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Figure 1 A cross section
of the cable. S is the region
in which the fields pro-
pagate.

This article illustrates the interplay between topol-
ogy and analysis in the context of an everyday ex-
ample. We describe how topology governs the trans-
mission of TV signals through a cable. This exam-
ple helps us to understand some of the mathematical
ideas contained in an earlier article by V Pati in Reso-
nance. A number of steps are left as exercises so that
the reader can actively participate in the exposition.

Cable TV is fairly common these days. The TV set receives
signals through a cable that is plugged into it. The next
time you get a chance, unplug the cable from the TV or the
wall socket and examine it. You will find an outer cylindrical
metal tube and an inner wire (see Figure 1) separated by a
dielectric medium. The function of the cable is to transport
electromagnetic energy from one of its ends to the other. Let
us now try to understand the relation between the structure
of the cable and its function.

outer metal tube

insulation

dielectric material
separating the
metal boundaries
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The cable ‘guides’ the electromagnetic energy along its
length — it is a waveguide. The outer tube confines the elec-
tromagnetic energy and prevents it from escaping. But what
is the function of the inner wire? Is it possible to send the
electromagnetic signal through the tube without an inner
wire? We address these questions in this article and in the
process of answering them, we will learn a bit about trans-
mission lines and topology.

Can' one send electromagnetic energy through a hollow
metal tube? Of course, one can! If you look through a
metal pipe you see direct proof that electromagnetic energy
does propagate through a tube. Light is an electromagnetic
wave! Then why do cable TV operators put in an inner
wire? To find the answer, we need to write down all the
relevant equations and solve them. This looks like a problem
in calculus, but, as you will see, we will end up discussing
topology.

At this point it is best to get paper and a pencil to check
some of the steps yourself. Topology and physics are not
passive entertainment like Star TV! The equations we have
to solve are the source-free Maxwell’s equations inside the
cable subject to boundary conditions at the metal surface.
Let us assume the cable to be laid straight along the z axis.
The cross section of the cable is the same for all t and z.
We can therefore solve the Maxwell equations by separating
variables. We assume a solution of the form E (z,y,2,t) =
E(z,y)f(t, z), where £(z,y) depends only on the transverse
coordinates (z,y) and f depends only on (¢,z). Plugging
this form into the wave equation B(5)(see Boz I) for the
electric field, we find that

i) f(t z) satisfies the equation

%f | 9%
~a T =0 ()
ii) £(z,y) satisfies the equation
-c?vi€ = D¢, (2)

where D is a separatlon constant and V2, the two dimen-
sional Laplacian V4 = (A form similar to (1) is
also assumed for the magnetlcﬁzld which will not be writ-
ten here explicitly. We merely note that after the electric

Maxwell's
equations lead us
to the transverse
Laplace equation
on the cross
section of the
cable.
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Box 1 Source-free Maxwell’s Equations.

Electromagnetism is governed by the set of four Maxwell's equations:

V.E=ple (B1)
V.-B=0 (B2)
¥ xE = ﬁf | (B3)
VxB= 2 (B4)

"where pg and €g are constants characterizing the vacuum, p and J are the charge density
and current density respectively. They act as sources for the E and B fields. In the
absence of sources we set p = 0, j = 0 and get the ‘source-free’ Maxwell equations.
Throughout this article we have set the sources to zero in Maxwell’s equations, since we
work in the region between the metal boundaries, where there are neither charges nor.
currents.

By taking the curl of (B3) and using (B4) and (B1) we get (remember that p = 0
and 7 = 0)

92 10%E _
. VE—C_ZW—O"‘ | (B5)

where ¢? = ﬁ This is the wave equation for the field £. Similarly, by taking the curl
of (B4) and using (B3) and (B2) we get

- 1 a B
‘72 - _ —

the wave equation for the magnetic field. Apart from satisfying Maxwell’s equations,
which are differential equations, the fields also have to satisfy boundary conditions: at
the metal boundaries, the tangential component of the electric field must vanish:

TE=0. ' (B7)

Here £ is any vector tangential to the boundary surface. Further, the normal component
of the magnetic field must also vanish at the metal boundaries: '

B =0, (B8)

where 7i is the vector normal to the boundary.
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field is known, the magnetic field is determined from the
Maxwell’s equations.)

Equation (1) is solved by f(¢, z) = cos(kz — wt) where w
and k are constants satisfying the relation

w? =D + %2 (3)

w is the angular frequency of the wave and k is the wave
number, which is related to the wavelength by A = 2x/k.
cos(kz—wt) represents a solution propagating in the positive
z direction with phase velocity vph = w/k which depends on
the wavelength for D # 0. Thus in this case, there is dis-
persion of the TV signal. This is analogous to dispersion of
light in optical media, where the refractive index (and hence
the velocity of propagation) depends on the wavelength.

