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Abstract.  Spectral analysis of the residual pulse-arrival times of
pulsars is a useful tool in understanding the nature of the underlying
processes that may be responsible for the timing noise observed from
pulsars. Power spectra of pulsar timing residuals may be described by
one or a combination of power-laws. As these spectra are expected to
be very steep, it is important to ensure a high dynamic range in the
estimation of the spectrum. This is difficult in practice since one is, in
general, dealing with timing measurements made at unevenly placed
epochs. In this paper, we present a technique based on ‘CLEAN’
to obtain high dynamic range spectra from unevenly sampled data.
We compare the performance of this technique with other techniques
including some that were used earlier for estimation of power spectra
of pulsar timing residuals.
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1. Introduction

After allowing for the deterministic pulsar spin-down (‘pulsar braking’) and any
resolved period discontinuities (discrete events or ‘glitches’), the timing residuals
display irregularities in the pulsar rotation (‘timing noise’ or ‘timing activity’), in
excess of the estimated measurement uncertainties. It has been proposed that this
variation is a result of the response of the neutron star to a ‘noisy’ torque (either
magnetospheric or related to the moment of inertia), with an assumed simple power-
law spectrum.

The ‘random walks’ seen in the timing residuals are thought to be the result of
fluctuations in three observables — the pulse phase, ¢ (‘phase noise’, PN), frequency,
v (‘“frequency noise’, FN) or frequency derivative, i (‘slowing-down noise’, SN).
These processes have a ‘red’ power spectrum (i.e., excess power at low frequencies),
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and can be considered as a repeated integral of white noise. Since ¢, v and  are
simply related by differentiation, the power density spectra are related by factors
of f2: P,(f) ~ f72Py(f), Ps(f) ~ f~2P,(f). Deeter & Boynton (1982) use
the terminology ‘r® order red noise’, denoting a variable z(¢) which is the r-fold
integral of white noise (i.e., the M time derivative, z" (t), reduces to white noise).
Hence, the power spectrum of z(%) obeys the law Py(f) ~ f~2". The orders r = 1,
2 and 3 correspond to phase, frequency and slowing-down noise respectively.

To investigate successfully all of the proposed noise processes over a frequency
range of a decade, a dynamic range of at least six orders of magnitude must be
attainable. Conventional Fourier transform (FT) techniques fail when they are
used to estimate the spectral power density characteristic of red noise processes,
particularly from a non-uniformly sampled time sequence.

A basic reason is that there is substantial power ‘leakage’ from the sidelobes of
the equivalent power density estimators that can very easily mask any steep varia-
tions in the spectrum. While dealing with steep red spectra, simple FT techniques
produce meaningless power spectra with a steepest power-law slope of ~—2.

The situation is further complicated due to the non-uniform sampling of the time
series inevitably arising from practical astronomical observations. Interpolation of
the data is inappropriate as the resulting ‘jitter’ introduces equivalent steps in
the time series that seriously affect the power spectrum estimation at the higher
frequency end.

Hence, both of these issues need major consideration if one is to correctly
recover red noise spectra from the timing data.

Detailed analyses of the noise in pulsar rotation have been undertaken by a
number of workers. These are briefly reviewed in the context of the alternative
method proposed in this paper.

1.1 Analysis of timing noise: A review of techniques

Boynton et al. (1972) were the first to publish work on timing noise, which was
based on the first three years of the Crab pulsar timing data. Using standard Fourier
techniques, they found that the timing residuals (after fitting a cubic and allowing
for any glitches) had a power spectrum most closely resembling a frequency-jump
noise model.

The difficulties involved in the estimation of power spectra using conventional
techniques prompted workers to develop alternative (time domain) techniques to
analyse the noise process, the methodology of which has been described by Groth
(1975), Cordes (1980) and Cordes & Downs (1985).

Groth (1975) developed a new technique which accounted for effects such as
non-uniform sampling and non-uniform data quality. The method consists of the
expansion of the data in a set of orthonormal polynomials from which one can
extract the slow-down parameters (and the degree to which they are contaminated
by the noise) as well as a strength parameter for the noise process model which
best fits the data. Hence, the method requires the input of an assumed model
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for the noise process, the result being a consistency check of the validity of the
model. Application of this method to the Crab pulsar timing data also showed that
the observed fluctuations in pulse phase was consistent with a random walk in the
rotation frequency.

