i C;B; (10)
=1
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where B; and C; are the three basis functions and the corresponding coefficients
respectively, and the observed pattern as Pops = P + 1, 2 being the random noise
term. Here, the coefficients, C; = Ag; C» = Ay cos(2¢) and C3 = —A, sin(2¢), contain
the parameters we wish to solve for. The basis functions, namely, By = 1; B, = cos(h)
and B3 = sin(h), can be assumed to be mutually orthogonal functions in principle,
except when RM = 0. This orthogonality can be exploited to estimate the coefficients
by matched filtering (cross-correlating the Pgps, the observed spectral pattern, with
the corresponding basis functions). Assuming that we have sampled versions of the
relevant patterns/functions, the cross-correlation will estimate some measures, say X,
such that

: 1.ZN 3 .. '
X";ﬁk 1P°b5Bi:Z - C;Yy for (i,j = 1,2,3). (11)
= J=

Where Yj; is the cross-correlation between the basis function B; & B;j computed over
the N sampled points and is formally defined as Yy = 3 >3-, BiB;. It is easy to see
that ¥; = ¥j; and ideally, ¥j; = 0 when i = j as a result of orthogonality. In practice,
however, given the available span and the sampling of the basis functions, Yj; = 0 are
non-zero even when i = j. This is no different from the ‘side-lobe leakage’ that one
refers to in Fourier transforms, for example. However, given the basis functions in 4
for an assumed RM (and hence Yj), the coefficients C; can be solved for in a straight
forward way from the above set of equations for X;. Note that the same formulation
would result from conditions for minimization of mean square deviations (of P, from
Pg,s) With respect to the parameters Ag, A; and C.

Using these parameter values, a model spectrum is computed and its mean square
deviation e2 from the observed data is obtained. This procedure is repeated for several
trial values of RM in fine enough steps. The best estimate of RM and the other 3
parameters corresponds to the fit with minimum ¢2. The e? value depends on the
correctness of the model, as well as on the other sources of uncertainty in the
observed pattern as already discussed. The variation of €2 as a function of changes in
the model-parameters (such as RM, Ay, etc.) can be used to estimate the uncertainty
in the parameter values. The minimum detectable change in e2,i.e. A2 =2 €2 [Nyot can
be attributed to the uncertainties in the parameter values which can be derived. In the
present case, the degrees of freedom (Ngof) are equal to N —4. The minimum
detectable change in the mean-square-error can be expressed in terms of the variance
associated with the estimation of individual parameters, to the first order, as

— 1L [/oP? P, 0Pu\* 2 . (OPn)’
2 - —m) A2 Z—my A2 M) A2 _my A2
e_NZKBAO) AAO+(6A1) AA1+<8RM> ARM+<6C) A2l (12)

k=1

Ideally, the covariances of the pafameters should also be considered (e.g., for the pair
RM and (), but are ignored here for the sake of simplicity. The entire error on the left-
hand side may be associated to one parameter at a time, to get the worst-case formal
statistical uncertainty in that parameter. Also, the noise statistics are assumed to be
same for all the frequency channels as is usually the case. The estimation of
uncertainty in RM does not include the effect of the error in ¢ and assumes that there
is no ambiguity in the modulation phase in multiples of 2. In such a case, the
maximum error in RM (corresponding to a phase error of £m) is (mc®/f7).
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The method outlined above is extended in a straight-forward way to a combined

fit over data for a range of pulse longitudes, the only common parameter being the
RM.

4. Tests and Results

The processing methods discussed above were tested first using simulated data
and then applied to data from pulsar observations. As a first trial, the data on PSR
0740-28, a pulsar with reasonably large RM (=2 150radm=2) and pulse strength
(S = 300mlJy), were obtained using the Ooty Radio Telescope with the pulsar search
preprocessor (Ramkumar et al. 1994). The spectral data for ~10 minutes (sampled
every 0.5msec) from 256 frequency channels covering a band of 8 MHz (around
327 MHz) were used. For each of the spectral channels, only the deviations from their
long term mean power were recorded after 1-bit quantization. The data were aligned
by correcting for the dispersion delay gradient across the band, and folded over the
pulsar period to improve the signal-to-noise ratio. The folded profiles of all channels
were arranged in the form of a time-frequency matrix. Fig, 2 displays a 3-D plot of
intensity as a function of frequency and pulse longitude. The spectral channel gain
calibration was done using estimates of off-pulse rms deviations. The data were then
analyzed using the ACF method. Fig. 3 shows the position angle, total (solid line) and
linearly polarized intensity (dashed line) as a function of the pulse longitude. For
comparison, Fig. 3(c) displays the observation at 631 MHz by McCulloch ez al. (1978),
made with the 64-m telescope at Parkes, Australia. Comparison of the modulation
pattern observed on three consecutive days (at the longitude of the peak of the pulse)
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Figure 2. Pulse intensity as a function of frequency and longitude (relative to the pulse
centroid) for PSR 0740-28, observed on 19-03-94 at ORT using the Pulsar Search Preprocessor.
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indicates an apparent change in RM of about 0.5rad/ m? from day to day (shown in
Fig. (4)). The rate of change is too fast to be associated with the contribution of the
interstellar medium, and is more likely to be due to changes in the RM of the
ionosphere. This method and initial resuits were discussed by Ramkumar & Deshpande
(1994).

