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Abstract. The effect of destabilizing fields on the roll instability (RI) threshold for
shear flow and on the homogeneous instability (HI) threshold for plane Poiseuille
flow of nematic HBAB (u, > 0) is studied on the basis of the continuum theory of
nematics for flow cells of infinite lateral width. It turns out that the critical shear
rate and wave vector at RI threshold decrease with increasing destabilizing field but
do not approach zero at the Freedericksz transition. However calculations show that
beyond the Freedericksz threshold HI may be favourable over a range of destabiliz-
ing field with shear in the stabilizing role. For plane Poiseuille flow a similar analysis
points to the existence of a HI threshold in the presence of destabilizing field beyond
the Freedericksz threshold again with shear acting as a stabilizing field. These results
are compared with theoretical results obtained previously for MBBA.

Keywords. Roll instability; nematics; MBBA; HBAB; homogeneous instability;
shear flow; plane Poiseuille flow.

1. Introduction

Homogeneous (HI) and roll instabilities (RI) have been the subject of theoretical
and experimental study. Pieranski and Guyon (1973) observed and measured the
HI threshold for shear flow in MBBA and gave a simple theoretical analysis based
on the continuum theory. Subsequently they found (Pieranski and Guyon 1974a)
that in the presence of large stabilizing fields RI is more favourable than HI and gave
a simple theoretical picture of the RI involving hydrodynamic focussing. Leslie
developed rigorous solutions for HI and independently Manneville and Dobois-
Violette (1976a) also did the same but extended their study to RI. They pointed out
that HI cannot occur in a nematic with p3 > 0 (ug is an Ericksen-Leslie coefficient)
and also studied effects of stabilizing fields on HI and RI. More recently the effects
of destabilizing fields on HI were studied (Kini 1978) on the basis of the approach
taken by Leslie (1976). Approximate solutions obtained by Dubois-Violette and
Manneville (1978) for RI and HI in cylindrical Couette flow re-emphasized the
possibility of observing RI in nematics with pg > 0. However effects of destabiliz-
ing fields on RI in such nematics have not been studied.

Pieranski and Guyon (1974b, 1975) reported theoretical and experimental studies
on the plane Poiseuille flow of MBBA. They indicated theoretically the existence
of the Twist and Splay-modes of which they observed only the former. Janossy
et al (1976) gave a simple analysis of the HI and experimentally established the occur-
rence of net secondary flow with the Twist mode. Manneville and Dubois-Violette
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- (1976b) gave rigorous solutions for HI and established that the Twist mode is always
more favourable in the presence of stabilizing fields. From these studies it became
clear that HI cannot be excited in nematics with 3 > 0 for the field-free case or in
the presence of stabilizing fields. Subsequent theoretical study on MBBA indicated
(Kini. 1978). that the Splay mode can become more favourable in the presence of
destabilizing fields. However effects of destabilizing fields on the HI of nematics
with ug > 0 have not been studied.

In the present communication the differential equations for RI in shear flow are
solved exactly by power series. Calculations are presented for nematic HBAB
(13 > 0) including effects of destabilizing magnetic fields. For destabilizing fields
higher than the Freedericksz threshold HI is shown to occur. The HI in plane
Poiseuille flow is studied by the Fourier series technique developed by Manneville
and Dubois-Violette (1976b). In the case of HBAB the HI is shown to occur in the
presence of destabilizing fields beyond the Freedericksz threshold Results for
HBAB are compared with those for MBBA.

2. Differential equations for shear flow

Consider an incompressible nematic sheared between two infinite plane parallel
plates z = 41, the plate z = +1 moving along the +y direction with respect to the
plate z = —1 with a constant velocity V. (Both z and x are assumed to be scaled
by a the semisample thickness.) The director is initially aligned along x. Solutions
are sought for the director and velocity fields in the form:

n, =1; nj=¢(x, z, t); n, =60(x,z1t);
v, =1 (x, 2, 1); vy = P2+ v (x, 2, 1); v, = vg (X, 2, t);

where ¢, 6, v,, v,, v5 are first order perturbations imposed on the steady state director
and velocity fields. A magnetic field

H, = H,; H, = Hy; H, = H,
is also applied such that at a time only one component exists and the other two are zero.
This will be understood to be valid throughout the discussion whenever the effect of H
are considered. Effects of high frequency electric fields are not considered. From

the continuum theory of nematics one can obtain the following differential equa-
tions:

2Kgfyps + 2K sz + @ (A + A) 21, + @ Qg — Ay) v
+ Sa (A + A) ¢+ 2) a?d + 2 (Ay) @ (H” —H) =0, (1)

2Kyarex + 2Kgzbres + @ (Mg — ) vy, + Sa? (Az — A,) 0
+2(a0)(H—H)a* ¢ 220026 =0, o | @)
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Yoz (s 1+ s — wo) + aS (us — p)bsy 4 Kg V2,2
— 2 Sa? vy = 2p a® 15 — 2 py b 3

20y e (101 + g + 5 + ) t 1,0 (s T + )

+ Ve (6 + pa — pa) + aS (ps + Fs)¢’z
= 2ap,, + 2p a® by — 2 apyf., @

Vir (2 + o+ Be) + aex (5 + 10 — 2
a8 (g + ) box + 2t v5,00 = 2 P +28% p 33 —2pa 80 (5)

where K,, are elastic constants, u, the viscosity coefficients, A\, = pg — B3 A2 =
ps — Bg P is the pressure, A x the diamagnetic anisotropy, a comma denotes
differentiation with z and a dot denotes 9/ot. S is the constant steady shear
rate imposed on the liquid with :* = S (z 4 1)a. It should be kept in mind that the
discussion of the problem is unaffected if the plates z = - 1 move in opposite direc-
tions with velocities & V/2. Equations (1)—(5) are supplemented by the equation
of incompressibility

U,x + Ug,2 = 0. )
Equations (1)—(6) are sought to be solved with boundary conditions
¢(x’ +1, t) = 0(x, +1, t) = v],(x9 + 1, t)
=00+, =0 +£11=0. )’
Equations (1)—(6) support solutions of the form f(x, z) e**. To seek solutions at
threshold w is equated to zero by adopting the principle of exchange of instabilities
and hence all time derivatives in (1)—(5) are ignored. The differentjal equations

for HI can be recovered from (1)—(5) by putting 2, = 0 = v, and taking only z
dependence for all quantities. :

2Ku o,zz+ a (A1+ )‘z) vl,z+ Saz (A1+ )‘a) ¢

+ 248 (a ) (HY— HD) 6 =0, @
2 Kypd,ue+ 52 (g — ) 0+ 2(a Y) (HA—HD a*$ =0, ®)
01,0s (s -+ o+ Be) + @S (s + p) 6,2 = 0. | L

Equation (5) describes the z dependence of p. Since detailed physical descriptions

of hydrodynamic torques have been given in many of the papers quoted (see for

example Manneville and Dubois-Violette 1976a) this will not be discussed here.
From the torque equations (7) and (8) by following Pieranski and Guyon (1974a)
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one can get a smple formula for the HI threshold mcludmg effects of destabilizing
fields:

Sh=02@ e H;—H) —Kn7[2] 2(ax) @ H; —H)
— Kyp 7[2]/[a* (A3 — X)) (10)

One can conclude from (10) that (A) if 3 <0, Sy is defined for any field H,, for
H,<H F, or for Hy < H F, where H F, and Hp, are respectively the Twist and Splay
Freederlcksz thresholds. (B) if pg> 0, Sy is undefined for H =0 or for H;;
however S is defined for H, > H F, Of for Hy > H. Py Thus HI appears to be
favourable in a material like HBAB beyond the Freedericksz thresholds H 5, oF H Fy

The treatment of Manneville and Dubois-Violette (1976a) is more rigorous. After
ascertaining that (1) to (6) support two decoupled modes they consider the mode (say
mode 1) for which ¢, 6, v, and v, are symmetric since mode 2 for which ¢, 6, v, and 2,
are antisymmetric involves a larger elastic energy and is not more favourable. In
addition to providing exact numerical calculation of the RI threshold they present
an approximate formula which can be rewritten including effects of destabilizing
fields in the form '

Sy = f,£:Bal [2m3(q2 + qDps — plpad? — pag)lf], (11)
where £, = Kpq? + Ksuq® + (Ax)a*(H} — H)Y),

f. = Kud} + Kug} + (aAx)a*(H} — HY.

and the other quantities are defined as in the reference. These authors have found
that in the case of MBBA equation (11) describes the RI threshold fairly accurately.