Cordes (1980) developed a method -similar to that of Groth (1975), except
that it uses the integrated variance rather than a decomposition of the variance
into polynomial components. In the same way as Groth (1975), one assumes a
model and tests for consistency with that model. However, Cordes points out that
showing consistency of a random walk is a necessary but not sufficient condition '
for demonstrating that a random process is occurring in a pulsar’s rotation. Cordes
& Helfand (1980) applied this technique to the timing noise of 11 pulsars (from a
sample of 50 pulsars). The results indicated that 2, 7 and 2 pulsars show a random
walk in rotational phase, frequency and frequency derivative respectively.

Cordes & Downs (1985) analysed the pulse phase residuals and their derivatives
in the time domain by examining the polynomial coefficients and residuals from
polynomial fits made over a variety of data spans and time origins. The method
was partly described in Cordes (1980) and used by Cordes & Helfand (1980), but
it is augmented with a more sophisticated error analysis and through the study of
structure functions of the phase. One of the aifs of the structure function analysis is
to determine whether the discrete events (found by Cordes & Downs for a number of
pulsars) are the result of fluctuations in a random walk process, or other phenomena
(either internal or external to the pulsar).

Other workers have approached the problem by obtaining estimates of the
power spectra of the time series. Deeter & Boynton (1982) and Deeter (1984)
have developed a general mathematical framework, specifically designed for non-
uniformly sampled data, leading to a power density estimation technique which
is valid for red power-law spectra. Their work is essentially an extension of the
work of Groth (1975). The method uses orthonormal polynomials as power density
estimators whose frequency response is such that leakage through the sidelobes
of the transfer function is minimised (hence correct estimation of power density
for processes which are “red”), while sacrificing frequency resolution to a certain
extent. Their modest one octave frequency resolution is enough to identify features
like the step in P, (f) characteristic of a viscously-coupled crust-core model driven
by white torque noise. A true power spectrum calculated in this manner allows
power-law behaviour (over the available frequency range) to be tested directly
rather than assuming this result as Groth (1975) and Cordes (1980) have done.
This power spectrum technique has been applied to pulsar timing data by Boynton
(1981), Boynton & Deeter (1986) and Deeter ef al. (1989).

Power spectra are particularly useful for comparison with theoretical models of
neutron star interiors, such as the vortex creep theory (Alpar et al. 1986). A flat
spectrum is characteristic of rigid-body behaviour, whereas structure in the observed
spectrum is characteristic of non-rigid-body behaviour. Alpar et al. (1986) have
compared their theoretical predictions with the power spectrum in of 25 pulsars,

obtained by Boynton & Deeter (1986). The results indicate that vortex unpinning is
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not the underlying cause of timing noise in the Crab and Vela pulsars, and possibly
also unimportant for the other pulsars.

2. A technique for spectral estimation using ‘CLEAN’

Non-uniform (or incomplete) sampling of a function limits the dynamic range of
estimation of its Fourier components. This problem is routinely encountered while
. dealing with aperture synthesis data. There the sampling in the spatial frequency
domain is incomplete and often non-uniform and one is interested in high dynamic
range imaging. A technique called ‘CLEAN’ (Hogbom 1974) is commonly used to
obtain high dynamic range images from the often patchy sampling of visibilities. We
see an almost directly analogous situation of this in the estimation of power spectra
from non-uniformly sampled pulsar timing residuals. Considering this, we have
attempted to investigate the possibility of using the basic ‘CLEAN’ algorithm for
enhancing the dynamic range in the estimation of spectra from the timing residuals.

Let us assume R(t) and S(f) to be a Fourier transform pair where R(t) is the
true continuous time sequence of pulsar timing residuals and S(f) is the spectrum
of R(t). The true power spectrum is obtained simply as |S(f)|*. Let z(¢) be the
sampling function which is unity at the sampled epochs and zero elsewhere. The
spectrum Sp(f) of the sampled sequence R’ (t) [where R'(t) = R(t).z(t)] can be
written as

Sp(F) = 8(f) * X(f), (D

where X (f) is a Fourier transform of 2(t) and * denotes convolution. Our aim is to
obtain an estimate of S(f) given the estimates of Sp and X(f).