The tests were repeated on data from subsequent observations of the same pulsar
using both the ACF and NLS procedures. The results from the two methods are
compared in Fig. 5, where Fig. 5(a) shows the average Ay components estimated by
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Figure 3(a,b&c). The estimated Position Angle (a) and Intensity (b) profiles of pulsar PSR
0740-28 from the observations on 19-03-94. Panel (c¢) shows the corresponding profiles at
631 MHz obtained by McCulloch et al. (1978) using dual-polarization data.
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Figure 4. Average power spectra showing modulations due to Faraday rotation observed on

three consecutive days (corresponding to the same nominal reference longitude). The observed
differences in the modulation phase are possibly due to ionospheric RM changes.
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the two methods, Fig. 5(b, ¢) show the corresponding fractional linear polarization dy,
and the position angle patterns respectively. The estimated value of RM (which also
includes the ionosphere contribution) is 152.5rad/m? and 153.5rad/m? (with corres-
ponding statistical uncertainties of 0.007 and 4.35) in the NLS and ACF methods,

respectively, as compared to 152rad/m? (excluding the ionospheric contribution)
quoted by Hamilton & Lyne (1987).
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Figure 5. (Continued)
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Figure 5(a,b&c). Profiles corresponding to the best-fit parameters from the two estimation
procedures applied to the data of PSR 0740-28 (observed on 15-7-1997). The solid and the
dashed lines show the results from the NLS and the ACF methods respectively.

5. Discussion

In the RM determination using the basic method described here, the bandwidth and
the number of spectral channels set limits to the range for measurable RM at a given
operating frequency. The RM should be large enough to produce at least one cycle of
intensity modulation across the band, while it should be less than a value at which one
cycle of modulation spans only two frequency channels. In the ACF method, the
accuracy in estimation of the parameters is also limited by the fact that “linear”
interpolation was used in sharing the power of original samples to those in the
linearized domain. This limits the modulation frequency that can be resampled
properly, and thereby implies an upper limit for RM up to which good estimation can
be made given the bandwidth, operating frequency and SNR. However, a higher order
interpolation would greatly reduce this problem. In the second method, there is no
such restriction since the pattern non-linearity is implicit and hence the performance
is robust. As such, these methods are well suited for observations of high RM pulsars
or observations over relatively large bandwidths, where simple sinusoidal
approximations to modulation phase may lead to significant errors in the estimation
of RM. The ACF method does not need any initial guess of RM, while the NLS
method is based on a grid search over a range of RM values. In practice, it may be
better to initially use the auto-correlation domain processing to arrive at an estimate
of RM, and then use the non-linear fit method to refine the estimate. This approach
will save the number of computations substantially, for measurements demanding
high accuracy. _

The ultimate uncertainty limit for RM and linear polarization measurements is set
by the signal-to-noise ratio of the data particularly that of the linearly polarized
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component. In the ACF method, the SNR can be enhanced further by averaging the
magnitude squares of the ACFs at different longitudes thus ignoring the phase
differences and using appropriate weights based on the pulse shape. The pulse
longitude resolution can be suitably optimized based on the sweep rate of polarization
angle within the pulse. Also, the data time span should be short compared to the
typical time scales for apparent changes in the RM contributed by the ionosphere, so
as to keep the depolarization due to integration well below that implied by the
required RM accuracy. However, to smooth-out the undesirable modulation due: to
interstellar scintillations, it is desirable to average data over spans much longer than
the de-correlation time scales of scintillation.

The observed modulation phase, as already noted, can be attributed to a range of
combinations of ¢ and RM values. The ability to distinguish between relative
contributions from RM and ¢ terms improves as the bandwidth increases or operating
frequency decreases, reducing the range of degenerate combinations of ¢ and RM.
Since the estimated value of RM is a “weak” function of the reference modulation
phase, the estimation accuracy is intrinsically higher for RM measurements compared
to those of (. The estimation of the intrinsic position angle of the radiation can show
large changes due to even a small change in the RM estimate. On the other hand, the
estimation accuracy of RM and ¢ is much higher in differential measurements, where
any ‘changes’ in the modulation phase are interpreted as changes in only one of the
two parameters (i.e. RM or ¢). Thus, the sweep of intrinsic position angle across the
pulse (where RM is assumed constant) and the possible variation in RM with time
(where the source position angle is constant, a fair assumption in most cases) can both
be measured with high accuracy. For a given signal-to-noise ratio, the non-linear
least-squares fit method has better performance than the ACF method. This is
because the former method uses the complete information (amplitude and phase) of
the signal to fit for RM, while in the ACF method only the amplitude information is
used for the RM determination.

A comparative analysis of such observations made on a given suitable pulsar on
short time spans should provide useful information about any ionospheric RM change
as a function of hour-angle and time in general. As such changes are expected to be
small, they would be noticeable first in the variation of the reference phase of the
modulation. This information should help us in modelling the changes in the iono-
spheric RM reliably. The basic technique and the estimation procedures, discussed
here in the context of pulsars, are also applicable to continuum sources that do not
have pulsed radiation.

The ‘linearization’ technique suggested in the context of the ACF method has very
useful applications in many other situations. For example, this linearization approach
when applied to pulsar search data over wide bandwidths, would allow the use of
Taylor’s dedispersion algorithm meant for linear dispersion delay gradients.
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