3. Calculations
3.1 Roll instability

In the appendix an exact solution of equations (1)-(6) by power series is described.
Model calculations have been presented for HBAB with the parameters given in
table 1 (For relevant references to the literature see Kini 1980). At the RI threshold
there exist both a critical shear rate S, and the corresponding critical wave vector gy
For MBBA parameters one can recover the results obtained by Manneville and
Dubois-Violette (1976a).

Figure 1 shows the neutral stability curve for the field free case. Equation (13) gives
slightly smaller values for S, and g, and is not meaningful for ¢,<1-7. For HBAB,
S.=2-16 sec~! and g, =2.31 in the absence of fields for a sample thickness of 200pm.
Figure 2 illustrates the increase of S, and g, with a stabilizing magnetic field H,.
Since H, can influence both the Splay and Twist angles [equations (1) and (2)] it is
meaningful to use the quantity (hh,)''? (as has been done by Mannev1lle and
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Table 1. Material constants of MBBA and HBAB used in the present calculations.

Ky K, Ky AX " He Ky e M tog
x 10-7 dynes x 1077 cgs poise
MBBA 58 3-0 70. 114 0065 —0-775 —0-012 0-832 0463 —0-324

HBAB 844 4-78 10-87 0745 006 —0-327j ,L 00034 0-2746 0-2218 —0-1018

Semisample thickness =100 um. p==1-088 g cm~* for both fluids.

S (sec”™)

1 H | 1
1 2 3 4

Ay :
Figure 1. Neutral stability curves for RI in shear flow for HBAB. The dashed curve
has been calculated from equation (11).

Dubois-Violette 1976a) to measure the effect of H; where h, =(Ax)Hia* /Ky,
ha=(Ax)H?%a?[Kp,. The values of S, and g, calculated from (11) are found to be
generally less than those calculated by the exact method. At sufficiently high fields
the value of S, (approximate) exceeds S.(exact) but g,.(approximate) always remains
" less than the exact value. Thus for HBAB also equation (11) is found to give a
sufficiently accurate value of the RI threshold at moderate stabilizing fields.

The effect of destabilizing fields is more interesting. Since the fields H, and Hj
occur in .dimensionless combinations such as’ (Ax)H?2a%/K,, the quantities k=
(Ax)H32a% Kyg and by =(Ax)H2a?/K;; have been used to describe the strengths of the
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Figure 2, RI threshold S. (curves 1 and 2) critical wave vector gx, (curves 3 and 4)
as functions of (hh:)'!? = (AX)H1 a*/(Ky,K,s)'* for HBAB. Full and dashed curves
are respectively from the exact calculation and equation (11).

respective fields. On increasing H, or H; from zero (figures 3 and 4) both S, and g,
decrease. However unlike the HI in MBBA (see for instance Kini 1978) S, does not
become zero at the Freedericksz threshold H F2 O Hps; q,. also remains non-zero.
On further increasing H, or H; beyond HF2 or Hf3, S, decreases further becoming
zero in a small range of destabilizing field. The reason for g, or S, not becoming zero
at the Freedericksz threshold is clearly because the Freedericksz threshold does not
become a hydrostatic limit for the type of disturbances which cause the RI. There is
no way in which the destabilizing torques which come into play in RI can become
zero at the Freedericksz threshold. But once the destabilizing field has crossed the
Freedericksz threshold the type of solutions that were sought for RI will cease to be
meaningful since a deformation can exist even in the absence of imposed-shear.
Thus the dashed parts of curves in figures 3 and 4 which describe decrease of S.
and g, beyond the Freedericksz threshold have no significance. Equation (11) amply
describes the field H, or H, at which S, becomes zero. Putting § g =0in (11) one gets

for a field H, _
(ax) Hya*[Kyy = Ky 3/Ky + 45 = My, ' (12)
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Sc (sec’))

hi

Figure 3. Threshold shear rates for RI and HI as functions of destabilizing field for
HBAB. Variation of RI threshold S, with 4,=(AX)H} a?/K,,: curve (1) by exact
calculation; curve (5) by equation (11). Variation of S, with s =(AX)H} a*/K;,:
curve (2) by exact calculation; curve (6) by equation (11). Variation of HI threshold
Sy with A, (or A,) is given by curve 3. The vertical dashed line 4 corresponds to the
Freedericksz threshold 4, (or h;)=n*/4. The dashed parts of 1, 2, 5 and 6 are of
only academic interest.