Equation (3) relates the (angular) frequency w of waves
being transmitted through the cable and their wave num-
ber k and is called the dispersion relation. Let us now as-
sume that the transmission is dispersionless (see Boz 2). In
other words, we require that pulse shapes travel undistorted
through the cable. This implies w = ck (or equivalently,
D = 0) so that waves of all frequencies travel at the speed
of light, c.

From (2) and (3) the condition for dispersionless prop-
agation is that the field £ (z,y) must satisfy the transverse
Laplace equation

vi2=0 (4)

subject to the condition (B7). The latter implies that
t€=0 (5)

at the metal boundary for every vector ¢ tangent to the
boundary. Now solve (4) with the boundary condition (5).
Let us start with the z-component of (4). Note the iden-

tity

/svlgz.ﬁigzdxdy = ‘/S§_L.(826_L8z)da:dy—

/S £zVL2EZd:cdy (6)

The possibility of
dispersionless
wave propagation
through a metal
tube depends on
the topology of the
cross-section of
the tube.
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Box 2: Dispersion and Damping.

You may wonder why you can see light through a hollow tube but cannot detect
a TV signal along such a tube. For a signal to propagate through a hollow tube the
frequency of the signal has to be higher than a threshold frequency wq set by the dimen-
sions of the tube. (Ezercise: Use (6) to show that D > 0 and can therefore be written
as wp?. Use dimensional arguments to estimate the lowest positive value of wg) Consider
the dispersion relation k% = w? — wg (equation (3)). Notice that for w > wp, k is real
and we get a propagating wave (~ cos(kz — wt)). On the other hand, for w < wp , k is
purely imaginary and the wave is damped and it decays exponentially along the length
of the cable. In the case of light, the angular frequency w is about 10*3rad/s. (It is more
common to give the frequency v = w/2r measured in Hz.) Thus the frequency of a light
signal is clearly greater than the cut-off frequency vg ~ 10''Hz associated with a cable
1mm thick. This explains why light can be seen through a hollow tube. In contrast, a
TV signal has a typical frequency v ~ 107Hz, which is much smaller than the cut-off
frequency vg of a cable. So a TV signal cannot be transmitted through a lmm thick
hollow tube. Similarly, light cannot pass through a thin hollow metal tube (say 1000
Angstrom in diameter or less).

For purposes of exposition, we imposed the condition that the waves must propagate
without dispersion. In practice, wave guides with dispersion are also used for transmitting
signals. One chooses a narrow band of frequencies so that the dispersion is negligible over
the band used.

We have also described region S inside the cable as ‘metal free space’. This region is
not empty but there is some solid dielectric material separating the two metal boundaries.
This affects our analysis only to the extent that ¢ is not the speed of light in vacuum but
in the dielectric medium.

To avoid pathologies of a mathematical nature, we assume that the metal boundaries
do not touch each other and that there are only a finite number of inner wires, and for
a TV cable only a single inner wire.

where V| is the two dimensional gradient V, = (3— z;g)

The region of integration in (6) is S, the (cross section of
the) metal-free space (the light grey region in the figure)
inside the cable along with its boundary. The boundary of
S consists of the inner surface of the outer metal tube and
the outer surfaces of any inner wires present there. (In the
figure we have shown a single central wire). The second term
on the RHS of (6) vanishes by (4). The first term can be
expressed (Ezercise: supply the argument) as a line integral
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over the boundary of the cross section; this vanishes too,
because the boundary condition (5) implies that £, vanishes
on the boundary. It follows that

\ /Sﬁ.ng-ﬁ_ngdxdy = /;(vlgz)dedy = 0. 7

Since the integrand is positive, V1E, = 0. Thus £, is zero
(since it is zero at the boundary) everywhere in_S.
Maxwell’s equation (B1) now reads

AN

05z + 0yEy =0. (8)

Let a = 8;&y — 0y&; and let I the integral of a? over S be

\ I= /(a)zdxdy.

By rearranging the integral (Ezercise: supply the argum‘ent)
as before, and using (8), we conclude that I = 0. Since the
integrand is positive,

(9) would certainly hold if £ were the gradient of some
scalar function. But can we write £ as a gradient?_ Fix a
point poin S and define a potential ¢(p, v) by

P o
s0,7) = Edl (10)
po

where p is any point in S and the integral is over a curve
~ joining po to p. Consider the line integral of £ over. any
closed curve. Given any closed curve vg in S, we can find a
two dimensional surface whose boundary consists of vo and
possibly additional metallic components. Use of (5) and (9)
shows that the integral vanishes:

Edl=0. (11)
Yo

(Ezercise: Show that ¢(p,~) is independeht of v as a result
of (11)). Thus we can write ¢(p) instead of #(p,v) and
it follows from (10) that £ is a gradient: £ = V.o (see

~WWW——3
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' Readers may be amused fo
learn that apart from being a
mathematician, de Rham was
also an accomplished alpine
mountaineer. In fact, in his
obituary notice at his
mountaineering club in
Switzerland, they described
him as being "also a
mathematician™ !