The “dirty* spectrum Sp and the ‘dirty’ response function X (f) are not available
directly from observations. If the span of z(¢) is T, then the ‘dirty’ response
function can be estimated with a frequency resolution of Af = (1 /T). However, it
is desirable to-oversample this response function and the ‘dirty’ spectrum by a factor
of 2 or more to improve the performance of the deconvolution by ‘CLEAN’. The
extent in frequency (fmay) over which the spectral estimation may be performed is
not unique in the case of a non-uniformly sampled time sequence. However, it can
be argued that a more appropriate span corresponds to that implied by an average
sampling rate for the time sequence, i.e., 0 to N /(2T where N is the number of
time samples. The extent of the ‘dirty” response function is then twice that of the
spectrum to be ‘CLEANed’. With this understanding, we can compute the functions
Sp(f)and X (f) at discrete frequencies by Fourier transforming the measured time
sequence of the pulsar timing residuals and the sampling function respectively.

This operation is performed by summing the spectral contributions from each of
the sampled points of the time sequence (i.e., Sp(f) = ¥; R(t;) exp(2mi ft)). In
this way, gridding of the time samples is not required, avoiding the possible phase
jitters due to quantized sampling intervals. ,

It should be noted that the complex spectra thus obtained are hermitian symmet-
ric in nature, unlike in the case of aperture synthesis data. The ‘CLEAN’ algorithm
to be used therefore needs the following minor modifications: (i) while searching
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for the maximum in the spectrum to be ‘CLEANed’, phases in the spectrum are ig-
nored, i.e., the location of the maximum spectral amplitude is found. But the actual
contribution at that location is considered including the phase; and (ii) the search for
the maximum is made only over one half of the spectrum but subtraction of a scaled
(by a complex quantity) version of the response function is performed over both
halves of the spectrum after accounting for the hermitian symmetric contribution.
This makes the algorithm somewhat faster and, more importantly, ensures the her-
mitian symmetry in the ‘CLEANed’ spectrum. Given that the extent of the ‘dirty’
response function is twice that of the so called ‘dirty’ spectrum, the contributions
from hermitian symmetric partners always overlap over the entire span of the ‘dirty’
spectrum. Hence, low values of ‘loop-gain’ are used to avoid possible instabilities
that would otherwise occur particularly while ‘CLEANing’ features close to the
‘zero-frequency’.

The resulting ‘CLEANed’ spectrum corresponds to a time sequence which is
an interpolated and/or extrapolated version of the original non-uniformly sampled
time sequence, while being consistent with the original time sequence at the epochs
of measurement. As we are not looking for super-resolution in the spectrum, the
‘CLEANed’ spectrum is to be restored to a resolution which is approximately the
original resolution (i.e., 1/7T"). In applications such as aperture synthesis imaging,
the ‘CLEANed’ versions are restored to a desired resolution by convolving the
‘CLEANed’ components in the image with a Gaussian ‘CLEAN’ beam (i.e., without
any sidelobes). In the present case too, spectral smoothing with a Gaussian would be
satisfactory if the spectrum is to be viewed on a linear frequency scale. Asmentioned
in an earlier section, the spectra of pulsar timing residuals may more likely be of
power-law nature, making restoring functions with long tails undesirable. Hence,
we have used a half-a-cycle cosine bell as the restoring function, with a half-power
width close to the original resolution. (It is worth noting that our use of the cosine
bell for restoration avoids the possibility of any interchannel leakage particularly
close to the ‘zero-frequency’ in the spectrum unlike when a Gaussian function is
used.) After the ‘CLEANed’ complex spectra are restored to a desired resolution,
the power spectra are computed in the usual way.

3. Simulations and results

To judge the performance of the technique described above, we have applied it
to simulated time sequences corresponding to steep red spectra and we find the
results very encouraging. The simulated time sequences were generated for 5
cases, namely, white noise, phase noise, frequency noise, slowing-down noise and
a test sine wave. This was done first with uniform sampling. Figure 1 shows the set
of simulated patterns in the first four cases. It is worth mentioning that these data
simulated in the time domain do not, in general, obey periodic boundary conditions
as is the case for real data. Also, P and P were fitted to these sequences and the
corresponding ‘second-order baseline’ contribution was removed as would be done
for real data. We added 0.1% white noise to the simulations of PN, FN and SN to
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Pulse phase