T
| .
225 T~
| \\ \\\\
\\\ ~ \\
I \\\ \‘\\\\ \\\
! N AL N
! N DN N
[ \\ \ S~ \
(3] [ \ \ ~ \
0’,‘2-0- : \ \\ \\ \\
. \ \
s: Y3 \‘3 2 \
[ \ \ )
| \ v
| \ | v
| \ | v
| 1Y
175} i lI \ i
| | . Vi
] 1 ) 1
Ié ol 3m?
4 2 [
. h;

Figure 4. Critical wave vector gy, at RI threshold as a function of destabilizing field
for HBAB. Variation of g, with h,=(AX)H?3 a*/Ky,; curve (1) by exact calculation;
curve (2) by equation (11). Variation of gxc with A =(AX)H} a*K,;; curve (3) by
exact calculation; curve (4) by equation (11). The dashed line 5 corresponds to the
Freedericksz threshold 4, (or 4,) =#%/4. Dashed parts of 1, 2, 3 and 4 are of academic
interest.
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and for a field H,
(Ax) H} a*/Kyy = Ky 93/ Kps + 42 = haq- - 13)

From figures 3 and 4 one finds that for Hy, ¢, =178 and for H,, g, =1-7. Putting
g,= /2 one finds from (12) and (13) that hyy— 6-55 and h,, = 9-0 in good agreement
with figures 3 and 4. One can also see from figures 3 and 4 that the decrease of S, and
g,c With H, or Hjy is described fairly accurately by (11). Finally one must point out
that the dashed parts of curves in figures 3 and 4 were obtained mainly because the
steady state solutions n = (1,0,0) and v = (0, », 0) are assumed to hold good initially
regardless of the magnetic field or imposed shear rate and the perturbations are
assumed to act on this steady state solution.

3.2 Homogeneous instability

One can now investigate the possibility of exciting an instability when a destabilizing
field has a value greater than the Freedericksz threshold. Suppose one has applied a
shear rate Sy < S, the RI threshold. Then RI will not occur and the shear rate will
try to stabilize the initial orientation m =(1, 0, 0) against HI in the case of a material
like HBAB. It is now clear from (10) that one can expect HI to set in if a destabilizing
field greater than the Freedericksz threshold is applied. To solve equations (D-(9),
following Leslie (1976) equation (9) is integrated so that

vy (i + pg + 1) + aS (3 + pg) ¢ = b, : (149
where b is the constant transverse stress in the xz plane. For a field H, one can write
auz + my (¢ + 8) = 0’ (15)
¢su + mgy 6 + h2¢ = 0’ (16)
where m; = Sa® (A; + Ap) pa/[2Ky; (3 + 4 + )]s
my, = Sa*(A, — A)/(2K,,), and 8 = b/Sap,. Here for HBAB (pg > 0) one can
define E = (—m,m,)'* as the Ericksen number. Of the two possibilities that arise

the case A2 < 4E* does not yield any solution for the HI threshold. But for 43 > 4E?
one gets from 14, 15 and 16 the compatibility condition

(s + pa + pe) (K2 —K3) + (us + pe)
[(K3 tan ky)/k, — (K2 tan ky)[k,] = 0, | an

where ki, = [k F (B — 4 E*)'F].
For a field H; one can write
0uz+m1 (¢+8)+h1 0=0, ' (18)

¢’u + mgy 6=0. (19)
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Again for the case 42 > 4E?, with k% , = [h, T (h2 — 4E*)!/*]/2 one gets formally
the same compatibility condition as equation (17). Thus for both the fields H, and
H; a plot of Sg; the HI threshold as a function of A, or A, will result in the same

curve 3 in figure 3. Though the A, and h, values are the same it should be clear that
the Hy or H, field applied will be different. S, increases with increasing A, or hy.

But curve 3 ceases to be significant once S > S, the RI threshold. Because once a

shear S = S, is applied a RI will be excited even in the absence of any field. Thus
for a material like HBAB, in the presence of destabilizing fields the variation of
critical shear rate for RI or HI gets confined to the portion ABCD of figure 3.

4. Homogeneous instability in plane Poiseuille flow

In this case the plates z = 4 1 are fixed and the nematic initially oriented with
n= (1, 0, 0) flows along -+ y under the action of a constant pressure gradient p,,

with a velocity v=(0, %, 0) with :®=p , a® (22 —1)/uy. With a homogeneous
perturbation the director and velocity fields become

n,=1, n, =¢(z2), n, = 0(z)
vy = 9,(2) v, = %(2), v, =0.