De Rham’s! theorem in the article by V Pati in Suggested
Reading). Now (8) reads

vie =0, (12)
and the boundary condition (5) tells us that
t-‘.ﬁ_L(ﬁ(l', y) = Os (13)

i.e. the tangential component of the gradient of ¢ must be
zero on the metallic boundary of the cross-section.

The analysis so far is general and encompasses all possi-
blities for the cross section of the tube. Let us now consider
the following cases:

(a) A hollow cylindrical tube: In this case there is only
one metallic boundary and the condition (13) implies that
¢ is a constant (= ¢, say) all over the boundary. Consider
the function ¢ — ¢; (which satisfies Laplace’s equation (12)
and vanishes on the boundary) and show that ¢ is constant
all over S (this is left as an exercise). Hence the electric field
vanishes in this region. There are therefore no nontrivial
solutions to (4) satisfying the requisite boundary conditions.

(b) A hollow tube with some other cross section: One
might wonder if changing the cross section of the tube would
help. A glance at the argument given above shows that it
does not. All we used in that argument was that the metal
boundary of the cable consisted of a single piece. The use
of neither a rectangular nor an irregular cross-section helps.
It doesn’t help to change the geometry of S. But, as we shall
see later, it does help to change the topology of S.

(c) A tube with an annular cross-section: Insertion of
a central wire completely changes the picture. The region
of interest is now an annulus and has two boundaries: an
outer boundary and an inner boundary. (13) only implies
that ¢ is constant over each piece of the boundary. While
the potential can be a given constant ¢; on the outer wire,
it could be a different constant ¢2 on the inner wire. This
possibility arises entirely because the boundary of the annular
region has two disconnected components as opposed to one

38
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for the disc. Consequently there are nontrivial solutions
to (12). It is quite easy to write down a solution for (12)
namely,

¢(z,y) = Aloglr], (14)

where A is a constant and r is the radial distance measured
from the centre of the inner wire. The corresponding £(z, y)

1S
£ = A#/r, (15)

which points radially outward, just like the electric field of
a line charge.

Notice that the insertion of a central wire has quali-
tatively altered the situation. This is remarkable because
the existence of a solution (or equivalently the possibility of
transmission of a signal) does not depend on the thickness
of the central wire, it merely depends on its presence! In
mathematical terms, we were previously solving (12) on the
disc. Now we solve (12) on the punctured disc. The latter
problem has the solution (14) whereas the previous one does
not. So cable TV provides an example where the existence
of a solution to a differential equation in a region depends
on the topology of that region. This is an example of how
topology governs analysis.

It is now quite easy to write down the magnetic field
from Maxwell’s equations. Equation B (3) with a form
for B(z,y, 2,t) similar to (1) tells us that B, = 0,8, =
—&y, By = &. From (8), 8;B, — 8,B; = 0. So B is a curl-
free vector field. Nevertheless (Ezercise) the line integral
of B along a closed curve encircling the inner wire is non-
zero. Therefore B cannot be written as the gradient of any
function.

Many features of the cable TV problem we have dis-
cussed here are illustrations of the general mathematical
ideas put forward in the article by Pati. (Ezercise: Plot
the vector field 5 above and compare it with the ‘whirlpool’
vector field of Pati’s article.) For example, our boundary
conditions on ¢ (13) are satisfied by any constant function.
But this is not the only solution. If the boundary is discon-
nected (that is, it is made of n distinct pieces), there are
exactly n linearly independent functions on S which satisfy
the boundary condition (13) and the differential equation

Cable TV provides
an example where
the existence of a
solution to a
differential
equationin a
region depends on
the topology of the
region.
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(4). (Ezercise: Show that this is so). A function can be
locally constant, yet take different values on each connected
component. In the language of Pati’s article, this is an ex-
ample of cohomology. Similarly, a gradient is always curl-
free, but curl-free vector fields need not be gradients, since
closed line integrals of these fields may not vanish. The £
field is curl-free and also the gradient of a scalar function.
On the other hand, the B field is not a gradient although it
is curl-free. The & field represents a trivial (first) cohomol-
ogy and the B field a nontrivial one. The first cohomology
measures the extent to which the local, differential equa-
tion (9) differs from the global, integral (11) one. Similarly,
the zeroth cohomology measures the difference between the
local, differential equation (12) and the global ‘integrated’
version ¢(p1) — ¢(p2) = 0 (for p1 and ps on the boundary of
S). The reader is invited to make a detailed comparison to
understand both articles better.

Our aim in this article has been to show how a famil-
iar realisation is often a valuable aid to understanding an
abstract idea. There are numerous examples in physics
which illustrate how topology affects analysis. Studying
these could provide the reader with an (albeit back door)
entry into topology and mathematics. We chose one spe-
cific example from classical electromagnetism, since this is
a subject which is widely known. The reader is encouraged
to seek others. After gaining experience with examples the
reader will readily appreciate the value of the abstract ideas.
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