Figure 1. Uniformly sampled time sequences which simulate white noise (WN), phase
noise (PN), frequency noise (FN) and slowing-down noise (SN) respectively, with 0.1% of
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Figure 2. Power density spectra of the simulations shown in Fig. 1. The plots show

log(power density) as a function of 1og(f/ fmaz) in the four cases.
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Random walk simulations
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Figure 3. Simulations of white noise, phase noise, frequency noise and slowing-down
noise, sampled according to the observation epochs for PSR 1641—435.
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Figure 4. Power density spectra of the non-uniformly sampled time sequences shown in
Fig. 3. The spectra were obtained using conventional discrete Fourier transform techniques.
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Figure 5. Power density spectra of the non-uniformly sampled time sequences shown in
Fig. 3. The spectra were obtained using the technique based on ‘CLEAN".

demonstrate the effect of even a small amount of measurement error on the high
frequency end of the power spectrum. QOur ‘CLEAN’ procedure was used on this
set of simulated data and we confirmed that our procedure gives the expected output
power spectra in the case of uniformly sampled time sequences. Figure 2 shows
these power spectra. The non-uniformly sampled versions were obtained from the
above simulated time sequences by using sampling functions that we encounter in
practice. Figure 3 shows such versions when we used the sampling pattern that
we have for PSR 1641—-45 from our observations at the Mt. Pleasant Observatory
(D’ Alessandro et al. 1993). Each of the ‘dirty’ spectra was ‘CLEANed’ down to the
expected spectral contribution from the measurement error in the timing residuals.
The procedure was seen to converge within typically a few hundred iterations when
a loop-gain of 0.1 was used.

We subjected these data to a number of different procedures, including the
technique based on ‘CLEAN’, in order to evaluate their performance. The other
proceduresinclude: (i) interpolation of the time sequence at epochs spaced at regular
intervals using a polynomial and then the use of a standard FFT op the interpolated
data, (ii) use of the Lomb-Scargle periodogram method for non-uniformly sampled
data (Press & Rybicki 1989), (iii) use of suitable-order harmonic fits to the time
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Figure 6. The power density spectrum estimated from the phase residuals for PSR 1641—45

using: (a) conventional discrete Fourier transform methods, and (b) the ‘CLEAN’ tech-
nique.

sequence giving the best fit estimates of the power spectrum (similar to the method
used by Boynton et al. 1972), and some variants of these. Of these other procedures,
the third method was found to perform much better than the other two. However,
even in this case, the slopes of the reconstructed red spectra were consistently lower
than those expected.

Figures 4 and 5 show the power spectra before and after we apply the ‘CLEAN’
procedure respectively. The improvement in the dynamic range and the quality of
reconstruction due to the ‘CLEANIng’ is dramatic. However, the reconstruction of
the spectra at the higher frequency end of the spectrum is comparatively poor.

It should be pointed out that the sampling function we have chosen in the
present case, although free of any large gaps, has severe non-uniformity and should
be treated as a situation close to the worst case of non-uniform sampling. If large
gaps comparable to the total time span itself exist in the sampled data, it is more
appropriate to use the portions of the time sequences that avoid such gaps.

In any case, realistic measurements would include measurement uncertainties
that contribute a white noise component in the spectrum, masking the steep drops
in the spectral power towards the higher frequency end of the red spectra. After
including random measurement noise in our simulations, we find that even a mod-
erate amount of the noise dominates the contributions at the high frequency end of
the spectrum. '

Hence, we consider the performance of our procedure as satisfactory, since it
reconstructs the steep spectra very well over the more relevant (lower) frequency
range and with a dynamic range exceeding 6 orders of magnitude.

4. Conclusions

In this paper, we have explored a suitably modified form of the ‘CLEAN’ technique
for use in power spectral analysis of pulsar timing residuals. This technique is shown
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to overcome the already noted problems of dynamic range limitations in obtaining
reliable power spectra from non-uniformly sampled time sequences. Using this
technique, we have obtained estimates of the power spectrum of the timing residuals
in pulse phase for a number of southern pulsars. The complete results of this analysis
will be published elsewhere.

Figure 6 shows a sample ‘CLEANed’ spectrum of the phase residuals for PSR
1641-45. Comparison with the ‘dirty’ spectrum clearly demonstrates the dynamic
range improvement achieved by our technique in the spectral estimation of non-
uniformly sampled time sequences of pulsar timing residuals.
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