The differential equations governing the disturbances are (see for instance Kini 1978)

¢,zz + my 260 + (Ax)a® (H: - H?) ¢/K22 =0, (20)
0,0: + my (8 +¢2) + (Ax) a* (H — HDO/K;; =0 @n
(3 + g +He) 01,:/(2p,, a%) =8 — (153 + 1) 28/ prgs (22)

with my = A, + A9 p,, @/ [Ky; (43 + pa + 1)l

my= (A —A) p,, @[y Ks,], 8 = bjap, , where bis the constant transverse stress in the
zx plane. As has been pointed out by earlier authors there are two decoupled modes.
For the Twist mode ¢ and », are even but 8 is odd in z, whereas for the Splay mode the
reverse is true. By using the Fourier series method developed by Manneville and
Dubois-Violette (1976a) equations (20) to (22) are solved and the critical Ericksen
number E, studied as a function of field strength. Manneville and Dubois-Violette
(1976a) have shown that for a material like HBAB (15 > 0) HI cannot occur in plane
Poiseuille flow. These authors have however studied the case of MBBA (u; < 0) and
have established that the Twist mode is always more favourable than the Splay mode in
the presence of stabilizing fields. Later calculations (Kini 1978) have indicated that in
the presence of a destabilizing field H; close to the Freedericksz transition the Splay
mode can become more favourable. This can be seen clearly in figure 5 which is
similar to the one presented in Kini (1978). For MBBA the Ericksen number E is
defined as (m,m,)!/2. ~With a field H, the Splay mode is always less favourable than
the Twist mode. The critical Ericksen number E, for the Splay mode goes to zero only
at (A x) H?2 a®/K;, = h, ==* corresponding to twice the Freedericksz field (figure 5)
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Figure 5. Variation of critical Ericksen number E, of HI with destabilizing field in
plane Poiseuille flow of MBBA. E, as a function of h;=(AX)H?} a*/K,,; curve (1) for
splay mode; curve (4) for twist mode. E. as a function of 4, =(AX)H} a*/K;,; curve
(2) for splay mode; curve (3) for twist mode. Dashed portions of the curves are of

only theoretical interest.

which is a consequence of ¢ being antisymmetric. But since ¢ is symmetric for the
Twist mode E, decreases with increasing H, and goes to zero at the Freedericksz thres-
hold hy ==?/4. With a field H, the roles of 6 and ¢ are reversed so that the Splay
mode is more favourable in the vicinity of the Freedericksz threshold (A x) H: a?/K;,
= h, ===2/4. For lower values of the field H; the Twist mode is more favourable.

In the case of HBAB the behaviour is different (figure 6). The Ericksen number is
defined as E = ( — mymy)*/®. In this case an imposed shear rate will have a
stabilizing influence on the initial orientation n =(1, 0, 0). A critical Ericksen number
E, corresponding to HI cannot exist either for the field-free case, or for a field H, or
for destabilizing fields below the Freedericksz threshold.

However for H, or Hj fields above the Freedericksz threshold one can excite HI
(figure 6). With a field H,, E, for the Twist mode increases from its zero value at the
Freedericksz threshold k, = #?/4. However for the Splay mode, since ¢ is antisym-
metric the HI can be excited only for A, >« hy = #* corresponding to the hypo-
thetical Freedericksz transition involving an antisymmetric twist angle. Thus the
Splay mode would never be observed for a material like HBAB with a field H,. This
result is similar to that for MBBA (figure 5).

With a field H, the roles of Splay and Twist modes are reversed. Since 6 for the
Splay mode is symmetric, E, for the Splay mode increases (figure 6) from a zero value
at the Freedericksz transition 4, =x?/4 when Hy is increased beyond the Freedericksz
transition. Since for the Twist mode 6 is antisymmetric the Twist mode can be excited
only when 4, is greater than #%, where h; = = is the hypothetical Freedericksz field
which corresponds to an antisymmetric 6. " Thus the Twist mode can never be observed
in a material like HBAB in the presence of a field H;. One can thus see by compari-
son with figure 5 that there is a marked difference in behaviour of the HI threshold

for MBBA and HBAB. :
Finally as in § 3 it should be pointed out that the curves for HI in figure 6 will cease
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Figure 6. Variation of critical Ericksen number E. of HI with destabilizing field in
plane Poiseuille flow of HBAB. E. as a function of hy=(AX)H} a*/Ky; curve (2)
for Twist mode; curve (3) for Splay mode. E, as a function of ;=(AX)H} a*/Ky;
curve (1) for Splay mode; curve (4) for Twist mode. Curves 3 and 4 are only of aca-

demic interest.

to be meaningful when the imposed shear rate crosses the RI threshold for plane
Poiseuille flow. However no quantitative estimate of the RI has been made in this

paper.
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Apliendix

Equations (1) —(5) can be written with the help of (6) as

(D*+ B) ¢ + iByv, + B; 6 =0, (A1)
(D*+ By 0+ iB; D* vg + iBgvy + B¢ =0, (A2)
(D + By) v, + iBy 0 + Byy v, =0, (A3)
i (D* + By D* + By v3+ B3 D* ¢+ B¢ =0, (A9
iq« U + Do =0 (A5)

by putting an x dependence of exp (ig, x) for all quantities.

P2
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D stands for d/dz;
B, = (A x) (H: — Hpa¥/ Ky, — Ka3 43/ Koe;
By =g, Ay — ) a/2K; ‘
By = Sa% (A; — AD/[2K;4;
B,=(A"Y) (HY — H})|Kyy — K53 93/Kna;
By=a (A, + A)/29x Kyy; '
By =aq. (A — 4))/2 Ky;
B, = Sa* (A, + A)[2 Kyy;
By= —q2(us + pa — p)las
By = a Sqx (ps — ma)lpas
B,y = —2p Sat[py;

Bi=—qQu+ 2u4+ps —pat+ps + pe)/ M
Bia = q* (us + pa — 1d/ms

B, =agq: S (s + Be)lms

By = a Sq3 (g + p)/m, With 7y = pg + py + pe.

On combining (A1) to (AS) one gets
[DIO + Cq D8 + Cs D? + C2 D! + 51 D? + co] (¢) 0’ Ugs va) = 0" (A6)

where ¢, = B, + By + By + By,
¢; = By + By By, + (B, + B) (Bs + By)) + By By + By By Bis— By By,
¢, = By Byy + (Byy + By Byy) (B, + By) + B, By (Bg+ Byy)
-+ B, By (Bs + Bs Bg) + By By By — By By (By + By)
— B, B, By + B, By By + B, B; By By,
¢; = By B3 (B, + By) + By By (Byy + By Byy) + By Bg By Byg
+ Ba Bu (Bs =+ Bs Bs) - Ba B7 (Blz + Bs Bn) - Bz B7 Bo Bu
+ B, By (By + By Bi) + By B, (By By + By By,
¢y = B, B, By Byy -+ By By By By, — By By By By — B, B, B, B
+ B, B, B,y B, + B; By By By, - '
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For the mode under study, since ¢, 6, », and v, are symmetric in z solutions are
[ o]
sought in the form (¢, 6, o5, 2) = » [Pn T,, V¥, V¥] z%. Using (A6) all
r=0

coefficients of a given kind for r > 4 can be expressed as linear combinations of
the coefficients r =0, 1, 2, 3, 4. For instance,

. 4
Tr = z Mri Th
i=0
where M, =8, (r,i=0to4)and

4
Mg,  Qr+10! = — > ¢ Myy,, 2r +26)!
k=0

r=0,1, ... (A7)

The boundary conditions for », and v, can be written down using (A5) and (6)’
in the form

4 ©
>[5 mrp o x
i=0 r= : :
4 ©
> [ e+ DM, | VD =0 (A9)
=0 r=0
_ 4
By using (A4) one can express P,—P, in terms of V¥ — VPas P, = z X, V® so
i=0
that the boundary condition for ¢ becomes
4 o 4
> DS Myx)ve=o. (A10)
i=0 r=0 j=0
, 4
With (A2) T,—T, can be expressed in the form 7, = Z N,,V® and the boundary
' i=0
condition for § becomes
4 o 4
> 2 M,, N,,] Ve =o. (A11)
i=0 r=0 j=0

4
Finally from (A1) V¥ — V¥ can be expressed as V}» = z L, V¥ and the bound-
o =0
ary condition on v, can be written as

o 4
> > M, L)v®=o. (Al12)
i=0 r=0 j=0
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Equations (A8) to (A12) define the 5X 5 determinant the vanishing of which
constitutes the compatibility condition. For a given ¢, and H the value of the shear
rate satisfying this condition is determined. By varying gq,, for a given H the
threshold will be given by that g,=gq,. for which the shear rate is minimum.
Summation over r is terminated at a suitable integer which gives proper convergence.
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